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Executive Summary

Cloud computing promises on-demand provisioning of scalable IT resources, delivered via
standard interfaces over the Internet. Hosting resources in the cloud results into a shared
responsibility between cloud provider and customer. In particular the responsibility for all
security aspects is now shared. Moreover as all cloud customers use the same resources, the
infrastructure is shared among multiple clients, usually called tenants in this context, which may
be competitors. Hence proper isolation of cloud customers becomes of crucial importance for
acceptance of cloud offerings.

In this deliverable, we consolidate and analyze the requirements for building a trusted
infrastructure cloud. The research and developments presented can be categorized into the
following areas representing the key challenges for building a trusted infrastructure cloud:

Trust: As the customer’s resources are hosted by the cloud provider, trust between the cloud
provider and the customer has to be established. The threat of insider attacks performed
by the cloud providers’ employees have to be carefully analysed and security measures
have to be established to mitigate the risks. Remote attestation is one technical means to
establish trust relationships between the customer and the provider’s sites. We develop
deployment and key management schemes which reduce the level of trust needed required
from cloud provider.

Confidentiality / Integrity: The customer’s data is stored and processed at the providers’ site.
Confidentiality and integrity of the data has to be ensured throughout the complete life
cycle of the data and seamlessly from the customers end-points into the cloud. In this
context the concept of trusted virtual domains (TVD) is employed and we study how to
integrate mobile devices as the customers end-points into the infrastructure to complete
the picture.

Resilience: As resources are no longer under control of the customer and more and more
business critical applications move into the cloud, availability and fault-tolerance of the
cloud infrastructure becomes a crucial prerequisite for the operational business of the
customers. We present a scheme for fault tolerance which reduces the costs by reducing
the number of replicas needed.

Audit: As incidents may occur in the cloud infrastructure, proper means for audit and forensics
have to be brought into place. A secure, tamper proof logging mechanism appears to be a
crucial core ingredient for legal compliance, which we have designed in this deliverable.
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Chapter 1

Introduction

1.1 TClouds — Trustworthy Clouds
TClouds aims to develop trustworthy Internet-scale cloud services, providing computing, network,
and storage resources over the Internet. Existing cloud computing services today are generally
not trusted for running critical infrastructures, which may range from business-critical tasks
of large companies to mission-critical tasks for the society as a whole. The latter includes
water, electricity, fuel, and food supply chains. TClouds focuses on power grids and electricity
management and on patient-centric health-care systems as its main applications.

The TClouds project identifies and addresses legal implications and business opportunities of
using infrastructure clouds, assesses security, privacy, and resilience aspects of cloud computing
and contributes to building a regulatory framework enabling resilient and privacy-enhanced cloud
infrastructure.

The main body of work in TClouds defines an architecture and prototype systems for
securing infrastructure clouds, by providing security enhancements that can be deployed on
top of commodity infrastructure clouds (as a cloud-of-clouds) and by assessing the resilience,
privacy, and security extensions of existing clouds.

Furthermore, TClouds provides resilient middleware for adaptive security using a cloud-
of-clouds, which is not dependent on any single cloud provider. This feature of the TClouds
platform will provide tolerance and adaptability to mitigate security incidents and unstable
operating conditions for a range of applications running on a clouds-of-clouds.

1.2 Activity 2 — Trustworthy Internet-scale Computing Plat-
form

Activity 2 carries out research and builds the actual TClouds platform, which delivers trustworthy
resilient cloud computing services. The TClouds platform contains trustworthy cloud components
that operate inside the infrastructure of a cloud provider; this goal is specifically addressed by
WP2.1. The purpose of the components developed for the infrastructure is to achieve higher
security and better resilience than current cloud computing services may provide.

The TClouds platform also links cloud services from multiple providers together, specifically
in WP2.2, in order to realize a comprehensive service that is more resilient and gains higher
security than what can ever be achieved by consuming the service of an individual cloud provider
alone. The approach involves simultaneous access to resources of multiple commodity clouds,
introduction of resilient cloud service mediators that act as added-value cloud providers, and
client-side strategies to construct a resilient service from such a cloud-of-clouds.

WP2.3 introduces the definition of languages and models for the formalization of user- and
application-level security requirements, involves the development of management operations for
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security-critical components, such as “trust anchors” based on trusted computing technology
(e.g., TPM hardware), and it exploits automated analysis of deployed cloud infrastructures with
respect to high-level security requirements.

Furthermore, Activity 2 will provide an integrated prototype implementation of the trustwor-
thy cloud architecture that forms the basis for the application scenarios of Activity 3. Formulation
and development of this integrated platform is the subject of WP2.4.

These generic objectives of A2 can be broken down to technical requirements and designs
for trustworthy cloud-computing components (e.g., virtual machines, storage components, net-
work services) and to novel security and resilience mechanisms and protocols, which realize
trustworthy and privacy-aware cloud-of-clouds services. They are described in the deliverables
of WP2.1–WP2.3, and WP2.4 describes the implementation of an integrated platform.

1.3 Workpackage 2.1 — Trustworthy Cloud Infrastructure

The overall objective of WP2.1 is to improve the security, resilience and trustworthiness of
components and the overall architechture of an infrastructure cloud. The workpackage is split
into four tasks.

• Task 2.1.1 (M01-M20) Technical Requirements and Architecture for Privacy-enhanced
Resilient Clouds

• Task 2.1.2 (M07-M36) Adaptive Security by Cloud Management and Control

• Task 2.1.3 (M01-M36) Security-enhanced Cloud Components

• Task 2.1.5 (M18-M36) Proof of Concept Infrastructure

Task 2.1.1 and Task 2.1.5 follow each other with a slight overlapping. In Task 2.1.1 the
requirements analysis took place mainly in the first year and we also identified the gaps and
weaknesses of existing cloud solutions. From there we researched into components and architec-
tures to improve security, resilience and trustworthiness of an infrastructure cloud. In Task 2.1.5
we continue to implement the designs into a prototype system. Tasks 2.1.2 and 2.1.3 identify
sub-topics that are continuously worked on during building prototypes and doing research.

During the second year the focus was the design of the components and building prototypes.
Figure 1.1 illustrates WP2.1 and its relations to other workpackages according to the DoW/An-

nex I.
Requirements were collected from WP1 which guided our requirements and gap analysis.

Also requirements from the application scenarios in WP3.1 and WP3.2 were considered. Task
2.1.2 which is concerned about management aspects of the cloud infrastructure is strongly related
to WP2.3 the overall management workpackage. The prototypes developed in Task 2.1.5 are
input for the overall platform and prototype work of WP2.4 where the necessary interfaces and
integration requirements are feed back to Task 2.1.5. The resulting platform and prototypes are
employed by WP3.1 and WP3.2 for the application scenarios and are validated and evaluated in
WP3.3.
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Figure 1.1: Graphical structure of WP2.1 and relations to other workpackages.

1.4 Deliverable 2.1.2 — Preliminary Description of Mecha-
nisms and Components for Single Trusted Clouds

Overview. Cloud computing promises on-demand provisioning of scalable IT resources, de-
livered via standard interfaces over the Internet. Hosting resources in the cloud results into a
shared responsibility between cloud provider and customer. In particular, the responsibility for
all security aspects is now shared. Moreover, as all cloud customers use the same resources,
the infrastructure is shared among multiple clients (usually called tenants in this context) which
may be competitors. Hence proper isolation of cloud customers becomes of crucial importance
for acceptance of cloud offerings. In this deliverable, we consolidate and analyze the require-
ments for building a trusted infrastructure cloud. The research and developments presented can
be categorized into the following areas representing the key challenges for building a trusted
infrastructure cloud:

Trust: As the customers’ resources are hosted by the cloud provider, trust between the cloud
provider and the customer has to be established. The threat of insider attacks performed
by the cloud providers employees have to be carefully analysed and security measures
have to be established to mitigate the risks. Remote attestation is one promising technical
means to establish trust relationships between the customer and the providers sites. We
develop deployment and key management schemes which reduce the level of trust needed
required from cloud provider.

Confidentiality / Integrity: The customers’ data is stored and processed at the providers’ site.
Confidentiality and integrity of the data has to be ensured throughout the complete life
cycle of the data and seamlessly from the customers end-points into the cloud. In this
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context the concept of trusted virtual domains (TVD) is employed and we study how to
integrate mobile devices as the customers end-points into the infrastructure to complete
the picture.

Resilience: As resources are no longer under control of the customer and more and more
business critical applications move into the cloud, availability and fault-tolerance of the
cloud infrastructure becomes a crucial prerequisite for the operational business of the
customers.

Audit: As incidents may occur in the cloud infrastructure proper means for audit and forensics
have to be brought into place. At the core a secure, tamper proof logging mechanism
appears to be a crucial core ingredient for legal compliance.

Structure. Chapter 2 analyses the risk of insider attacks in cloud computing especially moti-
vated by the requirements from the medical use case scenario of WP 3.1. The content of this
chapter was published in [ANM11]. In Chapter 3 a scheme for ‘Cryptography-as-a-service’
is proposed which provides the technical means for secure key management within the cloud
infrastructure minimizing the trust assumptions on cloud insiders.

Chapters 4, 5, 6 consider different aspects of trusted computing and trusted virtual domains.
Remote attestation is discussed in Chapter 4 enabling to build trust in cloud computing nodes,
which was published in [CRS+11]. Chapter 5 introduces the integration of mobile end-user
devices into trusted virtual domains spanning cloud resources. Chapter 6 gives details on the
initialisation and update mechanisms of the TrustedServer (cf. Deliverable D2.4.1 chapter 7.5).

The following two Chapters are concerned with improving resilience within the cloud.
Chapter 7 discusses the further developments and results of the resource efficient Byzantine Fault
Tolerance (BFT) framework, which was published in [KBC+12]. Chapter 8 elaborates on the
concept of tailored services aiming to minimize the computing base of the service to minimizte
the runtime overhead and to improve security.

Finally in Chapter 9 the design of a logging service is described.

Deviation from Workplan. This deliverable aligns with the DoW/Annex I, Version 2.

Target Audience. This deliverable aims at researchers and developers of secure cloud-computing
platforms. The deliverable assumes graduate-level background knowledge in computer science
technology, specifically, in virtual-machine technology, operating system concepts, security
policy and models, basic cryptographic concepts and formal languages.

Relation to Other Deliverables. The dependencies of deliverable D2.1.2 are depicted in
Figure 1.2. The present deliverable D2.1.2 is directly related to the year 1 deliverable D2.1.2.
Whereas D2.1.1 focused on requirements, a gap analysis and first ideas of a trusted cloud
computing environment, this deliverable continues the work by describing concrete designs and
a much more mature discussion of the components.

D2.1.2 contributes to the components and the architecture for cloud-computing to the devel-
opment of the two application scenarios in WP3.1 and WP3.2. Furthermore, the components are
validated in the context of WP3.3 (“Validation and Evaluation of the TClouds Platform”).

Moreover D2.1.2 has a strong connection to D2.4.2. D2.1.2 focuses on the research aspects
and the overall design of the components, which are then integrated into the TClouds proof-
of-concept prototypes in D2.4.2. Therefor D2.1.2 reflects the research aspects whereas D2.4.2
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Figure 1.2: Deliverable dependencies for D2.1.2

is more concerned with the engineering and integration aspects. The mapping of legal and
application requirements from Activity 1 and Activity 3 to component requirements is described
in D2.4.2 as well as D3.3.4.
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Chapter 2

Insider Attack Analysis

Chapter Authors:
Imad M. Abbadi, Cornelius Namiluko and Andrew Martin (OXFD)

2.1 Introduction

A cloud is a new buzzword in computing terms, which is defined as ‘a model for enabling
convenient, on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction.’[MG]. Cloud
supports three main deployment types: Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS) [MG]. IaaS provides the most flexible type for
cloud users who prefer to have the greatest control over their resources, while SaaS provides
the most restrictive type for cloud users where cloud providers have full control over the virtual
resources. In other words, cloud computing provides a full outsourcing support for the SaaS, a
partial outsourcing support for PaaS (more specifically it provides the virtual environment and
software tools for users helping them to develop and deploy their applications), and a minimal
outsourcing support for IaaS (more specifically cloud provider mainly manages the infrastructure
components running the virtual machines). In this chapter our analysis mainly focus on IaaS
cloud type in which cloud users would typically be organizations.

Insider problem is cited as the most serious security problem and the most difficult problem
to deal with [BGHP08, Ric07]. As discussed by Alawneh et. al. [AA11] the insider problem in
organizations is mainly caused by the holders of authorized credentials who are typically the
internal and authorized employees. Such employees should successfully pass several security
checks before being employed by the organization. Also, such employees have a direct contract
with the organization and the organization trusts them to a certain level (e.g. based on prior
experience). In cloud computing context the problem is of much more worries and has greater
impact at organizations for following reasons: (a.) insiders’ domain has expanded from organi-
zation internal employees and contractors to organization internal employees and contractors,
cloud internal employees and contractors, cloud customers, and cloud third party suppliers; (b.)
the organization does not have a direct relation with cloud employees and cannot anticipate
their trust level; (c.) other cloud customers, which could be a competitor organization might
share the same physical server as the organization (i.e. problems of multi-tenant architecture
[RTSS09]); and (d.) cloud-of-clouds in which a cloud provider might host part of his customers
data at another cloud provider (e.g. in case of major failure, increase in demand, etc) results in
expanding cloud customer insiders to include the new cloud provider insiders. These increase the
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exposed threats on organizations sensitive assets. Thus, the risk of insider threats when moving
to cloud infrastructure is greater than the risk of insiders in the organization.

In this chapter we provide a systematic method for identifying insiders, which we use to
identify insiders in home healthcare system. This chapter is organized as follows. Section 2.2
discusses insider definitions. Section 2.3 provides a set of models illustrating the relationship
between actors, credentials and infrastructure in cloud computing context focusing on IaaS. It
then provides a method for identifying insiders. Section 2.4 provides a home healthcare scenario,
and uses the models in section 2.3 to identify insiders in home healthcare system. It then provides
a threat analysis for the identified insiders in home healthcare system. Section 2.5 discusses
related work, and section 2.6 concludes the chapter.

2.2 Insiders

In this chapter we build on Alawneh et. al. [AA11] work which provides a detailed analysis of
insiders in organizations. In their work the authors distinguish between insiders and potential
insiders and define them as follows.

A potential insider is a user who is granted a credential in an authorized way to access
sensitive corporate information for a specific purpose defined by the organization (does
not cause harm), or a user who obtains a credential in an unauthorized way but does not
use it to cause harm.

An insider is an internal or external user who “uses credentials”, obtained by either
authorized or unauthorized means, to access sensitive corporate information that results in
harm to the organization. Such a misuse could be either accidental or deliberate.

Based on the definition we conclude the following set of mandatory rules to identify an
insider.

R1: The insider could be either a potential insider, as defined above, or someone who
managed to obtain the potential insider credentials in some way; and

R2: Uses the credential to access a resource for a different purpose than the one which the
credentials were originally granted for; and

R3: This misuse results in harm to the resource owner/manager.
In the remaining part of this chapter we use these rules to identify insiders in the cloud.

2.3 Conceptual Models

A cloud computing based system typically involves a number of actors, from different organiza-
tions, which interact with the system. In order to identify which actors are potential insiders and
the threats emanating from their activities we first require identifying all actors within such a
system. We then need to understand the relationships among the actors as well as their level of
access to resources and assets that are part of the cloud. To this end, we build various conceptual
models that illustrate the explicit relationships among the various entities and expose any implied
relationships as well as interactions between the actors and the system.
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2.3.1 Organisational View

A cloud computing based system for IaaS type may be designed to serve the needs of different
communities including: i) users within a single organization or collaborating organizations
(e.g. a private cloud within an enterprise); ii) users within a research community comprising,
for example, a virtual organization; or iii) public community (e.g. a mixture of enterprise and
individuals). In most cases, several organizations will be involved in a cloud based system. We
develop an organizational model of such a system as shown in Figure 2.1 in which we identify
a generic entity Organisation as the parent of any organizational entity within a cloud-based
system.

Figure 2.1: High-Level Organisational View of the Cloud

At a minimum, a cloud-based system comprises a Cloud Service Provider, a Cloud Customer,
and quite often a Contractor, such as cleaning company or hardware suppliers, that may work_for
either a Cloud Service Provider or a Cloud Customer. A Cloud Customer has some Object, such
as computation or data, that they wish to take to the Cloud. To do this, the Cloud Service Provider
and the Cloud Customer agree_on some service level agreements (SLA) which defines the
Resource provided to the Cloud Customer and the conditions, such as performance, availability
and liability, under which the resources are provided. After which the Object is transferred to the
cloud and reside_on the Resource. Furthermore, an Organisation has one or more Employee
who work_on the Object owned by the Cloud Customer.

2.3.2 Assets and Clients

One of the main advantages of a cloud-based system is that it can increase the availability of
the Object to a wider audience via the Internet. It therefore becomes necessary to define the
entities that may have access to an Object on the cloud, as illustrated in Figure 2.2. From the
organization perspective, an Object can either be an Asset (with value to the organization) or not
an asset (less valuable). These objects, especially the valuable ones, will require an Authorisation
Policy to define a type of Credential, i.e. an Authorised Credential, that enables access to the
Objects.

In some cases, the Object may be co-owned by the cloud customer and the cloud customers’
Client. In such cases, the Client may have to decide_on all or part of the Authorisation Policy to
define which other clients, and sometimes Employees of the cloud customers, have access to
the Authorised Credential. We clarify these in context of an example when discussing the home
healthcare system.
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Figure 2.2: A view around the Client

Figure 2.3: A Breakdown of a Cloud Resource

2.3.3 Infrastructure Model
We now develop a conceptual model of a Resource, as shown in Figure 2.3, within a cloud-based
system to aid with identifying the interactions. In this model, a Resource is a composition of
components including Physical Device, Virtual Machine Monitor (VMM), Virtual Machines
(VMs), and Applications. A component may further be divided into layers1 which indicate the
parts of a component that interact to provide the functionality of the component. VMM runs on
top of the Physical Device to enable one or more VMs to run on the Physical Device (based on
the Physical Device’s layer, as explained in section 2.4.3). Applications are configured to run in
VMs.

We define an Action as an event performed by the user of the resource. An Action is
performed_on a layer, and may break zero or more Security Property and require some form of
Credential in order to be performed.

2.3.4 Procedure for Identifying Potential Insiders and Insiders
The conceptual models defined above are used for identifying potential insiders and insiders
that may exist within a given context. This is achieved by instantiating the models given above
with the actual descriptions of entities that exist within the context. More specifically, one has to
provide: i) layers of each of the components; ii) actions that may be performed at each layer
(these should be limited to those that may have effects on one or more security properties);

1see [Abb11] for detailed discussion about cloud taxonomy and layering concept.
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Figure 2.4: Potential Insiders and Insiders Identification Process

iii) credentials that may be used within the system, and iv) actors that may have access to the
identified credentials.

The identification process, illustrated in Figure 2.4, involves mapping actions or categories of
actions to layers on which a particular action or category of actions can be performed. Then for
each identified action or category of actions, determine the security properties that it may break
and the credentials required to enable the action. With the credentials identified, identify actors
that may have access to each of the identified credential. Then potential insiders and insiders are
those actors that satisfy the criteria as defined in Section 2.2. This process enables us to make it
explicit the means through which potential insiders and insiders are defined. We use this method
to identify potential potential insiders and insiders in home healthcare system.

2.4 Insiders Analysis for Home Healthcare

2.4.1 Scenario
In this section we describe a scenario for using home healthcare system in cloud computing. This
scenario is the base of our insider discussion in the remaining part of this chapter. In this scenario,
a hospital provides home services to clients, which are accessible through web portals that are
provided through the hospital’s website. These services are hosted on a cloud infrastructure
and using Infrastructure as a Service (IaaS) model. Users should not need to be aware about
the existence of clouds, as all technicalities must be transparent to them. Users might include
patients, a patient family member (a care giver), hospital staff (e.g. general practitioner, medical
consultant, psychiatrist), and other collaborating organizations with the hospital (e.g. research
center).

The system administrators at cloud infrastructure provider allocate virtual resources and
manage them based on a pre-agreed Service Level Agreement (SLA) with the hospital. This
includes allocating VMs, virtual storage, networking and managing them. The hospital, on the
other hand, is in charge of installing and maintaining the operating system and all software
packages, which are needed to run the hospital application. For example, the hospital is in charge
of maintaining the operating system, database management system, application servers, and
developing and deploying the hospital application. The hospital can outsource this service to
a professional IT services company, or can have its own IT staff to maintain the infrastructure
provided by the cloud provider. Once the hospital application is deployed on the cloud, the
hospital services are then made available to clients through the web. Clients should not notice
the existence of the cloud, as they accessing the application by connecting to a URL provided
by the hospital. The clients will then use the credentials provided by the hospital to login and
access the allocated services.
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The cloud service provider can have SLAs with other third party service providers (e.g.
hardware suppliers and operating system vendors) to act as an escalation point for critical failures
and to provide additional support for services that are not in house.

One of the cloud characteristics is supporting a multi-tenant architecture. By this the cloud
infrastructure is shared by all cloud customers (i.e. organizations for IaaS type). For example, the
virtual resources used by an organization might share the same physical servers as a competing
organization. Also, cloud providers themselves could collaborate to provide better services to
their clients. For example, hospital data can be replicated across several jurisdictions, which
provide higher resilience, faster access, and load balancing.

2.4.2 Model Instance

Based on the scenario description above, we can instantiate the model as shown in Figure 2.5.
The Hospital is an organization that needs cloud computing resources and therefore will be the
Cloud Customer. A Hospital has a number of employees including: a Researcher, Hospital
System Administrator, and a Psychiatrist who work_on PatientRecord (a type of asset for the
Hospital).

Figure 2.5: Model Instance for the Home Healthcare Scenario

The Hospital provides healthcare services to its Patients, (i.e Clients) who co-own the Patient
record and are cared_for (a sub-relation of Client related_to Client in Figure 2.2) by their
Care Givers. Hospitals may co-exist in the cloud with other organizations (which we label as
Competitor) that may be interested in the Hospital’s Assets.

2.4.3 Identifying Potential Insiders and Insiders

In this subsection we identify potential insiders and insiders using the process outlined in Section
2.3.4. The process starts from the identified system components given in Section 2.3.3; i.e.
Physical Device, VMM, VM, and Application. In this section we identify potential insiders and
insiders in each of these components, as follows.

TClouds D2.1.2 Page 11 of 138



D2.1.2 – Preliminary Description of Mechanisms and Components for
Single Trusted Clouds

Figure 2.6: Physical Infrastructure

Physical Device

A Physical Device can belong to three layers: Storage, Network and Server, as illustrated in
Figure 2.6. At the storage layer, the Physical Device type would be a storage device, which is
vulnerable to different types of threats, for example: (a.) it can be swapped with a corrupt device;
(b.) it can be taken away and mounted in another system, and (c.) the device’s content can be
copied or altered. Based on the attack scenario these threats could have an impact on content
confidentiality, integrity and/or availability. For example, content may lose integrity through
backup/restore operations, content may lose availability through removing device’s content, and
content could be leaked by copying it to a USB memory stick.

At the Server layer, the physical device type would be a physical server, which is vulnerable
to different types of threats, for example: (a.) The physical server is vulnerable to all possible
hardware threats, (a.) the physical server can be started in a different configuration from that
expected, for example by booting in single user mode. These could affect content availability,
integrity, and confidentiality based on the attack scenario. For example, booting the server in a
single user mode enables attackers to access the superuser account without the need to possess
authorization credentials.

At the network layer, the physical device type would be a network component. Data can be
modified as it is transmitted to/from the device affecting availability, confidentiality as well as
integrity.

Physical devices will normally be stored in data centers that have access restrictions to
few individuals. This access is typically enforced using credentials such as Biometrics and
Smartcards. We note such type of credential will be assigned to authorized employees from cloud
service providers (e.g. system administrators) and employees from organizations contracted by
the cloud service provider.

Based on our insider and potential insider definition cloud authorized employees and contrac-
tors are potential insiders as they are provided with credentials that can access Physical devices.
Once the potential insiders use the credentials and cause harm, then they are insiders. Also,
anyone who has access to these credentials (by stealing it or the system administrator himself
shares it with unauthorised person) is considered an insider once he uses them and caused harm.
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Figure 2.7: VMM Component Breakdown

Figure 2.8: VM access

Virtual Machine Monitor

A VMM controls the VMs running on the physical device. It comprises of a hypervisor (a
thin layer kernel) and management services, as illustrated in Figure 2.7. The management
services enable VMs’ management actions such as start, stop and migrate, to be performed.
Because network traffic to and from the VMs is mediated by the VMM, data for the VMs
can also be modified through the VMM. All these actions may impact availability, integrity
and confidentiality of the services offered by the Hospital. The typical credentials that enable
accessing the VMM to perform such actions include root login credentials and SSH private keys.
Cloud Povider authorized employees (e.g. system administrators) and contractors are the main
actors that are expected to be assigned these credentials.

Based on our insider and potential insider definition cloud authorized employees and contrac-
tors are potential insiders as they are provided with credentials that can access VMM. Once the
potential insiders use the credentials and cause harm, then they are insiders. Also, anyone who
has access to these credentials (by stealing it or the system administrator himself share it with
unauthorised person) is considered an insider once he has used them and caused harm.
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Figure 2.9: Application Access

Virtual Machine

VMs are containers that comprise an operating system and applications. These are stored together
with configuration information in a disk image. Figure 2.8 shows examples of actions that may be
performed on any of the layers, which could affect all three security properties (i.e. availability,
confidentiality and integrity). For example, updating binaries can be performed on the operating
system and application, which can affect the three security properties. The entire disk can also
be copied affecting confidentiality of data stored in it or the data may be modified affecting
availability and integrity.

Two types of credentials would typically be needed to perform the identified actions: the
SSH private key and the root login id/password. These would enable all the actions identified
at all layers. Hospital internal system administrators and contractors working on behalf of
the hospital would be the main actors expected to be assigned root login and ssh private keys.
However, system administrators from cloud service providers for IaaS type should not normally
get root access to the VMs.

Based on our insider definition hospital cloud internal system administrators and contractors
could be potential insiders as (a.) they are provided with credentials that can access the main
patient information repository from server-side application. Also, anyone who has access to a
system administrator’s authorised authentication credential is considered a potential insider (by
stealing it or the system administrator himself shares it with an unauthorised person).

Based on our insider and potential insider definition hospital internal system administrators
and contractors are potential insiders as they are provided with credentials that can access VMs.
Once the potential insiders use the credentials and cause harm, then they are insiders. Also,
anyone who has access to these credentials (by stealing it or the system administrator himself
share it with unauthorised person) is considered an insider once he has used them and caused
harm.

Application

Applications run on VMs and can be either client-side application or server-side application, as
illustrated in Figure 2.9. These are stored and run on VMs. Figure 2.8 shows examples of actions
that may be performed on any of the layers, which could affect all three security properties (i.e.
availability, confidentiality and integrity). For example, modifying data can be performed from
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client-side or server-side application, and it can also affect the three security properties. Content
stored in a server-side application can be copied affecting data confidentiality, altered affecting
data integrity, or removed affecting data availability.

End Users would be assigned user logins allowing them to perform actions enabled by this
credential. Example of such users include patients, care givers, and hospital employees (e.g.
researchers and psychiatrists).

Based on our definition end-users could be potential insiders as (a.) they can access data using
authorised credentials. Also, anyone who has access to an authorised authentication credential
(by stealing it or the authorised user himself share it with unauthorised person) is considered a
potential insider.

Based on our insider and potential insider definition end-users are potential insiders as they
are provided with credentials that can access the application’s content. Once the potential insiders
use the credentials and cause harm, then they are insiders. Also, anyone who has access to
these credentials (by stealing it or the end-user himself shares it with unauthorised person) is
considered an insider once he uses them and caused harm.

2.4.4 Insider Threat Analysis

Insiders’ actions could affect information/service availability, integrity, and confidentiality.
Schemes that are proposed to address insider threats are for organization and to the best of our
knowledge insiders in cloud computing environment has not been tackled before. Also, as we
discuss in section 2.5, insider schemes proposed for organizations mainly focus on mitigating
insider threats for content confidentiality. In our opinion this is due to two main reasons: (a.) the
lack of solid cases discussing the insider threats, and (b) due to the nature of the problem which
is not easy to address as insiders are authorised to update/remove records. We now discuss the
possible threats that can be raised by the identified insiders in section 2.4.3.

1. End Users — access the hospital application services via a provided authentication cre-
dential. Each user is assigned a credential with access rights for accessing the provided
services, which enables a user to create new records, update patient records, and delete
patient records. Such rights should not provide the user the ability to access the system
from backend (i.e. from operating system level or database management system level),
and they should not provide users with the ability to have a global effect on services (e.g.
stop a service or remove the whole data repository).

End users’ insider threats are restricted to the granted access rights that are provided to
the end user credential. For example, if access rights allow the user to only read a patient
record, then the insider threat affects content confidentiality. If access rights allow the user
to update and delete patient record, then the insider threat affects content integrity and
availability, and so on.

2. Hospital internal system administrators — access the hospital application and backend
virtual resources via a provided authentication credential(s). A system administrator is
in charge of maintaining the application and backend services (e.g. operating system
and database management system). System administrators are assigned access rights for
performing their job, which could enable them to do critical actions on the system (e.g.
suspending a VM, backup/restore operations, migrating VMs, and stopping/restarting
middle tier application servers). Such rights enable its holder to have a global effect on

TClouds D2.1.2 Page 15 of 138



D2.1.2 – Preliminary Description of Mechanisms and Components for
Single Trusted Clouds

provided hospital services (e.g. stop a service, remove the whole data repository, and
leaking the data repository for patient records).

Insider risks in the above case would be based not only to the access rights that are provided
to the account that is used by the insider but it also would be based on the used security
best practices (e.g. separation of duty and least privilege concepts). For example, an
organization might reduce the impact of data integrity by introducing database/application
backup role, which is separate from system administrator role. Also, an organization can
introduce an application maintenance role that is separate from database management role.
Application of security best practice does not necessarily prevent insider’s threats but it
will lessen their effects. We now list the main insider threats for system administrator role.

(a) Availability — an insider can affect system availability. For example, application
management role can stop/delete middle tier application services, database manage-
ment role can stop/delete the database, and operating system role can stop the virtual
resources. All these are examples of how an insider can cause a global effect on
service availability.

(b) Integrity — an insider can affect system integrity. For example, application manage-
ment role can create an authorized user account for a non existing general practitioner,
update patient records, and then delete the account. A backup role can invalidate the
backup. A database management role can update patient records directly from the
database.

(c) Confidentiality — an insider can leak sensitive content to unauthorised parties. For
example, a backup role grantee can copy the backup to a memory stick, restore it at
home and then leak the content to others. A database management role can also copy
the database to a memory stick or even searches and then extract selected patients
records to a USB stick or leak them via email.

3. Hospital contractors — are provided with appropriate credentials enabling them to main-
tain part of the hospital provided services (e.g. application support, operating system, and
database management system). Contractors should be assigned the minimal access rights
that are sufficient enough to do the job. Such rights could enable them to do critical actions
on the system, exactly as the one described for the system administrator role. Insider
threats caused by external contractors cloud have the same severity level as the one caused
by internal system administrators. Identifying these would be based on the roles granted to
the contractor.

4. Cloud provider internal employees — those have full access to the physical hardware
resources (servers, storage and network devices) and the operating system (hypervisor),
which serves the provided virtual resources. In addition, they have full access to the cloud
infrastructure management software packages. These are used to maintain and monitor
the virtual resources, e.g. stop, start, suspend, resume, migrate and backup a VM, and
allocate/revoke computational resources to/from a VM.

The insider threats caused by the insiders of a cloud provider could have greater effect than
the hospital insiders. This is because insiders could have even more authoritative access to
the underlying infrastructure. Also, they are the party who manages the hospital allocated
virtual resources. Following we briefly outline these threats.
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(a) Insider threats that affect content availability. An insider who is granted a virtual
resource management role can deprive some of the computational resources that are
granted to VM, which cause the machine to be non-responsive, for example, in peak
periods.

(b) Insider threats that affect content integrity. An insider who is granted access to the
hypervisor layer as a superuser can access the VM running on the hypervisor enabling
the insider to update the VM content. Also, an insider can restore VM storage from
an old/hacked backup.

(c) Insider threats that affect content confidentiality. An insider with proper access
privileges can copy a VM image or a backup from the storage server and restore
these at home, which enable the insider to leak the hospital patient information to
unauthorised parties.

5. Cloud Provider external contractors — are provided with appropriate credentials enabling
them to maintain part of the cloud infrastructure (e.g. hardware suppliers and software
application support). Contractors should be assigned the minimal access rights that are
sufficient enough to do the job. Such rights could enable them to do critical actions on
the system, exactly as the one described for the cloud internal employees. For example, a
contractor that maintains the storage can perform backup of the storage and restore it at
home, which enables him to leak sensitive content. Insider threats caused by external con-
tractors cloud have the same severity level as the one caused by cloud internal employees.
Identifying these would be based on the roles granted to the contractor.

6. cloud-of-clouds internal employees — as discussed before if two cloud providers collabo-
rate, one cloud internal employee could access another cloud data that migrates across to
their internal infrastructure. In this case the destination cloud provider’s system internal
employees can cause the same level of threats “on the migrated data” as the source cloud
provider internal employees, as discussed in the previous point.

7. Cloud provider customers — in a multitenant architecture [RTSS09] organizations share
the same hardware resources. In this all employees of an organization who are au-
thorized to access their organizational resources in the cloud might be an insider for
other organizations sharing the same hardware resources. For example, an attacker can
learn sensitive information about other organizations (e.g. by exploiting covert channels
[LBOR09, OBRL09]).

2.5 Related Work

Up to our knowledge our research is the first to analyse the insider threats in a cloud computing
environment. In this section we discuss related research work in insider threats in other domains.

Dynamic domain schemes [AA08b, AA08c, AA08a] mitigate insider threats on content
confidentiality for organizations. This is by using the domain concept; mainly, it moves the
fundamental access control assumption that “authorized users are trusted (or should be trusted
— not necessarily trustworthy and cannot measure their trustworthiness” to “the need to trust
authorized devices whose trustworthiness can be measured and attested”. In Enterprise Rights
Management (ERM) schemes (see, for example, [MC05, Ora08]) content can be created, stored
and exchanged between client devices. ERM does not address the insider threats. For example
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content leakage can be realized in ERM by authorized users sharing their credentials. In a typical
enterprise organization, users have a degree of freedom. Users may choose to exploit their access
privileges, for example by revealing content or sharing credentials used to access content. If
users exploit their access privileges then the threat of content leakage can be realized.

2.6 Conclusion
In this chapter we present a set of conceptual models, which help in identifying insiders and
potential insiders in a cloud computing environment. We use the insiders and potential insiders
definition in [AA11] and identified a set of rules for distinguishing insiders and potential insiders.
We then use the rules and the conceptual models to identify insiders for home healthcare system
in a cloud computing environment.
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3.1 Introduction

Cloud computing offers IT resources, including storage, networking, and computing platforms,
on an on-demand and pay-as-you-go basis. This promise of operational and monetary benefits
has already encouraged various kinds of organizations to shift from a “classical” data-center to
a (public) cloud-based service deployment of their workloads. In particular, web-services profit
economically from a cloud-based deployment [CS11].

However, moving to the cloud also means to relinquish physical control over the own data
and computations. Instead, clients confide them to the cloud service provider of their choice. To
protect their data and computations from attackers, clients can deploy cryptographic security
mechanisms, which usually require the deployment of high value cryptographic credentials such
as secret keys. For instance, clients may deploy a web-service that uses SSL/TLS to secure
the communication with its end-users requiring an asymmetric key-pair or encrypt data written
to (cloud) storage using an encrypted file-system with a symmetric encryption key. However,
as a consequence of the loss of physical control, the client faces limitations concerning the
(often debated) security in cloud computing [Clo10] and in particular regarding the protection of
deployed high-value cryptographic credentials. In the classical deployment model of dedicated
data-centers, clients had the option to incorporate their own hardware security devices like
Hardware Security Modules (HSMs) or SmartCards into their infrastructure in order to protect
their cryptographic credentials and operations from attackers compromising their (virtual) servers.
In contrast, today this option is no longer available in the cloud since cloud providers strictly
prohibit physical customizations and access to their facilities, thus making the deployment of
additional external hardware in the cloud infeasible. Hence, it is desirable to have security
mechanisms in the cloud that protect cryptographic primitives and credentials very much like in
the traditional model, in a practical and reasonable attacker model.

In addition, in virtualized environments, such as clouds, the management domain of the
virtualization infrastructure has to be trusted. This trust comes twofold: First, past attacks
([CVEa, CVEb, CVEc]) have shown that outsider attackers may compromise this management
domain and gain elevated privileges that allow them to violate the clients’ security and privacy,
e.g., by extracting high-value information and credentials [RC11]. Second, particular to cloud

TClouds D2.1.2 Page 19 of 138



D2.1.2 – Preliminary Description of Mechanisms and Components for
Single Trusted Clouds

infrastructures, the management domain is under the control of the administrative staff of the
cloud provider and thus potential insider attacks on the provider’s side can have the same
devastating consequences as a compromised management domain.

Finally, another concern, specific to public clouds, are new usage models, such as cloud
appliance stores (e.g., The CloudMarket [the]), a popular way of sharing VM images with other
clients. This kind of sharing on top of the cloud infrastructure bears severe security and privacy
risks. A recent analysis of the Amazon cloud appliance market yielded that 5.2% of the publicly
shared images contained cryptographic keys or credentials [BNP+11] – which compromise the
security of both the image consumer and image publisher.

In presence of these shortcomings and threats, in this chapter we focus on a security archi-
tecture that allows for establishing secret-less client VMs and separating client’s cryptographic
primitives and credentials into a client-controlled and protected CryptoDomain (or short DomC),
using available technology. This enables the client to securely provision and use her own cryp-
tographic primitives, such as virtual Hardware Security Modules (vHSM) or virtual Full Disk
Encryption, and thus establishes Cryptography-as-a-Service (CaaS). Simultaneously, segregating
cryptographic operations and keys from the vulnerable client VM and encapsulating them in an
isolated domain prevents attackers from accessing the VM state (e.g., end-users compromising
the VM) and extracting cryptographic keys from this state. Moreover, a trusted hypervisor can
efficiently protect a separate CryptoDomain against a compromised or malicious management
domain.

As we elaborate on related work in detail (Section 3.7), different proposed solutions make
the case for disaggregation of the privileged (potentially malicious or compromised) manage-
ment domain [MMH08, SK10], deprivileging the management domain [ZCCZ11, SJV+05], or
enabling more flexible and self-managed services in the cloud [WJW12, BLCSG12], where the
Self-Service cloud model [BLCSG12] is the closest related work to our architecture. In our
CaaS, we specifically aim at providing client-controlled cryptographic operations and credentials
in the cloud, secure against different insider and outsider attackers. This requires novel security
extensions to the VM life cycle management to protect the CryptoDomain during storage, transit,
or instantiation, and to tightly couple the CryptoDomain to corresponding client VM.

Contribution In this chapter, we present the design and implementation of Cryptography-as-a-
Service (CaaS) based on well-established and widely available technology. Our contributions
are as follows:

• CaaS empowers the cloud client to be in control of the cryptographic operations and
keys that she deploys in the cloud, independently of the cloud provider. We introduce
a dedicated, client-specific domain DomC for the client’s cryptographic primitives and
credentials.

• Clients can leverage their CryptoDomain DomC in two different usage-modes: a) Virtual
Security Module and b) Secure Virtual Device. In case a), DomC emulates a virtual
hardware security device, like an HSM, attached to the client VM. In case b), DomC
forms a transparent layer between the client VM and peripheral devices (storage disk
or network card), which encrypts all I/O data streams to/from those devices similar to
full-disk encryption or Virtual Private Networks (VPN).

• Based on our security extensions to the hypervisor and well-established Trusted Com-
puting technology, DomC can be protected from malicious insiders and outsiders in a
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reasonable adversary model during its entire life-time including instantiation, migration,
and suspension.

• We present the reference implementation of CaaS based on the Xen hypervisor and evaluate
its performance for full disk encryption of attached storage and for a software-based HSM.
Moreover, we present a partial setup of CaaS on the AWS EC2 cloud.

• We evaluate the benefits of CaaS at the example of the Activity 3 life medical use-case for
a cloud-based home healthcare service by the consortium partners PHI and FSR.

Outline The remainder of this chapter is structured as follows. In Section 3.2 we define our
system model and security requirements. We present the design and implementation of our CaaS
in Section 3.3 and evaluate its security in Section 3.4. We present a partial setup of CaaS on
AWS EC2 in Section 3.5 and demonstrate the benefits of our security architecture for the medical
use-case in Section 3.6. We discuss related work in Section 3.7 and conclude the chapter in
Section 3.8.

3.2 Model and Requirements

Our model is based on the typical Infrastructure-as-a-Service (IaaS) compute cloud as depicted
in Figure 3.1. We focus on the popular Xen hypervisor [BDF+03].1 Thus, in the remainder of
this chapter we will stick to the Xen terminology, as we explain in the following.

 
 
 
 

End-User Client Administrator 

Dom0 
(Management) 

Client DomU 
(Workload) 

Trusted Computing Base Untrusted 

Hypervisor (Xen) 

Hardware 

INS ID ER  OUTSID ER  

Cloud 
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Figure 3.1: Typical IaaS cloud model including our adversary and trust model.

In IaaS clouds, Clients rent virtual resources from the provider and send their workloads to
the cloud in form of virtual machines (VMs). Workloads can be private processes, but more
commonly are public services such as web services offered to End-Users on the Internet. The
clients’ workload VM is denoted (in Xen terminology) as DomU, meaning unprivileged domains
that are guests on the hypervisor and have no higher privileges such as direct hardware access.

1Technically the IaaS model could also be instantiated on various other virtualization solutions such as
KVM [Qum06], VMWare [VMw09], or research approaches like Nova [SK10], and we stress that our archi-
tecture presented in this chapter applies to those as well.
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While there can be many DomU executing in parallel on top of one Xen hypervisor and their
number usually varies over time, there exists only one persistent privileged management domain,
denoted Dom0. This domain is usually not exposed to outsiders. In contrast to other hypervisors,
Xen does not configure or manage guest VMs nor does it emulate devices, but defers these tasks
to the privileged domain Dom0, that holds the necessary rights for accessing hardware resources
(e.g., memory). Thus, Dom0 is naturally the place for the cloud infrastructure management and
cloud (compute) Administrators to operate in.

Besides computation, IaaS clouds normally also provide Cloud Storage. While clients
leverage this storage for their workload data, this storage is also used to save the VM images,
i.e., binary representations of VM states, from which DomU are instantiated. In newer cloud
usage models like cloud app stores [BNP+11], clients are also able to publicly provide their VM
images and share them with other clients. Cloud storage is also maintained by cloud (storage)
administrators.

3.2.1 Trust and Adversary Model
From the perspective of clients, one of the most debated issues in cloud computing security is
the trust in the cloud provider. In order to build a reasonable and practical trust model we do
not assume a fully untrusted provider, but rather consider the specific involved cloud internal
employees (cf. subsection 2.4.4 and possible attacker types on the provider’s side. Other security
issues concern the clients offering cloud-based services and the users of these services. We
categorize these cloud internal employees in different administrators:

Compute Administrator On a commodity hypervisor, administrators have read/write access
to the memory of a running VM, e.g., for VM introspection. Hence, they are able to write data
and therefore inject arbitrary code in the client’s domain or extract sensitive information from
the state of a running VM [RC11]. We only consider attacks from administrators with logical
access to the physical servers, e.g., by operating in the privileged management domain Dom0,
and not attackers with physical access. This attacker model stems from practical scenarios,
where datacenters are operated by a small team of trusted administrators with physical access
and a large number of administrators with logical access, often outsourced and provided by third
parties with limited trust.2

Storage Administrator For administrators of storage resources, we consider both passive and
active adversaries. A passive attacker aims at learning cryptographic keys stored in a VM image
whereas an active attacker aims at modifying the VM image, e.g., by injecting malicious code
into the image that will extract cryptographic keys of that instance at run-time. For storage
administrators we allow physical access to hardware.

Network Administrator We model the network administrators (omitted in Figure 3.1) accord-
ing to the Dolev-Yao [DY83] attacker, i.e., the attacker has full control of the network and can
eavesdrop on and tamper with network traffic in between the nodes in the cloud and between the
cloud and its clients.

2Note that purely cryptographic approaches such as secure multiparty computation ([BDNP08, BLW08]) or
Fully Homomorphic Encryption [Gen09] allow operation on encrypted data and can be deployed in fully untrusted
settings. However, they are still in their infancy and impractical due to their enormous complexity overhead. Besides
the cryptographic solutions are not sufficient in a multi-tenant and large scale computing environment like clouds
(see also [VDJ10]).
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Clients Clients have in general the incentive to protect security sensitive information of their
workloads against a malicious or compromised Dom0 and other (malicious) clients. Moreover, if
their workload is a public service, an additional protection against malicious outsiders using the
service is required.

Malicious clients, on the other hand, may extract security critical information, such as
cryptographic keys, stored (and, for instance, forgotten) in public, shared VM images of other
clients [BNP+11]. Based on these information, a variety of privacy and security compromising
attacks against the publisher of a VM image or other consumers of an image is feasible. Moreover,
they may also exploit side-channel attacks to extract cryptographic keys from VMs running on
the same physical resources (cf. [RTSS09]). Side-channels are crucial and very challenging to
defeat. We will discuss possible solutions against this type of adversary in Section 3.4.

Users We consider malicious end-users, who consume services provided by the VMs of cloud
clients. This attacker aims at compromising a VM, for instance due to some vulnerabilities in the
provided services, in order to extract security critical information stored or processed in that VM.

Hypervisor We exclude run-time attacks on the hypervisor compromising its integrity during
operation as this is an open research problem and out of scope of this work. Under this assumption,
we consider a trustworthy hypervisor in the sense that the client can deploy mechanisms to verify
the trustworthiness of the code a hypervisor is running, i.e., whether it complies with a certain
trust policy of the client. This is accomplished using standardized trusted computing mechanisms
such as authenticated boot and remote attestation [Tru08], as we discuss in Section 3.3.

Denial-of-Service Attack We exclude Denial-of-Service attacks from our model. This is
motivated by the fact that the privileged domain Dom0, although not trusted, cannot be completely
excluded from all operational and management tasks, and thus is always able to block correct
operation.

3.2.2 Objectives and Requirements
Our main security objective is the protection of the client’s cryptographic keys and operations
in the cloud abstractly much like software versions of Hardware Security Modules (HSMs) or
SmartCards. Our goal is to address the following questions:

• How can cloud clients efficiently separate and protect their security sensitive cryptographic
operations from their workload VMs in the cloud? And how can those be additionally
protected from malicious management domains and cloud administrators?

• How can the corresponding solution be applied to real-life public clouds using existing
technologies? And, how can legacy compliance with today’s client VMs be preserved?

We consider the following main security requirements to ensure the secure storage and usage
of cryptographic operations and credentials in the client’s virtual machine in our adversary
model:

• Protection of long-term secrets of client VMs at runtime, i.e., an attacker who compromised
the workload VM DomU or a malicious/compromised management domain Dom0 cannot
extract this information from the DomU VM state.
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• Protection of long-term secrets of the client DomU VM and its integrity at rest, i.e., the
client’s DomU VM image must be protected such that an attacker can neither extract
credentials from it nor tamper with it.

• Secure VM management operations, i.e., suspension and migration of the client DomU VM
must preserve the integrity and confidentiality of DomU’s state on the source and target
platform as well as during transit/storage.

3.3 Design and Implementation

In this section we introduce the architecture and design decisions of our Cryptography-as-a-
Service (CaaS). We first explain in Section 3.3.1 how our architecture provides a client-controlled
CryptoDomain DomC in the cloud to protect the client’s credentials from an external attacker.
Afterwards, we elaborate in Section 3.3.2 in more detail on our security extensions to the
hypervisor to also protect those credentials against the cloud administrative domain Dom0 (see
Section 3.2.1).

We assume the availability of a hardware trust anchor on the cloud nodes, which can be used
to securely attest the node’s platform state. The most widespread trust anchor of this kind is the
Trusted Platform Module (TPM) [Tru08].

For brevity, the following descriptions involve only one cloud client, however, we stress that
the presented solutions can be easily applied to multiple client scenarios as well. Moreover,
we misuse the term encryption to abstractly describe a cryptographic mechanism for both
confidentiality and integrity protection, i.e., authenticated encryption.

3.3.1 Client-controlled CryptoDomain DomC

Idea and Entities

Figure 3.2 illustrates the CaaS architecture in the default IaaS cloud model (cf. Section 3.2) for
Xen-based virtualization. The idea of CaaS is to separate client’s security sensitive operations
and data (like cryptographic computations and keys) from the client’s workload VM DomU and
move them into a client-controlled secure environment denoted CryptoDomain or short DomC
(in accordance to Xen’s terminology). Thus, achieving secret-less DomU in the cloud.

Our DomC is a separate DomU and based on the concept of Stub Domains [Thi10], which are
DomU templates with a minimal code base, implementing only the necessary (small) software
stack to operate on top of the Xen hypervisor (MiniOS). We extend this stack to provide the
DomC functionality, e.g., a library of cryptographic functions exposed via an interface to its
workload VM. We base our design on the decision that the client should be able to provision
her own image for her DomC. Alternatively, the functionality of DomC could be static (e.g.,
pre-installed by the cloud provider) and the client only securely injects her key material into her
designated DomC.3 The DomC image is provided in protected form by the client to the cloud, i.e.,
encrypted and authenticated. While this decision affects our protocols and technical solution
only minimally (cf. Section 3.3.2), it greatly improves the client’s trust into DomC, since she is
in control over the DomC code base. Further, in contrast to the workload VM DomU, neither the
client nor compute administrators can directly influence the life-cycle of DomC (e.g., start or

3This approach is useful, when additional considering mechanisms to mitigate side-channel attacks (see Sec-
tion 3.4).
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Figure 3.2: Basic idea of CaaS: Establishment of a separate, coupled security-domain, denoted
as DomC, for critical cryptographic operations.
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Figure 3.3: DomC usage modes: DomU can use DomC either as Virtual Security Module (e.g.,
HSM) or to transparently encrypt its storage or network data as a Secure Virtual Device.

stop). Instead, we leverage our extensions to the Xen hypervisor to establish a tight coupling
between DomC and its DomU life-cycle and to simultaneously guarantee the confidentiality and
integrity of the DomC VM. We achieve this by a new hypercall and memory access control
(MemAC), as explained in detail in Section 3.3.2.

Usage Modes of DomC

Xen uses a split driver model for device drivers. It allows composing device drivers from a front-
end and a back-end component/module (cf. Figure 3.3). The latter controls the actual physical
device and is usually located in Dom0, while the former provides a virtualized representation
of the physical device within guest domains. These two components are connected over shared
memory and establish an inter-domain communication channel between Dom0 and the guest
domain. Although the driver back-end component is usually (for convenience reasons) located in
Dom0, the involvement of Dom0 is actually not mandatory for inter-domain communication.4

4A good example are Xen driver domains, where hardware access occurs from DomU over a driver domain,
without Dom0 involvement.
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Instead, the back-end component could be located in any other guest domain, which hence
directly receives the data from the front-end component.

In CaaS, we leverage this split-driver mechanism to connect DomC as a Xen virtual device
to DomU. Figure 3.3 shows the two modi operandi of DomC that we describe below: Virtual
Security Module and Secure Device Proxy.

Virtual Security Module In this mode of operation, DomC resembles a (passive) security
module such as a Hardware Security Module (HSM), Trusted Platform Module (TPM), or a
SmartCard. In this mode, DomU has to be aware of the DomC so that it can use its interface for
outsourcing traditional crypto operations like an SSL/TLS wrapper for a web service running in
the VM, decrypting external storage the VM uses or to authenticate data. For instance, in our
prototypical implementation DomC emulates a HSM or SmartCard and provides at its front-end
a standardized PKCS#11-compliant interface, which makes it compatible to legacy applications
running within DomU.

Secure Device Proxy In this mode, DomC acts as a transparent layer between DomU and
external devices, such as attached storage medium or network card. This layer can be used,
for instance, to transparently encrypt/decrypt the I/O data streams between DomU and these
resources. We use this layer as a convenient building block for advanced applications such as
booting fully encrypted VM images (cf. Section 3.3.2). A further application is, for instance,
Trusted Virtual Domains [GJP+05] in clouds.

In the Secure Device Proxy mode, we chain two front-end-back-end communication channels.
The first channel exists between DomC and Dom0 where DomC connects to a device offered
by Dom0 (e.g., storage or network). The second channel exists between DomC and DomU,
where DomC provides an identical device interface to DomU. These channels are connected
by forwarding all I/O streams from DomU to Dom0, thus positioning DomC as a proxy for the
offered physical device. However, DomC encrypts and decrypts on-the-fly all data in this stream.
Although it is technically feasible that DomC writes directly to the physical device, routing
encrypted I/O streams through Dom0 avoids implementing (redundantly) device drivers in each
DomC.

These modes are not mutually exclusive. A transparent encryption layer can be used while
DomU is yet aware of the DomC and additionally uses it for explicit cryptographic operations.

3.3.2 Security Extensions to the Xen Hypervisor
While the usage modes of DomC described in Section 3.3.1 technically do not require any changes
to the Xen hypervisor and thus can be instantiated on default deployments such as public clouds
(cf. Section 3.5), they do not prevent a potentially malicious Dom0 from compromising DomC.

In this section, we elaborate on our security extensions to the Xen hypervisor to protect
DomC from malicious cloud administrators, i.e., compute (with logical access), network, and
storage (see Section 3.2.1). In particular, our extensions comprise

• an additional Mandatory Access Control on low-level resources such as memory

• modifications to the VM launch process including a new hypercall INSTANTIATE_DOMC.

The former extension achieves a logical isolation of the client’s DomC from any other domain
including Dom0, while the latter one is required to protect DomC and DomU during domain
life-cycle operations such as start, stop, suspension, or migration.
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Using standardized Trusted Computing technology based on the TPM, we establish the
necessary trust between the client and our extended hypervisor.

Logical Isolation of DomC

Figure 3.4 illustrates Xen’s mechanisms to establish inter-domain memory access and our
modifications to enforce domain isolation in CaaS. By default, Xen supports two different
mechanisms to establish shared memory between two different domains (including Dom0):
Grant Tables (A) and Privileged Domains (B). Additionally, Direct Memory Access (DMA)
enabled devices are able to read memory of different domains (C).

Dom0 (privileged) DomU/C 

Physical Device 
(e.g., storage, network) 

Hardware 
Drivers 

DomU/DomC memory 

Hypervisor 

C.1 Configure 
DMA 

C.2 Read memory 

A.1 Grant access 
to Dom0 

A.2 Map memory B. Enforce 
mapping 

Shared memory 

Access Control 

IOMMU 

Figure 3.4: Additional memory access control in Xen hypervisor on inter-domain (shared)
memory access.

Grant tables Grant (memory) tables are the default mechanism to establish shared memory
pages between different domains, e.g., to realize the split driver concept. It relies on a discre-
tionary access control approach, where the domain owning a memory page can explicitly grant
access to other domains access to this page by creating an entry in Xen’s grant tables. By default,
domains do not hold the permission to access any page of another domain until a grant table
entry allows it. Grant tables provide a sufficiently fine-grained access control to grant memory
access to particular domains (step A.1), which are then able to map this shared page into their
own memory space (step A.2).

In CaaS, no additional access control on Grant Tables is required, as DomU and DomC are in
control of their own pages and thus can by default deny any access from other domains.

Privileged Domains Exceptions to the access control realized by Grant Tables are privileged
domains, such as Dom0. In default Xen, a privileged domain is always able to map the memory
pages of other domains (step B). This is motivated by the fact that during domain building,
the domain building VM (usually Dom0) has to perform modifications to the new domain’s
memory for a successful building. Since the domain owning this memory is not yet executing
and hence cannot use Grant Tables, the concept of privileged domains was introduced to provide
the privileged domain builder the necessary memory access.

In our architecture, we extend this binary access control decision with a privileged-per-
domain access control. That means the privileged memory access of privileged domains (e.g.,
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Dom0) can be granted and revoked on a per-DomU basis. Thus, the capability of Dom0 to enforce
access to DomU’s and DomC’s memory can be revoked at runtime. This access control is enforced
in the logic of the Xen hypervisor for mapping foreign memory pages into a domain’s memory
range. Thus, when Dom0 tries to acquire access to DomU’s or DomC’s memory and this privilege
has been revoked, our new memory access control will return an error code. Similarly, if Dom0
has already mapped foreign memory pages of DomU when its privileged access to DomU is
revoked, the memory access control enforces an unmapping of the corresponding pages from
Dom0’s memory range.

Additionally, we introduce so called memory authorities, which are conceptually privileged
domains that are excepted from the access control. However, their privilege is bound to one
specific DomU determined by the hypervisor. A memory authority is always able to map the
memory pages of its designated DomU and is further in control of granting/revoking the privileged
access by Dom0 to its DomU.

Direct Memory Access Another exceptional role concerns physical devices with Direct Mem-
ory Access (DMA) capability. These devices have by default access to the entire memory range
including any guest domain (DomU and DomC). DMA is configured by the domain that is in
control of the physical hardware (by default Dom0; step C.1). In order to prevent such an
extensive memory access and provide isolation of DomU and DomC against DMA, we require
hardware support in form of an IOMMU (Input/Ouput Memory Management Unit; step C.2).
Such support was introduced, for instance, on Intel platforms with Intel’s VT-d technology and
on AMD based platforms with AMD-Vi. Using IOMMU, the hypervisor can control which
memory regions are visible to devices and thus protect DomU’s and DomC’s memory regions
from DMA devices misused by a malicious Dom0.

Trust Establishment and DomU Life-cycle

In order to create a VM in the default IaaS model, cloud clients can choose via a public cloud
interface from a number of preconfigured images provided by the cloud service provider and
other clients [BNP+11, aws]. Alternatively, clients can even upload their own images to the
cloud (over the same interface). Images are by default stored on cloud storage. From there,
the selected image is retrieved and deployed on a physical node in the cloud infrastructure,
determined by a scheduling process, and instantiated as VM executing on top of the hypervisor
on that node.
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Figure 3.5: Workflow for DomU and DomC image provisioning and instantiation.

Figure 3.5 illustrates an overview of the default workflow (steps 1 and 2) and includes our
extensions to this process (steps 3 and 4) in order to protect the client’s keys during life-cycle
management like starting or migration/suspension of DomU.
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Figure 3.6 depicts this process in more detail and in the following we explain the two phases
of our extensions: Setup of Images and VM Instantiation.

:Client :Hypervisor :DomC :DomU

VERIFY(cert , pkTPM )

k ← KEYGEN()

CONF(imgDomC , k)

encDomC ← ENC(pkTPM , imgDomC )

encDomU ← ENC(k, imgDomU)

ID ← REG(encDomC, encDomU)

Setup of ImagesSetup of Images

STARTIMAGE(ID)

imgDomC ← DEC(skTPM , encDomC )

INST(imgDomC)

BOOT(encDomU)

imgDomU ← DEC(k , encDomU )

INST(imgDomU)

VM InstantiationVM Instantiation

Figure 3.6: Trust establishment and VM instantiation

Setup of Images In the first phase, the client has to deploy the images of her DomC and her
workload VM in the cloud. To ensure that the client can entrust her secrets and images to the
cloud, we leverage standard TCG Trusted Computing protocols based on the Trusted Platform
Module (TPM) [Tru08]. This technology provides the means to establish a trusted end-to-end
channel between the client and the hypervisor in the cloud by binding all data sent over this
channel to the state S of the hypervisor. Hence, the client can encrypt data such that only a
platform in certain trusted state S (i.e., running our modified version of Xen) is able to decrypt
this data. Technically, this is realized using a TPM key-pair (skTPM , pkTPM ) denoted as certified
binding key. The usage of the private key skTPM is bound to the platform state S. A certificate
cert proves that the key-pair was created by a genuine TPM and that this binding property
holds. To make the same key available on all cloud nodes, we make this key migratable, i.e., its
usage is bound to a platform state (or a set of trustworthy platform states) but not a particular
platform. For brevity, we omit the setup of this TPM key from our protocol and refer to related
work [CDE+10].

To measure the platform state, we rely on an authenticated boot [Tru07], which measures
the platform state during boot. Moreover, besides the platform state S, the usage of skTPM
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is bound to a parameter called locality L, which defines the layer in the platform’s software
stack that is able to use this key. This layer can be, for instance, the bootloader, hypervisor,
VM, or application layer. We leverage this property of TPM keys to ensure that only the trusted
hypervisor, but not any other software component like Dom0, is able to use the certified binding
key skTPM . The locality of TPM commands such as using a private key skTPM is determined by
the hypervisor.5 Thus, other software layers such as a Dom0 can still use the TPM, however, not
at the locality reserved for the hypervisor.

The client verifies the TPM certified binding key pkTPM using certificate cert. Afterwards,
she generates a new secret k and configures her DomC with this k. Configuration means that she
creates an image of her DomC and deploys the necessary code base (e.g., crypto libraries) and
secrets for the intended mode of DomC, for instance, configuration as SmartCard (Virtual Security
Module mode) or for transparent cryptographic protection (e.g., encryption) of an attached block
storage (Secure Device Proxy mode).

Further, the client deploys her key k in imgDomC, because k is used to encrypt the client’s
workload VM image imgDomU and is later required by DomC to decrypt imgDomU during
launch. The configured DomC image is then encrypted under pkTPM . This forms implicitly a
trusted channel between the client and the hypervisor to securely deploy imgDomC and thus k,
i.e., only a trustworthy hypervisor in state S is able to decrypt encDomC. Both encrypted images
are then uploaded and registered in the cloud under a certain ID. Using ID, the client can manage
her images, e.g., issue a command to launch an instance from her DomU image.

In the above described workflow, DomC is configured, encrypted and uploaded by the client.
Thus, the client has knowledge of the code executing within her DomC and hence trusts her
DomC entirely. Alternatively, the client could only provision her key k, encrypted under pkTPM ,
and transitively trust the hypervisor to reveal k only to a known-good DomC image. Moreover, if
the client does not require a full-disk encryption of imgDomU, she can opt out by registering an
unencrypted image and only use her DomC as a crypto service provider for her secret key k.

Instantiation of DomC and DomU The instantiation of the uploaded workload image consists
of two steps as shown in the phase VM Instantiation in Figure 3.6: First, DomC is instantiated and
then the workload VM DomU with the help of DomC. This process is technically more involved,
since it requires the involvement of the privileged domain Dom0 (for scheduling purposes). Thus,
it requires modifications to the default DomU launch procedure and the hypervisor in order to
protect (the confidentiality and integrity of) DomC during the launch. This is achieved based on
our memory access control as described in Section 3.3.2. The particular steps to bootstrap the
client VM (DomU) are depicted in Figure 3.7.

Dom0 first allocates the memory region for the new DomU, assigns an identifier to it, and
loads the encrypted DomU image into this region6 (step 1). It similarly puts the DomC domain
in place in memory, which is still encrypted under the key pkTPM (step 2). It afterwards issues
a newly introduced hypercall instantiate_DomC to the hypervisor (step 3), which takes as
parameters the pointers to the memory regions of the just loaded images. The hypervisor in turn
enables the memory isolation of DomC and DomU from Dom0 (step 4). It decrypts the loaded
DomC image with the help of the platform’s TPM (step 5). Before returning control to Dom0, the
hypervisor assigns DomC to be the memory authority for DomU’s memory region (step 6). This

5Locality is actually determined based on the memory address for communication with the TPM. However, the
hypervisor is in charge of memory access control and thus controls which domain, including Dom0, is able to access
which locality.

6Technically, it loads the encrypted kernel, which in turn loads the rest of the image from storage into memory
during boot.
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Figure 3.7: Booting DomU and coupling with corresponding DomC

means, only DomC is able to access DomU’s memory directly (cf. Section 3.3.2) and to decide
when to share it with Dom0 (e.g., during suspension, cf. Section 3.3.2). Once the hypervisor
finished this setup and returned from the hypercall, Dom0 schedules DomC for execution (step
7).

The new DomC first negotiates with Dom0 device drivers in a regular way (step 8), connecting
to the block storage device eventually intended for DomU. Afterwards, DomC bootstraps DomU
by performing the steps that Dom0 normally performs for a domain launch (step 9). To exclude
Dom0 from the domain building process, we include the necessary building code in DomC. The
concept of disaggregating this code from Dom0 was introduced in [MMH08]. However, in
contrast to [MMH08], we include this code in every client DomC instead of a central, trusted
“domain building domain”, thus empowering the user to keep control of this process and tightly
coupling it with the cryptographic operations of DomC. Further, DomC sets up shared memory
pages with DomU so that DomU is able to discover DomC and thus DomC is positioned as a proxy
in between DomU and Dom0 for any I/O operation required during boot of DomU.

DomC notifies Dom0 about the readiness of DomU for execution (step 10), which in turn
schedules the new DomU (step 11). During the subsequent execution of DomU, it connects to the
devices offered by DomC (step 12) and it can continue as usually where DomC decrypts/encrypts
DomU’s I/O streams transparently. At this point, DomC can unmap DomU’s memory range from
its own memory since it can use ordinary grant tables for communication (cf. Section 3.3.1).
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Suspension and Live Migration

Suspension and Live Migration are fairly similar in the sense that suspension saves the current
execution state of a VM to storage and can restore it later at any time, whereas live migration
transfers the execution state from one physical machine to another while minimizing the down-
time. We only cover migration here, as this technically implies suspension.

In order to support live migration, the usual migration protocol ([CFH+05, SCP+02]) needs
to be wrapped, but in essence works unaffectedly from the perspective of the client and DomU.
Instead of migrating plaintext VM memory from one Node to another, the memory must be
encrypted, since migration requires the involvement of Dom0 in order to distribute the saved
state to the target platform. Thus, before granting Dom0 the required access to DomU’s memory,
DomC encrypts this memory in-place. Then, DomU’s state is transferred to the target node using
protocols from traditional live migration.

To restore the transferred state on the target platform, DomC has to be migrated as well to
decrypt the migrated DomU state on the target platform. Restoring a VM state requires platform-
dependent modifications to the state, such as rebuilding the memory page-tables. DomC’s domain
building code performs these modifications on DomU during DomU’s resumption. While it would
be possible to delegate this task to our trusted hypervisor or a central trusted domain building
VM ([MMH08, BLCSG12]), this has the drawback of bloating the Xen hypervisor code base
and introducing unnecessary complexity at that level or removing the client’s full control over
the DomU domain building process. However, before DomC can perform this task, its own state
has to be restored. We opted in our design for DomC program state migration instead of VM
state migration. We therefore transfer only the state of the cryptographic programs in DomC
and do not migrate the DomC VM state (e.g., CPU state). To migrate the program state, the
target platform instantiates a new DomC and updates its state with the DomC state of the source
platform. Afterwards the new DomC is able to decrypt and resume the DomU state on the target
platform and the old DomC on the source platform can be discarded. To achieve the protection
of the transferred DomC state, this state is encrypted under the TPM key pkTPM . Thus, only a
target node running our trustworthy hypervisor is able to decrypt and resume the DomC state.
All cloud nodes running our hypervisor form a trusted network, in which the client transitively
trusts all nodes to securely distribute her DomU and DomC, after she has successfully verified the
node on which she instantiated her DomU.

In case of suspension, the protocol works identical, except that the “target platform” is cloud
storage to which the protected DomC and DomU states are saved by Dom0.

3.3.3 Evaluation

Our goal is to evaluate the performance overhead induced by offloading cryptographic operations
to DomC for both the Secure Device Proxy and Virtual Security Module modes. Our test machine
is a Dell Optiplex 980 with an Intel Core i5 3.2GHz CPU, 8GB RAM, and a Corsair 120GB
SSD hard-drive connected via SATA2.

Secure Device Proxy

This setup consists of the Xen v4.1.2 hypervisor with our extensions, an Arch Linux Dom0
(kernel 3.2.13), a Debian DomU (kernel 3.2.0) and a MiniOS based DomC. All domains and the
hypervisor execute in 64-bit and each guest domain has been assigned one physical core and
256MB of RAM. DomC mounts a virtual block storage device provided by Dom0 and implements
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MODE UNENCRYPTED (MB/s) ENCRYPTED (MB/s)
READ WRITE READ WRITE

D0 189±32 196±37 129±29 108±34
D0↔ DU 171±34 179±9 124±28 83 ±6
D0↔ DC↔ DU 170±33 178±10 120±28 102±9

Table 3.1: Using the fio disk benchmark tool

MODE UNENCRYPTED (MB/s) ENCRYPTED (MB/s)
WRITE WRITE

D0 233 125
D0↔ DU 207 118
D0↔ DC↔ DU 206 130

Table 3.2: Using the generic dd command

the corresponding back-end driver which DomU mounts via its front-end driver as a peripheral
hard-disk. All I/O data streams from DomU to the virtual block storage is passing through DomC
and is transparently encrypted using AES-128 in CBC-ESSIV mode based on code ported to
MiniOS from the disk-encryption subsystem dm-crypt of the default Linux kernel.

To evaluate the performance overhead of our CaaS in this setup, we measure the disk I/O
throughput in plain and encrypted form in a) only Dom0 mode, b) DomU without DomC mode
(this forms the baseline measurement), and c) DomU with DomC mode (which is the default mode
in CaaS). Encryption in case a) and b) is realized with LUKS and dm-crypt in the Linux kernel
of Dom0 and DomU, respectively, using the same parameters as in DomC.

Table 3.1 summarizes our measurement results using the fio Linux disk I/O benchmark tool,
averaged over a 20 minute disk I/O stress-test. Table 3.2 shows the averaged results for writing
ten times a 10GB test file with the Linux dd command.

The results show, that the Dom0-only mode has naturally the highest throughput, since Dom0
directly connects to the physical hardware, while the other two modes additionally require
inter-domain communication. In plain mode, DomC induces a negligible overhead (between
0.5% and 0.6%) compared to the default direct DomU to Dom0 communication, which can be
attributed to the higher throughput of the shared memory based inter-domain communication
in comparison to the actual disk I/O throughput in Dom0. Enabling encryption on disk read
leads to an almost equal degradation of the performance in all modes and DomC imposes in this
case only a minimal performance overhead (3.2%) compared to the DomU-local encryption. For
writing encrypted data, the optimized and dedicated code base of DomC outperforms the DomU
and Dom0 based encryption (between 9.2% and 18.6%).

Virtual Security Module

Our setup consists of SoftHSM7, a software-based implementation of a HSM that can be accessed
via a PKCS#11 interface. We compare two scenarios: a) where SoftHSM is running in a Linux-
based DomC, and b) where it is running inside a DomU that want to use CaaS. The PKCS#11
interface of SoftHSM is exposed to the client using pkcs11-proxy8, a client-server architecture
for providing PKCS#11 over a network. In scenario a, the server resides within DomC and the

7http://www.opendnssec.org/softhsm/
8http://floss.commonit.com/pkcs11-proxy.html
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client in DomU, and the communication is realized through a shared memory based network
communication between the two domains, which is of high-performance and does not involve
Dom0. In scenario b, both server and client reside in DomU and the network loopback device is
used.

We measure the performance of RSA signing using a HSM access via PKCS#11. This is a
typical scenario found in practice, e.g., CAs signing TLS certificates or signing of domain names
within the DNSSEC system. In particular we are focusing on the latter scenario and leverage
the benchmark software ods-hsmspeed from the OpenDNSSEC project9. As parameters for
ods-hsmspeed, we selected 8 threads requesting signatures from the HSM, RSA1024 as the
signing algorithm, and varying number of total signatures requested ranging from 1 to 10000.
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Figure 3.8: Comparing the signing performance of a software-based HSM residing in DomU vs.
DomC.

Our results are illustrated in Figure 3.8. When requesting a low number of signatures, i.e.,
only 1 or 10, the costs for the connection and benchmark setup are significant. However in
practical scenarios, we expect a large number of signatures that are requested. Comparing the
performance in terms of signatures per second between a SoftHSM residing in DomU vs. DomC,
we notice a less than 3% overhead when offloading the cryptographic operations to DomC. This
is similar to the performance overhead measured for the Secure Device Proxy mode.

Further optimizations are possible when replacing the network and pkcs11-proxy stack by
a split-driver architecture specific to PKCS#11 devices, which allows to efficiently exchange
PKCS#11 commands via shared memory between domains.

3.3.4 Scalability Challenges and Possible Solutions
The CaaS design described so far relies on the fact that the client is ensured about the trustworthi-
ness of the cloud node (i.e., our extended hypervisor) on which she deploys her DomU. This trust
is established using TPM sealing functionality to the trusted state S (cf. Section 3.3.2). However,
the standard TCG concepts have crucial drawbacks when applied in the context of real-life cloud
computing, i.e., large-scale infrastructures:

1. The platform state S is reported using binary attestation and hence identified as a crypto-
graphic hash (SHA1) of the software components comprising the state. Thus, minimal
changes to the software stack (e.g., a security update) result in a different hash and hence
the client has to be aware of all possible trustworthy hash values. Moreover, determining
the trustworthiness of a hash value requires knowledge of the code base the hash is derived

9http://www.opendnssec.org/

TClouds D2.1.2 Page 34 of 138

http://www.opendnssec.org/


D2.1.2 – Preliminary Description of Mechanisms and Components for
Single Trusted Clouds

from and thus the client gains full insight in the cloud provider’s infrastructure. This is, on
the one hand, infeasible for the provider, since his code base is his trade secret, and on the
other hand unnecessary complexity for the client, who is rather interested in the software
stack fulfilling certain security properties (e.g., protection of her secrets) instead of having
full insight.

2. Leveraging a certified TPM binding key always requires at one point in the certification
chain a TPM-dependent, i.e., platform-dependent, certification key10 (independently from
being a migratable or non-migratable key). Hence, the client must be able to verify that she
is communicating with a genuine TPM, requiring a certification of the TPM’s credentials
by a certification authority, denoted in TCG terminology as privacy CA. However, cloud
infrastructures can include hundreds of thousands of nodes on which the client’s VMs can
be deployed, requiring the client to verify hundreds of thousands of platforms.

3. Successfully verifying the attestation of a platform, only informs the client about the
trustworthiness of the platform’s software stack, but does not provide important meta-
information such as the physical location of the platform. In our adversary model (cf. Sec-
tion 3.2.1), the client has to be ensured that the attested platform is on the premises of the
cloud provider and thus under physical control of a trusted staff of hardware administrators.
Otherwise, a logical attacker can trick the client into deploying her secrets onto a platform
running a trusted software stack, but deployed outside this trusted perimeter and thus easily
prone to physical attacks by outsiders.

While providing solutions to the above mentioned scalability challenges of Trusted Comput-
ing is out of scope of this work, we want to briefly mention here our approaches towards resolving
these issues. Problem 1 is a long standing problem of TCG proposed Trusted Computing and
a possible solution is property-based attestation (see, e.g., [SSW08]), which abstracts binary
measurements of software to their desired security properties. A possible solution for Problems 2
and 3 would be to establish the cloud provider as trusted Certification Authority, which provides
on-demand the required certification for all its platforms within the trusted perimeter. Thus, if
the provider certifies a platform, the client is assured that she is not tricked into revealing her
secrets to an outside attacker. Considering the large number of platforms in a cloud (and its
strong variances due to maintenance) and the consequent enormous complexity of managing this
list, this approach is in practice infeasible. In CaaS, we conceptually solve this problem more
efficiently, leveraging transitive trust (cf. migration in Section 3.3.2 and [SMV+10][SGR09]).
The client initially instantiates her VM images only on a node belonging to a fixed subset of the
cloud nodes (“builder nodes”), which can be publicly attested by the client. From these nodes,
the instantiated VM is securely migrated to “computation nodes” for actual execution.

3.4 Security
In this section we discuss how our architecture protects the client’s high-value cryptographic
keys with regards to the requirements and adversary model defined in Section 3.2. We also
discuss the corner cases that our architecture does not handle.

Compute Administrator Our solution protects the keys against a malicious Compute Ad-
ministrator, because of the logical isolation of domains by the trusted hypervisor. DomC is

10This key is of type Attestation Identity Key (AIK) [Tru08].
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not accessible by the management domain Dom0 and hence not by the compute administrators
with logical access. Our extension to the domain building process of DomU based on DomC
combined with the TPM based protocols (cf. Section 3.3.2) ensures that Dom0 cannot access
DomC’s or DomU’s memory in plaintext. Any modifications Dom0 does on the encrypted images
during launch will lead to integrity verification failures and abortion of the launch, and hence
form a denial-of-service. The same holds for the saved, encrypted state of DomU and DomC
during migration and suspension. As mentioned in our adversary model, we exclude compute
administrators with physical access, since it seems there exists no practical solution against these
attacks yet.

Storage Administrator Our solution protects against a malicious Storage Administrator by
storing images only in encrypted and integrity protected form. Thus, this attacker cannot extract
any sensitive information from the images and, similar to a malicious Dom0, any modifications
to the images before loading them into memory result in a denial-of-service attack. Solutions
against replay attacks of outdated images, which we do not consider in this work, can be based,
for instance, on the TPM [vDRSD07, SWS+07].

Network Administrator Images and VM states are protected (encrypted and integrity checked)
during provision to the cloud, transfer between cloud nodes and storage during migration and
suspension, respectively. Thus, a malicious Network Administrator cannot extract the client’s
keys from intercepted network data. However, dropping network traffic or tampering with it
will lead to a denial-of-service attack. Freshness of network communications to protect against
replay attacks or injection of non-authentic data is established by using message Nonces or by
establishing session keys.

Cloud Clients and Users Since keys are neither stored nor processed within a customer VM,
our solution protects against Other Cloud Client, who consume shared VM images that are
created from these VMs, and against malicious Users, who may compromise the clients’ VMs.

On side-channel attacks In practice our solution could be vulnerable to side-channel attacks,
where a malicious co-located domain can extract information from another logically isolated
domain like DomC [RTSS09]. Our current approach towards tackling this problem is as follows.
We restrict DomC to contain only static code and the client-control is limited to provisioning her
secret keys to her DomC (see Section 3.3.2). We leverage the segregation of security sensitive
operations from the workload VM DomU to mitigate side-channel attacks. When considering
side-channels through any kind of shared hardware resource, DomC and malicious DomU must be
physically isolated. In CaaS, the cloud infrastructure could be partitioned into nodes executing
only DomC VMs and nodes executing only DomU VMs. Thus, no malicious code is executing
on the same physical node as DomC and hence side-channels are mitigated. It is a reasonable
assumption, that cloud providers can offer such separation as an additional (charged) service to
his clients. However, this approach entails the additional cost that all communication between
DomC and DomU is now network based instead of shared memory. In the particular case of CPU
cache based side-channels [RTSS09], the same partitioning can be applied at a per-node basis by
scheduling DomC VMs on different CPU packages11 than DomU, thus avoiding shared L1 and

11On most multi-core CPU architectures, each CPU core has a separate L1 cache. Cores are organized into
packages, where cores in the same package share the L2 cache. Usually there is a L3 cache, which is shared among
all cores.
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L2 caches between DomC and (malicious) DomU and only the “very noisy” L3 cache remains
shared.

Oracle attacks Furthermore, if a customer VM is compromised, the attacker can misuse DomC
as an oracle, e.g., to sign arbitrary messages in the client’s name. This problem applies also to
the default non-cloud scenario when using HSMs or SmartCards and potential solutions could
be an auditing mechanism within DomC or enhanced access control within DomU.

The general problem of user-controlled approaches Like any other user-controlled security
technique/enhancement (e.g., asymmetric cryptography or anonymity mechanisms), our CaaS
bears the risk to be misused by malicious clients to hide malevolent/criminal activities. For
instance, a malicious (or compromised) VM providing illegal content, like pirated software,
cannot be inspected anymore by the cloud provider unless the client allows it. Possible solutions
can be based on, e.g., establishing a mutually trusted observer for the client VMs activities,
which simultaneously preserves the client VM’s privacy [BLCSG12], but such discussion is out
of scope of this work.

3.5 On the Implementation on Amazon EC2
Cloud clients of existing public infrastructure clouds can already use our security architecture to
protect their high-value credentials against end-users compromising their workload VMs.

However, this retrofitting of our architecture will lose certain protection features, namely
preventing malicious cloud administrators from reading VM memory, because the necessary Xen
hypervisor modifications are not deployed in existing public clouds. Nevertheless, we believe
such an implementation on existing public infrastructure clouds could be the first step for a wider
adoption of the concept of client VM disaggregation and the usage of Cryptography-as-a-Service.

We describe how our implementation can be adapted for the Amazon EC2 cloud, which we
chose due to its usage of Xen and its popularity. The following requirements have to be achieved
for our implementation:

• Co-location of DomC and DomU.

• Establishing driver back-ends without Dom0 support for Secure Device Proxy mode.

• Establishing shared memory and control channel for optimized Virtual Security Module
mode.

Co-location can be achieved through highly expensive services of the cloud provider (e.g.,
AWS Virtual Private Cloud and Dedicated Instances12) or cheaper through “brute-forcing”, i.e.,
starting a set of virtual machines and checking for co-location among them. To our surprise,
we learned that the co-location check based on the first hop in the network route as proposed
in [RTSS09] is not reliable anymore. In addition to the first hop check, we propose a new way of
verifying co-location among client’s VMs using the XenStore local storage space between VMs.
Essentially, for each domain we write a value to a domain-local area of XenStore and share this
value with all potentially co-located domains. If a VM can read that value from the storage area
of another VM, we verified the co-location of these two VMs.

12http://aws.amazon.com/dedicated-instances/
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However, ideally the provider would introduce a new flag for indicating co-location when
starting a set of VMs, therefore making “brute-forcing” and co-location checks obsolete.

Once DomC and DomU are co-located, we have to establish either the split-driver architecture
for block and network devices for the Secure Device Mode, or establish shared memory and
control channels for the optimized Virtual Security Module mode. The setup of split-drivers
is currently performed and managed in Dom0 and thus in the scenario of public infrastructure
clouds, the cloud client is not able to establish such split-drivers due to lack of access to Dom0.
Therefore, the setup mechanisms have to be incorporated in the DomU and the Xen drivers in
the DomU’s kernel have to be modified. In case of shared memory and control channels, we can
leverage existing Xen mechanisms such as grant tables (cf. Section 3.3.2) and XenBus as the
control channel. In our initial experiments, we successfully established shared memory and a
control channel between various co-located VMs. For easing the inter-domain communication,
we can leverage existing inter-domain communication frameworks, such as libvchan13 and
XenSocket [ZMRG07].

Amazon EC2 also supports the use of custom kernels that allow constructing a DomC based
on MiniOS [Thi10] as described in our CaaS design (cf. Section 3.3).

3.6 Medical Use-Case
To demonstrate the benefits of CaaS for a real life scenario, we briefly outline in this section
how CaaS can be used in the real life medical use-case of personal healthcare services, being
developed by the TClouds partners PHI and FSR in WorkPackage 3.1 of Activity 3. For brevity,
we restrict the discussion here to the security aspects of that use-case that are relevant for our
CaaS. We provide a high-level overview of the home health care application in Section 3.6.1 and
briefly discuss how our CaaS is beneficial in Section 3.6.2. For more details on the use-case and
a more comprehensive discussion of all security requirements, we refer the reader to the TClouds
deliverables D3.1.1 “Trust Model for Cloud Applications and First Application Architecture” (in
particular Chapter 5) and D3.1.2 “Application API and First Specification on Application Side
Trust Protocols” (in particular Section 6.4).

3.6.1 Personal Healthcare Service
In this scenario, a personal healthcare web-service is established to monitor and professionally
advise patients suffering under depression. To benefit from the merits of cloud computing this
service is deployed in a cloud. Since from the perspective of the healthcare provider a private
cloud is not economically sustainable, the deployment should be on a public (or semi-public
community) cloud.

Figure 3.9 gives a high-level overview of this healthcare service. It consists of two parts: the
Home Monitoring Device and the Medical Service Web-Portal. Patients are monitored with a
mobile device, e.g., a wearable device (e.g., Philips-Respironics Actiwatch), to collect on a 24/7
basis information about their sleep and physical activity as well as ambient light information.
When the patient connects the device to a computer or mobile device, the collected data is
uploaded to the medical service in the cloud. This service stores the collected data in a personal
health record (PHR) database on cloud storage and performs data analysis, e.g., to generate
a graph-based representation of the patient’s activities. The results are provided to healthcare
professionals for personalized coaching and to the patient for self-managed services.

13http://lists.xen.org/archives/html/xen-devel/2011-08/msg00806.html
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Figure 3.9: Cloud based personal healthcare service for depressed patients.

3.6.2 Security Requirements and CaaS Benefits
Due to their privacy sensitive nature and compliance to data protection regulations, patients’
personal data stored in the cloud need to be protected. Besides requirements such as secure log-
ging, access control, or emergency access (that are out of scope of this work), the confidentiality
and integrity of the collected data must be protected against outside and inside attackers during
transit and storage.14 To ensure the protection during transit, clients connect to the web-portal
over a SSL/TLS secured connection. To protect stored data, the web-portal stores the collected
data on encrypted storage. Moreover, analysis results that are retrieved by clients are for legal
reasons digitally signed to preserve their integrity and authenticity.

This service currently leverages CaaS in different ways: First, it uses DomC as a virtual
security module to protect the TLS/SSL secret key and the document signing key. DomC provides
a PKCS#11 interface, to which the SSL/TLS library and signing program easily and without
modifications can plug in. For secure storage, DomC exposes a default block storage device
to the medical service VM, where the service stores its files and database and that are hence
transparently encrypted by DomC. Since the encryption is transparent, no extra configuration for
secure storage has to be done in the service VM.15

3.7 Related Work

The area of cloud security is very active and touches various research areas. In this section, we
compare our CaaS solution only to the closest related work.

Virtualization Security The Terra [GPC+03] architecture by Garfinkel et al. implements the
concept of moving security management to the virtualization layer by providing two different
execution security contexts for VMs on top of a trusted VMM. Our architecture differs from Terra:
We provide client-controlled cryptographic primitives for multi-tenant virtualized environments
(such as clouds) and thus have to tackle the challenges on how to securely provision and use
those primitives in the presence of a malicious cloud management domain.

14Please refer to TClouds deliverable D3.1.2
15The protected block storage use-case has been referred to as “Secure Block Storage” (SBS) in past deliverables.

TClouds D2.1.2 Page 39 of 138



D2.1.2 – Preliminary Description of Mechanisms and Components for
Single Trusted Clouds

Today’s virtualization solutions usually require a large, privileged management domain as
part of the TCB. To address this issue and separate privileges, Murray et al. demonstrated on
Xen the disaggregation of the management domain Dom0 [MMH08], e.g., by extracting the
domain builder functionality into a separate domain. Our CaaS leverages the concept of Dom0
disaggregation in order to extract the domain building code from an untrusted Dom0 into DomC.
Kauer’s NOVA [SK10] extends this disaggregation even further, by completely redesigning
the virtualization software stack, based on a microkernel, and disaggregating the management
domain and VMM into user-space processes.

Other related works leverage nested virtualization to advocate similar goals as CaaS. Williams
et al. introduced the Xen-Blanket [WJW12], which adds an additional virtualization layer,
empowering clients to avoid cloud provider lock-in. The CloudVisor [ZCCZ11] architecture by
Zhang et al. adds a small hypervisor beneath the Xen hypervisor to protect client’s DomU against
an untrusted or compromised VMM or Dom0 (including encrypted VM images). However, nested
virtualization induces an unacceptable performance overhead by adding a second virtualization
layer. In CaaS, we avoid nested virtualization and instead apply Murray’s concept of Dom0
disaggregation on top of the commodity Xen hypervisor, which is assumed trustworthy. We note,
that hardening hypervisors against attacks is an active, orthogonal research area [WJ10] that
benefits CaaS.

The closest related to our work, is the Self-Service Cloud (SSC) framework by Butt et
al. [BLCSG12], which was developed independently and in parallel to our work. In SSC, clients
are able to securely spawn their own meta-domain, including their own user Dom0, in which
they are in control of deployed (security) services, such as DomU introspection, storage intrusion
detection, or storage encryption. This meta-domain is isolated from an untrusted Dom0 using
a mandatory access control framework in the Xen hypervisor (XSM [SJV+05]). In contrast to
SSC, we focus in CaaS on the specific use-case of client-controlled cryptographic operations and
credentials. We tackle the challenge of how to protect and securely use our CryptoDomain DomC,
running isolated but tightly coupled to its DomU. This requires modifications to the VM life cycle
management, i.e., secure migration/suspension of DomU and instantiating fully encrypted DomU
images.

Secure Execution Environment Instead of relying on the trustworthiness of the virtualization
layer, DomC would ideally run in a Secure Execution Environment (SEE) that is available as
a hardware security extension on modern CPUs, e.g., Flicker by McCune et al. [MPP+08].
However, invocations of SEE suffer from the critical drawback that they usually stop all other
code executed on the underlying platform, and thus incur a significant performance penalty.
Consequently, this makes them unsuitable for streaming operations such as encryption of data of
arbitrary length. McCune et al. address this issue with their TrustVisor [MLQ+10] by leveraging
hardware virtualization support of modern platforms, trusted computing technology, and a
custom minimal hypervisor to establish a better performing SEE. Conceptually, TrustVisor is
related to our CaaS from the perspective of isolating security sensitive code in an SEE, however,
TrustVisor is designed to protect this code from an untrusted legacy OS while CaaS targets the
specific scenario of cloud environments and thus faces more complex challenges: First, CaaS has
to address an additional virtualization layer to multiplex multiple clients’ VMs and their inherent
scalability requirements. Second, our adversary model must consider a partially untrusted cloud
provider and malicious co-located clients.
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Trusted Computing Different trusted cloud computing architectures have been proposed that
ensure protected execution of virtual machines. The Trusted Cloud Computing Platform (TCCP)
[SGR09] by Santos et al. and the architecture proposed by Schiffman et al. [SMV+10] use TCG
remote attestation to prove the trustworthiness of the cloud’s compute nodes. Our approach also
builds on Trusted Computing technology and concepts, but with the goal to protect cryptographic
operations and credentials from external and internal attackers. Santos et al. [SRGS12] extended
their TCCP architecture to address the problems of binary-based attestation and data sealing
(cf. Section 3.3.4) with an approach very similar to property-based attestation [SS04], that they
call policy-based sealing.

Security Modules The Xen Security Modules (XSM) introduced policy enforcement hooks
at key locations within the Xen hypervisor (e.g., grant tables). XSM allows policy modules
to be plugged in, which use those hooks for diverse policy enforcement, for instance, the
ACM/sHype [SJV+05] module by IBM Research or the FLASK module by the NSA16 for
fine-grained mandatory access control on resources and inter-domain communication. Our
architecture requires a memory access control in the hypervisor to isolate DomU and DomC from
Dom0, however, a direct use of XSM is not the most appropriate for our CaaS architecture. First,
this would require an adaption of the XSM to our hypervisor extensions (e.g., a new hypercall;
cf. Section 3.3.2). Second, in our protocol for DomU launch the hypervisor decides on blocking
access from Dom0 to DomC and DomU (see step 4 in Figure 3.7). With XSM, this would require
a complex communication between the hypervisor and the XSM module domain to implement
this dynamic policy enforcement.

Key Management and Cryptographic Services In physical deployments, cryptographic ser-
vices are typically provided by cryptographic tokens [ABCS06], hardware-security modules such
as IBM’s 4764 crypto processor [DLP+01], generic PKCS#11-compliant [RSA04] modules, e.g.
smart cards, and the Trusted Platform Module (TPM) [Tru08]. In our approach, we study how
such cryptographic services can also be securely provided in virtualized infrastructures and cloud
deployments.

To provide TPM functionality to virtual machines, virtual TPMs have been proposed
by Berger et al. [BCG+06, SSW08] and secure migration of VM-vTPM pairs by Danev et
al. [DMKC11]. Our CaaS is conceptually a generalized form of such as a service, since DomC
could also provide a vTPM daemon. However, in contrast to [BCG+06], our solution aims at
protecting such a service in cloud environments and does not rely on a security service running
within a potentially malicious Dom0.

Providing a cryptographic service over a network has been considered in large-scale networks,
such as peer-to-peer or grid systems, by Xu and Sandhu [XS07]. Berson et al. propose a
Cryptography-as-a-Network-Service [BDF+01] for performance benefits, by using a central
service equipped with cryptographic hardware accelerators. Our CaaS targets specifically multi-
tenant cloud environments and aims at tightly but securely coupling the client and her credentials
within the cloud infrastructure to enable advanced applications such as transparent encryption of
storage or network.

16See http://wiki.xen.org/wiki/Xen_Security_Modules_:_XSM-FLASK
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3.8 Conclusion and Future Work
In this chapter we present the concept of secret-less virtual machines based on a client-controlled
Cryptography-as-a-Service (CaaS) architecture for cloud infrastructures. Analogously to Hard-
ware Security Modules in the physical world, our architecture segregates the management and
storage of cloud clients’ keys as well as all cryptographic operations into a secure crypto domain,
denoted DomC, which is tightly coupled to the client’s workloads (VMs). Extensions of the
trusted virtualization layer enable clients to securely provision and use their keys and crypto-
graphic primitives in the cloud. DomC can be used as virtual security module, e.g., vHSM, or as a
transparent encryption layer between the client’s VM and hardware resources, such as storage or
network devices. Furthermore, these extensions protect DomC in a reasonable adversary model
from any unauthorized access that tries to extract cryptographic material from the VM – either
from a privileged management domain or from any guest VM. The flexible nature of DomC
allows for building more advanced architectures, such as Trusted Virtual Domains [CDE+10], on
top of our CaaS. Moreover, we discuss solutions that provide DomC over a network [BDF+01]
in order to prevent side-channel attacks against DomC [RTSS09].

Evaluation of full disk encryption with our reference implementation showed that DomC
imposes a minimal performance overhead. Moreover, we presented the partial setup of CaaS on
the AWS EC2 cloud.

Future work aims methods to mitigate run-time attacks against DomC, which do not reveal
but misuse the securely stored credentials. Another object of future work is to investigate how
multi-core support and optimized scheduling of VMs (DomU and DomC) can help to improve the
performance of client’s cryptographic operations in the cloud.
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Chapter 4

Remote Attestation

Chapter Authors:
Emanuele Cesena, Antonio Lioy, Gianluca Ramunno, Roberto Sassu, Davide Vernizzi (POL)

4.1 Introduction

Remote attestation is the process performed by a verifier to assess if a remote platform is trusted,
i.e., according to the Trusted Computing Group (TCG), if it “will behave in a particular manner
for a specific purpose” [Tru07]. The TCG specified the building blocks of a Trusted Platform
providing the primitives for the so called binary attestation, which consists in identifying
the running components (and their configuration) through their digests, to infer the platform
behavior. Among the problems of binary remote attestation, scalability has often been mentioned
in literature because a verifier must know all possible measurements considered acceptable.
They include the measurements of the running components – problem that can be referred to
as code-diversity – and of their configuration – that can be referred to as system configuration.
To overcome these issues, other approaches have been proposed in the literature: property-
based [SS04] and model-based [AZN+08] attestation. In this chapter, we present work-in-
progress experiments showing that code diversity is a manageable issue to attest a complete
Linux distribution. We also show that there is a path to address the configuration of components,
whilst problems to be solved are present, like identifying the executed scripts with a low impact
on the performance and other file types (keys and logs).

The chapter is organized as follows: in Section 4.2 we review the literature on scalability
and preface our contribution. Section 4.3 is focused on code-diversity: we present our approach,
methodology and tests results. Section 4.4 is about experiments on configuration. We conclude
with Section 4.5.

4.2 On Scalability

In this section we review the definition of scalability in the context of remote attestation, by
analyzing its occurrence in literature.

Scalability has often been mentioned as one of the main problems that limit the feasibility of
binary attestation. For instance, “Binary attestation requires the verifier to know all potential
hash-values of all (combinations of all) components of any machine that it may be required to
verify. Knowing all acceptable configurations is hard to manage” [PSHW04] and “The remote
attestation process requires for the verifier that it knows about all possible binary measurements
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that are acceptable as secure software components for a given purpose. Any customization of
security-critical components yields a further difficulty [...]” [KSS07].

In both contributions, we can identify two aspects of the scalability problem. According to
England [Eng08], the first one is code-diversity, related to the identification of the processes
running on a platform, while the second one is verifying the configuration of these processes.

This distinction was already pointed out by Chen et al.: “[...] The second problem is
complexity since the number of different platform configurations grows exponentially with the
number of patches, compiler options and software versions. [...] A further problem is the
scalability, since update and patches lead to configuration changes” [CLL+06]. In this chapter,
however, we shall follow England’s terminology.

Whilst England provides figures that seem to question the viability of remote attestation (e.g.,
“a typical Windows installation loads 2,000 or more drivers from a known set of more than 4
million” – the latter growing at 4,000 per day), at least for the code-diversity these numbers are
actually manageable by current database systems, as demonstrated by the existence of companies
such as Bit9 or CoreTrace that actually base their business on application whitelisting. Bit9, for
example, runs a Global Software Registry containing “over 5 billion records, [...] growing at a
rate of up to 20 million files each day” [Bit] (this was already pointed out by Lyle et al. [LM09]).

More precise statements are given by Sailer et al. [SJZvD04]: “Client measurements grow
linearly with the number of new software modules executed. [...] Verification time per mea-
surement is constant (based on hash table retrieval), so the verification time is also linear in
the number of measurements of the client. The verification space is linear with the size of the
distribution”.

4.2.1 Our contribution

Our long-term goal is to perform a remote attestation of a complete Linux distribution, intended
as a real product running on commodity computers and not just as a prototype demonstrating
that binary attestation is technically feasible. A first minimal outcome is to verify that only
software “known to be good” is running. A more ambitious one would be determining the
platform configuration and useful security properties. In this chapter we report the results of
our experiments on the path towards our long-term goal and show, in line with [SJZvD04],
that scalability is manageable. In detail we discuss the identification of the software running
on a platform from the code-diversity perspective and we analyze the problem of attesting the
configuration of each component. We also provide preliminary results on the performance of our
approach.

Our experiments are based on freshly installed Linux distributions. Although this may be
seen a strong constraint, results by St. Clair et al. [SCSJM07] suggest that this is a viable solution
to define an initial trusted state.

4.3 On Code-Diversity

In this section we report the experimental methodology, detailed as client-side setup and reference
database (internals and verification procedure), followed by experimental results and costs.
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4.3.1 Experimental methodology
We chose Fedora Linux 14 as distribution for our experiments. The client platform to be attested
is a commodity computer equipped with 2.6GHz Intel CPU, 2GB RAM and Infineon TPM
v.1.2: we have tested on it different installations and configurations of Fedora (details are given
later). On the verifier side we built a reference database containing all “known good values”,
i.e. the digests of all files belonging to Fedora 14 packages. For this purpose we use a dedicated
commodity computer equipped with a 3GHz Intel CPU and 4GB RAM. We did not implement
attestation protocols; this is out of the scope of this work and solutions can be found in literature.

4.3.2 Client-side setup
As subsystem to measure the files accessed for reading or execution, we chose Integrity Mea-
surement Architecture (IMA) [SZJvD04] that does not require any modification to the Operating
System as it is integrated in the kernel. It only needs to be enabled at the bootstrap time by
adding the parameter ima=on to the kernel command line.

Once the kernel has been initialized, IMA starts measuring the accessed files according to
the criteria specified in the policy, which can be automatically set through the kernel command
line parameter ima_tcb=1 (that identifies the Standard IMA policy) or provided in user
space by writing all its statements to the special file policy, in the securityfs file system.
Anytime, the list of measured files (with their digests) is available through another special file
ascii_runtime_measurements from the same file system, encoded as ASCII text (or,
also, in binary form, through the file binary_runtime_measurements).

In our tests we used three different policies: Execution, Standard and User. All of them share
a common part, that instructs IMA to exclude special file systems from the measurements (see
Listing 4.1).

# Don’t measure files in the procfs filesystem
dont_measure fsmagic=0x9fa0
# Don’t measure files in the sysfs filesystem
dont_measure fsmagic=0x62656572
# Don’t measure files in the debugfs filesystem
dont_measure fsmagic=0x64626720
# Don’t measure files in the tmpfs filesystem
dont_measure fsmagic=0x01021994
# Don’t measure files in the securityfs filesystem
dont_measure fsmagic=0x73636673
# Don’t measure files in the selinuxfs filesystem
dont_measure fsmagic=0xf97cff8c

Listing 4.1: IMA policy: common part.

The Execution policy sets IMA to measure executable code only: the main application’s
binary executed via execve() and the related shared libraries, loaded through the mmap()
system call by either the linker-loader, after finding the required dependencies in the ELF header,
or by the programs themselves using the glibc function dlopen(). All other non-executable
files (e.g. for configuration) are not measured. This setting is obtained via the policy statements
in Listing 4.2.

# Measure all files mapped in memory as executable
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measure func=FILE_MMAP mask=MAY_EXEC
# Measure all files executed by the execve() syscall
measure func=BPRM_CHECK mask=MAY_EXEC

Listing 4.2: IMA policy: Execution.

The Standard policy is a superset of the Execution one since it adds all (non-executable)
files read by the superuser root to the ones measured via Execution policy. In this case all
system configuration files read during the bootstrap process are measured, as well as all files
(configurations, plug-ins, etc.) accessed by the services – like Apache – before they change their
user context from root to a less privileged one via setuid(). This setting is obtained via the
policy statements in Listing 4.3 added to the Execution policy.

# Measure all files read by the root user
measure func=FILE_CHECK mask=MAY_READ uid=0

Listing 4.3: IMA policy: delta from Execution to Standard.

The User policy is a superset of the Standard one and we wrote it with two different
specializations: Webserver and Desktop. Indeed, to the files measured via the Standard one, the
first policy adds all files read by the Apache Web server after lowering its privileges through
setuid(), while the second one includes all files read by the programs executed within the user
context with UID = 500 (standard non-privileged user). This setting is obtained via the policy
statements in Listing 4.4 and 4.5, respectively for the Webserver and Desktop specializations,
added to the Standard policy.

# Measure all files read by the apache user
measure func=FILE_CHECK mask=MAY_READ uid=48

Listing 4.4: IMA policy: delta from Standard to Webserver.

# Measure all files read by the user with uid 500
measure func=FILE_CHECK mask=MAY_READ uid=500

Listing 4.5: IMA policy: delta from Standard to Desktop.

Beside the variations of the IMA policies, we experimented with variations of the installed
system. Indeed we tested three different installation flavors1 of Fedora: Minimal that contains the
essential packages required for a text login shell and to set up a network connection; Webserver
with Apache set up to serve a PHP page and Desktop, a simple GNOME setup with some widely
used applications: Mozilla Firefox, OpenOffice.org Writer and GIMP.

Each experiment has been performed on a fresh installation with only minimal tweaks
required to each installation flavor, i.e. setting the network, updating the initial ramdisk to load
the custom IMA policy and uploading the files for the workload simulation. The bootstrap
time has been measured using the bootchart2 tool which “... will run in background and collect
process information, CPU statistics and disk usage statistics from the /proc file system”.

1We call here flavors the three main installation options.
2http://www.bootchart.org/
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Once the bootstrap process is completed, for the Minimal flavor we just collected the
measurements by accessing the platform through a root shell and copying to another platform
the bootchart (/var/log/bootchart.tgz) and the IMA measurements list
(ascii_runtime_measurements).

For the other two installation flavors, before taking the measurements as described earlier,
we simulated a workload. For Webserver by accessing a PHP test page (which simply displays
the output of the phpinfo() function) from a remote platform and for Desktop by opening a
new GNOME session, accessing the Fedora3 Web site and finally opening sample files using in
sequence the mentioned applications, one operation at a time.

We repeated the experiment for all combinations of installation flavor and IMA policy (except
for the User policy with the Minimal installation, since we did not execute any application on
behalf of regular users). At the end of this procedure, we checked each IMA measurements list
against the reference database, to verify if the measured files were correctly identified as part of
Fedora distribution. Test matrix and results are reported in Table 4.1 and discussed later.

Remark. Attesting that no (known) malicious binary is running on a platform is feasible,
as shown later, but it does not mean that “no malicious software” is being executed. Beside
binaries deemed up-to-date but holding flaws not discovered yet, script interpreters like bash or
python pose a number of problems. Depending on how a script is invoked, directly as command
(./test_script.sh) or as a parameter of the interpreter (bash test_script.sh),
when IMA is set for the Execution policy, respectively measures the script or not. The Standard
policy is then required to capture all scripts irrespective of the invocation method. Further, to
make things worse, IMA does not report the operation performed on measured files and, thus, the
related security impact, so that one measurement may refer to a script executed by the interpreter
or to a configuration file read by the latter (e.g. bash bash_history).

4.3.3 Reference database: internals and data

We built the reference database with Apache Cassandra4. This is a highly-scalable NoSQL
database, suitable to manage huge amount of data with a key-value structure: it is an actual
candidate for offering a real service by adding new nodes for data partitions or replicas. One
of the main problems of Cassandra is that in some conditions it does not guarantee immediate
consistency of data in the case of concurrent write. However, this is not a problem in our case
since there is only one entity entitled to update the database.

The Cassandra data model is based on the concept of Column, an elementary data structure
with a name (or key), a value and a timestamp. It also supports a more complex data structure,
called SuperColumn, whose value consists in a map of Columns, instead of plain data. The
container that encloses them is called ColumnFamily, which in the first instance can be considered
as a table in relational databases, but it appears more akin to an associative array, because data it
stores do not have a fixed structure. A client can arrange data by giving the server only the row,
i.e. the key of the associative array, to retrieve the data, or the row together with the Column or
SuperColumn he wants to insert.

We found this model suitable for our purposes, since it provides the necessary flexibility
for storing arbitrary data about files provided with the distribution, keyed by hash, as well as
information about all packages identified by name.

3http://fedoraproject.org
4http://cassandra.apache.org

TClouds D2.1.2 Page 47 of 138

http://fedoraproject.org
http://cassandra.apache.org


D2.1.2 – Preliminary Description of Mechanisms and Components for
Single Trusted Clouds

Our database is organized around two main ColumnFamilies: FilesToPackages and
PackagesHistory.

FilesToPackages (see Listing 4.6) binds the digest of each file (the row) to its full path
name and the packages (the Columns) in which it is contained. The latter are further grouped
by the distribution name and the processor architecture (the SuperColumn) to speed up the data
analysis.

For binary executable files, the SuperColumn also includes a Column named executable,
which contains a list of the linked shared libraries. Since this list may include the name of links,
instead of regular files, the SuperColumn also contains the Column aliases, only for shared
libraries, to store the name of all their symbolic links.

FilesToPackages = {
file_hash: {

distro_name-pkg_arch: {
rpm_file_1: ’pkg_name_1’
rpm_file_2: ’pkg_name_2’

...
fullpath: ’path_name_full’
executable: ’linked_lib_1...linked_lib_m’
aliases: ’lib_symlnk_1...lib_symlnk_o’

}}}

Listing 4.6: Structure of FilesToPackages SuperColumn.

PackagesHistory (see Listing 4.7) stores the history of packages. Packages are keyed
by the concatenation of their name and distribution (the row)5. They contain information on the
update type (the updatetype Column) for each version and release number (the SuperColumn)
as delivered by the vendor.

The possible update types are: newpackage, which identifies new packages, enhancement,
which means that the package contains new features, bugfix, which reports that non-security
critical bugs have been corrected and, lastly security, which indicates that security vulnerabilities
found in a older version have been solved.

PackagesHistory = {
pkg_name-distro_name: {

pkg_version-pkg_release: {
name: ’pkg_name_full’
updatetype: ’newpackage’|enhancement’|’bugfix’

|’security’
}}}

Listing 4.7: Structure of PackagesHistory SuperColumn.

Examples of data stored in the reference database and expressed with JSON can be found in
Listing 4.8.

FilesToPackages = {
1d8f2dc451e76ad88077566a49bf8f1be920d639: {

Fedora14-x86_64 : {

5This was chosen to exactly identify the package history related to a specific distribution, as vendors use
proprietary naming convention and release updates
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executable: ’libblkid.so.1,libuuid.so.1,’
’libselinux.so.1, libsepol.so.1,’
’libc.so.6,ld-linux-x86-64.so.2,’
’libdl.so.2’,

fullpath: ’/bin/mount’
util-linux-ng-2.18-4.8.fc14.x86_64.rpm:

’util-linux-ng-2.18-4.8.fc14’
}}}

PackagesHistory = {
util-linux-ng-Fedora14: {

2.18-4.3.fc14: {
name: ’util-linux-ng-2.18-4.3.fc14’,
updatetype: ’newpackage’

},
2.18-4.8.fc14: {

name: ’util-linux-ng-2.18-4.8.fc14’,
updatetype: ’security’

}}}

Listing 4.8: Example data in the reference database expressed with JSON.

The database is daily updated as described in the following. First, new packages and updates
are downloaded from the official Fedora repository (with rsync).

Then, a python script unpacks the fetched packages, computes the sha1 hash value of
the files contained and eventually inserts the measurements and the full path name into the
ColumnFamily named FilesToPackages. The script collects additional information about
unpacked files: it determines whether the file is an ELF main executable (with readelf) and
in this case it retrieves the list of linked shared library (with ldd); or it resolves the name of
the regular file for links to shared libraries. This information is used to update data previously
inserted into FilesToPackages.

Finally, the script populates PackagesHistory through bodhi6, a service offered by
Fedora which provides information about its packages, including the update type.

4.3.4 Reference database: verifying a platform

We created a second python script that can be used by a verifier (also via Web front-end7) to
query the database and perform the analysis to validate the platform configuration. Our python
scripts use a library called pycassa, which simplifies the interactions with Cassandra. The
script that performs the verification of the platform integrity can connect remotely to the database.
At this stage, our verification method consists in checking if digests of files, collected by IMA in
the client platform, are recognized as part of Fedora. Anyway, a deeper analysis is necessary
to assert that all components running on a platform are good. Therefore, the script verifies if a
measured file is up-to-date or if a newer version has been released to fix security flaws, by using
the version and the full history of the packages containing it. Further, by using the dependencies
between main executables and libraries, the script can evaluate if a whole process is up-to-date
or not.

The script exploits the Cassandra multiget query to batch requests. The verification process
requires two queries: the first one to identify the software running on the platform; the second

6https://fedorahosted.org/bodhi
7Available at http://security.polito.it/tc/ra/verify

TClouds D2.1.2 Page 49 of 138

https://fedorahosted.org/bodhi
http://security.polito.it/tc/ra/verify


D2.1.2 – Preliminary Description of Mechanisms and Components for
Single Trusted Clouds

one, to assess the freshness of the components.

In the first query, the script determines which measurements correspond to software provided
within the distribution. It queries the database by sending all the digests collected by IMA and
receives the associated SuperColumns of FilesToPackages. The measurements that are not
returned indicate files not provided within the distribution.

Ideally, if the distribution was only updated using official packages, all of these measurements
should be in the database. Together with the measurements, the server also specifies the packages
in which the files are contained.

The result of this first query is the basis for the analysis that, depending on the verifier’s
requirements, can stop whenever a single unknown file exists, or can proceed trying to derive
finer information about what is known or unknown.

Here we describe a graph-based analysis that determines the freshness of each process
running, taking into account the dependency from shared libraries.

The script builds a graph whose nodes are files and packages and edges represent depen-
dencies. Each node has an attribute describing its status. From data returned by the first query,
the script: 1) creates a file node for each measurement; 2) sets the status for each file node; 3)
indexes shared libraries by file name and all its aliases; 4) for each executable, connects its linked
shared libraries to it; 5) creates a package node for each package found in the query result; 6)
connects each package to the files that it contains.

In step 2, the status can be: ok or not-found if the hash value was respectively found or not in
the database; name-mismatch if the name returned from the database for a given digest differs
from that in the measurement list. In step 4, executables are recognized by the presence of the
executable Column in the SuperColumn. In this case, the list of libraries (by file names or
aliases) stored in the column allows to find which file nodes need to be connected. Libraries not
present in the graph (because of measurements missing) are added anyway as file nodes with
status fake and connected to the executable to make the algorithm correct.

After these steps, a second query to the database is performed to decide if the software running
on the platform being attested is up-to-date. The script selects all packages returned by the first
query, concatenates their name with that of client platform’s distribution, and sends the obtained
rows to the database. The database replies with the SuperColumns of PackagesHistory that
contain the version and release numbers of requested packages as delivered by the vendor of the
given distribution.

For each package, the script: 1) finds all newer versions than the one from the first query;
2) checks the update type of each newer version and selects the most critical one; 3) updates
the status attribute of the package node. Here, the status can be ok if the package is up-to-date,
bugfix if a newer version fixes non-security critical bugs or security if discovered security flaws
are solved in a more recent version.

Then, the script performs a breadth first propagation of the status in the graph: the status
of packages is propagated to files and the status of libraries to binary executables linking them
(security overwrites bugfix that overwrites ok). For instance, a status security from the package
openssl is propagated to libssl.so and then to Apache mod_ssl.

At the end of the execution, the script returns to the verifier the result of the verification either
in table form, with the information collected for each file and package, or in graphical form, with
an image of the graph for each file measured by IMA, if it belongs to the distribution and the
update status, also including all other metadata returned by the database.

TClouds D2.1.2 Page 50 of 138



D2.1.2 – Preliminary Description of Mechanisms and Components for
Single Trusted Clouds

4.3.5 Remote attestation: experimental results
The test matrix with the results of the measurements on the client side and the verifications are
reported in Table 4.1: the data are obtained by submitting the stored IMA measurements to
the Web front end. For each combination of installation flavor and IMA policy (the selected
options are indicated by the text respectively of row and column headers), three figures are
reported: (1) the total number of measurements done by IMA according to the selected policy;
(2) the number of unknown measurements8, i.e. digests not found in the reference database: the
corresponding files are not recognized as part of Fedora; (3) the verification time expressed in
seconds. Each figure, related to a single combination, is the average value of verification times
measured during five tests: we used the system timer within the script to measure these times
for the whole verification procedure, excluding all communications and the data rendering. We
restarted Cassandra before each test to flush its cache.

The figures for the Execution policy show that all executable code (main application binaries
and shared libraries) running on the platform, from the bootstrap to the time the list of IMA
measurements is saved, is recognized as part of Fedora. This is a first positive result.

Moreover, our verification procedure also checks whether a file recognized as part of Fedora
is up-to-date or not and, in the latter case, for which reason.

These results show that we reached our minimal goal, i.e. verifying that only software “known
to be good” is running.

Besides, we found a low percentage of measurements (12%, in the worst case), in the lists
obtained with the Standard and User policies, that were not recognized (i.e. the returned digests
were not in the database).

A deeper look at those records, e.g. for the case Desktop-User, shows that the number of
unrecognized files is lower. Indeed, out of 386 records, 151 are just violation reports (i.e. a reader
and writer access a file at the same time), thus obtaining 235 records for unknown files. Further,
records with the same file name appear often. Since the IMA version used in our tests is not able
to report more information about measured files than their name, it is not possible to distinguish if
two records with the same file name refer to a single inode or to two different ones. However, we
verified that in our client installation no duplicate files exist, so in our test bed multiple records
with the same file name represent multiple measurements of the same file. Therefore, taking only
the records with unique file names and excluding the record boot_aggregate (that reports
the digest of aggregated values from PCR0 to PCR7) lead to identify just 186 unknown files (i.e.
5%).

After a further inspection to them, we noted that the unrecognized files can be classified in
three main categories: configuration files, keys or logs. We refer the reader to Section 4.4 for a
method that allows to reduce the number of unknown measurements for configuration files.

4.3.6 Remote attestation: the costs
The cost of the verification in terms of time appears to be reasonable. In fact, the chosen test bed
and the experiments setup – i.e. a single node configuration on a standard commodity desktop,
only one request at a time and the cache flushed at every test – were not intended to measure
the performance of our reference database using an optimized, production-like, configuration
of Cassandra. Our goal was only to check whether there is a reasonable upper bound for the
verification time that makes our approach feasible or not: we think that for these preliminary
tests, a worst case of 3.3s is acceptable (note that the TPM requires about a second to sign).

8The percentage is the ratio between the numbers of unknown and total measurements.
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In Table 4.2 we reported the measured time of the bootstrap with IMA disabled and we
repeated the procedure for each of the three mentioned policies to show the overhead of measuring.
The cost of having IMA enabled on the client platform is quite relevant, especially in the case
of Standard and User policies, required to measure the system configuration and the scripts in
addition to executable binaries.

Installation IMA Execution Standard User
Flavor off Policy Policy Policy
Minimal 23 29 (+26%) 35 (+52%) n/a
Webserver 30 40 (+33%) 67 (+123%) 70 (+123%)
Desktop 30 39 (+30%) 63 (+110%) 63 (+110%)

Table 4.2: Bootstrap time in seconds.

We also report the costs of the reference database. Fedora 14, daily updated within 8 months
since the release, contains 45GB of packages that result in a database with 1.9GB of data (1GB
just for the release version) describing more than 22,000 packages for a total of around 2.9
millions files. During this period we observed more than 14,000 updates with around 3,200 new
digests per day, i.e. almost 110MB added to the database per month.

The cost of the reference database for 8 months updates is, in term of space, 4.2% of
the size of one distribution version. Under the hypothesis of linear growth, the cost for two
years updates would be 8.2%. However we can imagine that whenever a new major version is
released, the growth rate for the previous one will be lowered until it will be discontinued. These
considerations and the measured verification times show that, on the verifier side, code-diversity
can be successfully managed, solely basing on the known good values provided by the Linux
distributor.

4.4 On Configuration
Our experiments showed an unexpectedly high number of measured configuration files matching
the original ones included in the packages – about 317 of 360 files residing in the directory /etc
– with their digests, hence, present in the reference database.

Besides, some of these configuration files (even if not present in the database) can be re-
generated on the verifier side from a template file and simple platform properties. To obtain the
same content, the original files should be modified only through the related tools, when available,
or validated before their use. Then, reconstructed files can be compared against the measured
ones, thus reducing the number of unrecognized digests (in our first tests we identified 20 more
files).

To pursue this goal, we took as an example anaconda, the Fedora installer, that generates
some configuration files from a fixed structure (stored internally) filled using user selected
preferences (stored in anaconda-ks.cfg, with other platform data useful for automated
installations) and places the resulting file onto the target storage media. In some cases, anaconda
performs this operation by invoking an external program.

We created two python scripts: a collector, that must be run on the client after the bootstrap
and generates a file platform_properties.list (see an example in Listing 4.9) contain-
ing the platform properties, i.e. data from anaconda-ks.cfg and additional data that we
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identified to reconstruct more configuration files; and a generator, integrated in our verification
script, that takes as input platform_properties.list and deals with each configuration
file through specific modules, each one managing a single property. To recognize additional
configuration files, new properties, not present in anaconda-ks.cfg, must be defined (see,
e.g., cdrom in the second example) and new modules must be developed.

# content of platform_properties.list for the examples
i18n en_US.UTF-8 latarcyrheb-sun16
cdrom cdrom|cdrw|dvd COMBO_SHC-48S7K

pci-0000:00:1f.2-scsi-1:0:0:0
keyboard us
firewall --service=http
selinux --enforcing
timezone Europe/Rome

Listing 4.9: Example file platform_properties.list.

Figure 4.1 shows how our tool can reconstruct the configuration file /etc/sysconfig/i18n
for the language of the Fedora distribution by reading the language identifier and the system font
from the standard i18n property, and by formatting these data using the associated template.

Platform properties file: platform properties.list

Configuration
file generator

Reconstructed file:
/etc/sysconfig/i18n
LANG="en_US.UTF-8"

SYSFONT= ←↩
"latarcyrheb-sun16"

Template file: i18n
LANG=""

SYSFONT=""

1) read the i18n property from the file platform properties.list

2) read the template file i18n

3) write the output file /etc/sysconfig/i18n

Figure 4.1: /etc/sysconfig/i18n

Figure 4.2 shows another example, i.e. a rule for udev that defines how optical device files
are created during the bootstrap (/etc/udev/rules.d/70-persistent-cd.rules)
and that is more complex to be reconstructed. Our tool parses the cdrom property and sets the
proper bash environment variables. Then, it launches /lib/udev/write_cd_rules, an
external program part of the udev package, which generates the desired rules according to the
variables previously set.

Further, we note that many configuration files have a well-known structure (e.g. prop-
erty=value) useful to derive system properties helpful to assess the overall security, like verifying
the authentication methods accepted by SSH server.

This observation and our experiments bring to the conclusion that a distributor could easily
integrate a tool to automatically reconstruct configuration files and provide the application
developers with the related support.

Despite that we successfully identified many configuration files, others were not recognized.
Moreover, how to handle the measurements of other file types, such as cryptographic keys or
logs, is not yet clear.
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Platform properties file: platform properties.list

Configuration
file generator

/lib/udev/write_cd_rules
Environment variables
ID_CDROM=1

ID_CDROM_CD_R=1

ID_CDROM_DVD=1

ID_MODEL="COMBO_SHC-48S7K"

ID_PATH="pci-0000:00:1f.2- ←↩
scsi-1:0:0:0"

DEVPATH="/dev/disk/by-path/"

Reconstructed file: /etc/udev/rules.d/70-persistent-cd.rules
# This file was automatically generated by the

# /lib/udev/write_cd_rules program, run by the

# cd-aliases-generator.rules rules file.

#

# You can modify it, as long as you keep each rule on a

# single line, and set the $GENERATED variable.

# COMBO_SHC-48S7K (pci-0000:00:1f.2-scsi-1:0:0:0)

SUBSYSTEM=="block", ENV{ID_CDROM}=="?*", ←↩
ENV{ID_PATH}=="pci-0000:00:1f.2-scsi-1:0:0:0", ←↩
SYMLINK+="cdrom", ENV{GENERATED}="1",

SUBSYSTEM=="block", ENV{ID_CDROM}=="?*", ←↩
ENV{ID_PATH}=="pci-0000:00:1f.2-scsi-1:0:0:0", ←↩
SYMLINK+="cdrw", ENV{GENERATED}="1"

SUBSYSTEM=="block", ENV{ID_CDROM}=="?*", ←↩
ENV{ID_PATH}=="pci-0000:00:1f.2-scsi-1:0:0:0", ←↩
SYMLINK+="dvd", ENV{GENERATED}="1"

1) read the cdrom property from the file platform properties.list

2) set the bash environment variables

3) launch the udev script write cd rules

4) read the bash en-
vironment variables

5) write the output file
/etc/udev/rules.d/
70-persistent-cd.rules

Figure 4.2: /etc/udev/rules.d/70-persistent-cd.rules

Finally, we also ran our tests on a non fresh installation of the Desktop flavor: the number of
unknown measurements increased from 10% to 20%.

4.5 Conclusions and future work
In conclusion, we showed that code-diversity can be managed when attesting a complete Linux
distribution: our reference database could be directly maintained by the distributor at low cost.
Open issues are identifying scripts with low impact on the performance and files likes keys and
logs. For configuration files, instead, we identified a path to be further explored to increase the
number of measurements that can be successfully recognized.
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Chapter 5

Mobile Device Clouds

Chapter Authors:
Sven Bugiel (TUDA)

5.1 Motivation

In this section, we briefly discuss today’s predominant service delivery paradigms clouds and
apps (cf. Section 5.1.1), their interaction, and why designing security solutions for cloud-based
infrastructures has to take a consolidated look on the interaction of clouds and mobile devices
(cf. Section 5.1.2). In conclusion, we advocate that mobile devices extend the security perimeter
of security domains within clouds (e.g., Trusted Virtual Domains; cf. Chapter 12 of TClouds
deliverable D2.1.1) and hence necessitate mobile platform security architectures that assert
the security policies of the cloud on the mobile platform (cf. Section 5.1.3). We present the
design and implementation of an Android OS based architecture, tailored to the purpose to
securely integrate mobile platforms in (virtual) security domains of large-scale (cloud-based)
infrastructures (cf. Section 5.2).

5.1.1 Predominant Web-Service Delivery Paradigms

In the recent years, two predominant paradigms have evolved to deliver ubiquitous services to
end-users and customers:

Clouds Clouds provide their clients virtual resources such as storage, network, and computation,
on a highly flexible on-demand and pay-per-use basis. These resources are ubiquitously
accessible and provide in particular for web-service providers operational and monetary
benefits when deploying their service cloud-based [CS11].

Apps Apps are small programs for a specific purpose (e.g., calendar, social networking, etc.)
and can be based on different platforms, for instance, browser based or desktop based.
However, the most common form of apps today are mobile apps, i.e., apps running on smart
devices such as smartphones or tablets. These apps provide end-users a very convenient
way to customize their mobile smart devices and have become a desired companion in
our every day lives. Although mobile apps technically deploy the service on the mobile
device, new affordable data plans by mobile carriers allow for an (almost) permanent
Internet connection of mobile devices and hence enable mobile apps to be backed up by
Internet-based services (e.g., Google maps for for map-based services).
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5.1.2 Extended Security Perimeter of Cloud-Based Virtual Infrastructures

Not surprisingly, clouds and (mobile) apps harmonize very well and service providers have
quickly adapted to this combination. For instance, Amazon introduced the cloud Player1,
consisting of a small app that plays music streams retrieved from the Amazon cloud instead of
first downloading the music file. While mobile apps provide convenient end-user front-ends on
ultra-mobile devices and leverage the mobile platforms’ hardware for better user-experience (e.g.,
powerful sensors like accelerometers and gyroscopes), clouds provide the ideal infrastructure for
service back-ends (i.e., high-availability, ubiquitous access, elasticity, vast storage, high network
bandwith).

When considered from network topology point of view, this interaction between the cloud
and mobile devices exhibits two distinct patterns for data flows. First, the “classical” form of a
star topology (cf. Figure 5.1), centered around the cloud. Second, data retrieved from the cloud is
further distributed in a meshed network (or p2p network) between mobile devices (cf. Figure 5.2)
with physical proximity.

Figure 5.1: Classical star topology: Data flow
from central cloud to mobile devices.

Figure 5.2: Distributed data: Flow within Mobile
Device Cloud.

Star Topology The star topology stems from the default client-server relationship between the
mobile devices and the cloud-based service, where mobile apps connect as described above to
the cloud-based services. By default, all client devices do not interact directly with each other,
but instead exchange data and synchronize with each other via the cloud.

Device Clouds Device clouds are formed when mobile platforms (ad-hoc) inter-connect in a
wireless meshed network (WMN). This is enabled due to advances in wireless device-to-device
communication, such as Bluetooth Low-Energy, WiFi Direct, Direct Link Setup (802.11z),
Qualcomm FlashLinq and advances in ad-hoc routing (e.g., BATMAN or OLSR). In this topology,
data retrieved by one device from the cloud service is distribute to proximal peer devices at
local high-speed bandwiths (usually much higher than mobile Internet connections). This is in
particular beneficial when considering locally-relevant data, e.g., traffic conditions, localized

1http://www.amazon.com/cloudplayer
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social networking, or sharing photos. First apps using this new technology have been presented
by academia (e.g., floating content [OHL+11]) or industry2.

5.1.3 The Need for Mobile Platform Security

As described in the preceding sections, mobile devices extend the perimeter of cloud-based
infrastructures, and thus it is crucial that mobile devices are equipped with a security architecture
that ensure the enforcement of security policies of the virtual infrastructure on the mobile device.
As an example, we briefly explain this problem in the particular context of Trusted Infrastructures
(TClouds deliverable D2.1.1, chapter 12).

Trusted Virtual Domains (TVDs) establish logical isolated domains among Virtual Machines
within cloud environments and independently from the physical host. Strict security policies are
enforced on the information flow between domains and by default domains are strongly isolated.
TVDs are closed environments and new members are only admitted to a domain, when they
could proof that their system provides the necessary security architecture to logically isolate
different domains from each other and that they adhere to the security policies of the domain.
Considering the importance of cloud-based services for clients such as mobile devices, this
design entails that all clients have to support the necessary security architecture to deploy TVDs.
While there exist solutions for desktop and laptop machines, this is an open challenge for mobile
devices.

5.2 Practical and Lightweight Domain Isolation on Android

In this section, we describe a security architecture for the popular Android OS, which is tailored
towards securely integrating mobile devices into larger infrastructures and asserting the security
policies of the surrounding infrastructure on the mobile platform [BDD+11b]. These infras-
tructure can be, for instance, Trusted Virtual Domains as developed in context of the TClouds
project.

5.2.1 Introduction

The market penetration of modern smartphones is high and sophisticated mobile devices are
becoming an integral part of our daily life. Remarkably, smartphones are increasingly deployed
in business transactions: They provide employees a means to remain connected to the company’s
network thereby enabling on the road access to company’s data. In particular, they allow
employees to read and send e-mails, synchronize calendars, organize meetings, attend telephone
and video conferences, obtain news, and much more. On the other hand, mobile platforms have
also become an appealing target for attacks threatening not only private/personal data but also
corporate data.

Until today, the Blackberry OS is the most popular operating system used in the business
world. However, recent statistics manifest that Google Android is rapidly expanding its market
share3, also in the business world, where it is currently the third-most used mobile operating
system after Blackberry and iOS [Car10].

2http://opengarden.com/
3At the time of writing, Android has 36% market share and belongs to the most popular mobile operating

systems worldwide [Gar11].
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Security Deficiencies of Android. The core security mechanisms of the (open source)
Google Android OS [Goo] are application sandboxing and a permission framework. How-
ever, recent attacks show that Android’s security architecture is vulnerable to malware of many
kinds. First, uploading malicious applications on the official Android market is straight-forward,
since anyone can become an Android developer by simply paying a fee of $25. Second,
Google does not perform code inspection. Recent reports underline that these two design
decisions have led to the spread of a number of malicious applications on the official An-
droid Market in the past [Nil10, Goo10a, Loo10, Bra11]. Further, another attack technique
against Android is privilege escalation. Basically, these attacks allow an adversary to perform
unauthorized actions by breaking out of the application’s sandbox. This can be achieved by
exploiting a vulnerable deputy [EOM09a, DDSW10, FWM+11], or by malicious colluding
applications [SZZ+11, BDD+11a]. In particular, privilege escalation attacks have been utilized
to send unauthorized text messages [DDSW10], to trigger malicious downloads [LRW10, Nil10],
to change the WiFi settings [FWM+11], or to perform context-aware voice recording [SZZ+11].
Finally, approaches that rely on Android’s permission framework to separate private applications
and data from corporate ones (such as enterproid [ent]) will likely fail due to the above-mentioned
attacks. Moreover, any attack on the kernel-level will allow the adversary to circumvent such
solutions.

Domain Isolation with Default Android. In the light of recent attacks, the Android OS
cannot meet the security requirements of the business world. These requirements mainly
comprise the security of a heterogeneous company network to which smartphones connect
along with the protection of corporate data and applications (on the phone). In particular,
Android lacks data isolation: For instance, standard Android only provides single database
instances for SMS, Calendar, and Contacts. Hence, corporate and private data are stored in
the same databases and any application allowed to read/write the database has direct access
to any stored information. Apart from application sandboxing, Android provides no means to
isolate corporate applications from private user applications in a system-centric way. Hence,
an adversary could get unauthorized access to the company’s network by utilizing privilege
escalation attack techniques. Finally, Android fails to enforce isolation at the network-level
which would enable the deployment of basic context-aware policy rules. For instance, there is no
means to deny Internet access for untrusted applications while the employee is connected to the
company’s network.

To summarize, default Android has no means to group applications and data into domains,
where in our context a domain compromises a set of applications and data belonging to one trust
level (e.g., private, academic, enterprise, department, institution, etc.)

Existing Security Extensions to Android. Recently, a number of security extensions for
Android have been proposed, the closest to our work being [OMEM09, EGC+10, OBM10,
NKZS10, BDD+11a]. However, as we will elaborate in detail in related work (see Section 5.2.7),
all of these solutions focus on a specific layer of the Android software stack (mainly Android’s
middleware) and fail if the attack occurs on a different layer, e.g., at the network layer by
mounting a privilege escalation attack over socket connections [DDSW10]). Specifically, they
do not address kernel-level attacks [Obe10, LRW10] that allow an adversary to access the entire
file system. Having said that, attacks on the kernel-level can be mitigated by enabling SELinux
on Android [SFE10]. However, SELinux only targets the kernel-level, and misses high-level
semantics of Android’s middleware.

In particular, we are not aware of any security extension providing efficient and scalable
application and data isolation on different layers of the Android software stack, which is essential
for deploying Android in the business world.
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On the other hand, several virtualization-based approaches aim at providing isolation between
private and corporate domains on Android [Ope, BBD+10]. However, contemporary mobile
virtualization solutions suffer from practical deficiencies (see Section 5.2.7): (1) they do not
scale well on resource-constrained smartphone platforms which allow only a limited number
of virtual machines to be executed simultaneously; (2) more importantly, virtualization highly
reduces the battery life-time, because it duplicates the whole Android operating system. This
raises a severe usability problem.

Our Contribution. In this section, we present a novel security architecture, called Trust-
Droid, that enables practical and lightweight domain isolation on each layer of the Android
software stack. Specifically, TrustDroid provides application and data isolation by controlling
the main communication channels in Android, namely IPC (Inter-Process Communication), files,
databases, and socket connections. TrustDroid is lightweight, because it has a low computational
overhead, and requires no duplication of Android’s middleware and kernel, which is typically
a must for virtualization-based approaches [Ope, BBD+10]. As a benefit, TrustDroid offers a
good scalability in terms of the number of parallel existing domains. In particular, TrustDroid
exploits coloring of separate and distinguishable components (this approach has its origins
in information-flow theory [Rus81]). We color applications and user data (stored in shared
databases) based on a (lightweight) certification scheme which can be easily integrated (as we
shall show) into Android. Based on the applications colors, TrustDroid organizes applications
along with their data into logical domains. At runtime, TrustDroid monitors all application
communications, access to common shared databases, as well as file-system and network access,
and denies any data exchange or application communication between different domains. In
particular, our framework provides the following features:

• Mediating IPC: We extend the Android middleware and the underlying Linux kernel
to deny IPC among applications belonging to different domains. Moreover, TrustDroid
enforces data filtering on default Android databases (e.g., Contacts, SMS, etc.) so that
applications have access only to the data subset of the their respective domains.

• Filtering Network Traffic: We modified the standard Android kernel firewall to enable
network filtering and socket control. This allows us to isolate network traffic among
domains and enables the deployment of basic context-based policies for the network
traffic.

• File-System Control: We extend the current Android Linux kernel with TOMOYO Linux
based mandatory access control and corresponding TOMOYO policies to enforce domain
isolation at the file-system level. This allows us to constrain the access to world-wide
readable files to one specific domain. To the best of our knowledge, TOMOYO has never
been applied on a real Android device (e.g., Nexus One) before.

• Integration in Trusted Infrastructures: Our design includes essential properties and
building blocks for integrating Android OS based smartphones into sophisticated trusted
infrastructures, such as Trusted Virtual Domains [DEK+09].

We have tested TrustDroid with Android Market applications and show that it induces only a
negligible runtime overhead and minimally impacts the battery life-time.

Outline. The remainder of this section is organized as follows: In Section 5.2.2 we briefly
recall the Android architecture and in Section 5.2.3 we provide a problem description, present our
adversary model, and elaborate on our requirements and objectives. We present the architecture
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of TrustDroid in Section 5.2.4 and describe its implementation in Section 5.2.5. Our results
are evaluated and discussed in Section 5.2.6. We summarize related work in Section 5.2.7 and
conclude in Section 5.2.8.

5.2.2 Android

In the following we briefly provide background information on Android. We explain the Android
software stack, the types of communications present in the system and elaborate on the specifics
of Android’s security mechanisms.
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Figure 5.3: Android architecture

Software Stack

Android is an open source software stack for mobile devices, such as smartphones or tablets. It
comprises of a Linux kernel, the Android middleware, and an application layer (as depicted in
Figure 5.3). The Linux kernel provides basic facilities such as memory management, process
scheduling, device drivers, and a file system. On top of the Linux kernel is the middleware
layer, which consists of native libraries, the Android runtime environment and the application
framework. The native libraries provide certain core functionalities, e.g., graphics processing.
The Android runtime environment is composed of core Java libraries and the Dalvik Virtual
Machine, which is tailored for the specific requirements of resource constrained mobile devices.

The Android application framework consists of system applications written in C/C++ or Java,
such as System Content Providers and System Services. These provide the basic functionalities
and the essential services of the platform, for instance, the Contacts app, the Clipboard, the
System Settings, the AudioManager, the WifiManager or the LocationManager. While System
Content Providers are essential databases, System Services provide the necessary high-level
functions to control the device’s hardware and to get information about the platform state, e.g.,
location or network status.
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At the top of the software stack is the application layer, which contains a set of built-in
core applications (e.g., Contacts or Web-browser) and third party applications installed by
the user (e.g., from the Android MarketStore4). Applications are written in Java, but for
performance reasons may include native code (C/C++) which is called through the Java Native
Interface (JNI). In general, Android applications consist of certain components: Activities (user
interfaces), Services (background processes), Content Providers (SQL-like databases), and
Broadcast Receivers (mailboxes for broadcast messages).

Communication

Android provides several means for application communication. First, it implements a Binder-
based5 lightweight Inter-Process Communication (IPC), which is based on shared memory. This
is the primary IPC mechanism for the communication between the application components.
This mechanism has been denoted as Inter-Component Communication (ICC) in [EOM09b] and
since then this term has been well established. For ICC, a special definition language (Android
Interface Definition Language – AIDL) is used to define the methods and fields available to a
remote caller. An example of ICC calls is the binding to a remote service, thus calling remote
procedures exposed by this service. Further, explicit actions on a different application can be
triggered by means of an Intent, a message with an URL-like target address, holding an abstract
description of the task to perform (e.g., starting an Activity). Second, the Linux kernel provides
the standard IPC mechanisms, e.g., based on Unix domain sockets. Third, applications with
the Internet permission are allowed to create Internet sockets. Thus, they are not only able to
communicate with remote hosts but also connect to other local applications.

Security Mechanisms

Android implements a number of security mechanisms, most prominently application sandboxing
and a permission framework that enforces mandatory access control (MAC) on ICC calls and
on the access to core functionalities. In the following, we provide a brief summary of these
mechanisms and refer to [EOM09b] for a more detailed discussion

Sandboxing. In Android every installed application is sandboxed by assigning a unique
user identifier (UID). Based on this UID the Linux kernel enforces discretionary access control
(DAC) on low-level resources, such as files. For instance, each application has a private directory
not accessible by other applications. Moreover, each application runs in its own instance of the
Dalvik Virtual Machine under the assigned UID. This sandboxing mechanism also applies to
native code contained in applications. However, applications from the same vendor (identified
by the signature of the application package) can request a shared UID, thus basically sharing the
sandbox.

Access Control. Figure 5.4 depicts the possible communication channels and their respective
access control in Android. At runtime, Android enforces mandatory access control (MAC) on
ICC calls between applications. The MAC mechanism is based on Permissions [Goo10b] which
an application must request from the user and/or the system during installation. Android already
contains a set of pre-defined permissions for the system services [Goo10b], but applications can
also define new, custom permissions to protect their own interfaces. A reference monitor in
the Android middleware checks if an application holds the necessary permissions to perform a

4https://market.android.com/
5Binder in Android is a reduced and custom implementation of OpenBinder[Pal05]
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Figure 5.4: Communication channels and respective access control mechanisms in Android.

certain protected action, for instance, to bind to a protected service or to start a protected activity
of another application.

On the file system, apps can decide if their files are stored in their private directory, and
are thus not accessible by any other application, or in a system-wide read-/writable location.
Default Linux Inter-Process Communication, for instance, Unix domain sockets or pipes, can be
created with certain modes that make them accessible by other processes. The creator of such
sockets/pipes decides on the mode. Thus, both file system and default IPC are under discretionary
access control.

Some permissions are mapped to Linux kernel group IDs, e.g., the Internet permission,
thereby relying on Linux to prevent unprivileged applications from performing privileged actions
(e.g., creating Internet sockets, accessing sensitive information stored on external storage).
However, since every application gets this permission granted (or not) at install time and the
Android system henceforth enforces this decision, this falls under mandatory access control.

5.2.3 Problem Description and Model
We consider a corporate scenario which involves the following parties: (i) an enterprise (a
company), (ii) a device (a smartphone), and (iii) an employee (the smartphone user). The
enterprise issues mobile devices to its employees. The employees use their device for business
related tasks, e.g., accessing the corporate network, loading and storing confidential documents,
or organizing business contacts in an address book. To perform these tasks, the enterprise either
deploys proprietary software, e.g., a custom VPN client including the necessary authentication
credentials, on the device or provides a company-internal service, e.g., enterprise app market,
from which employees can download and install those apps.

In this scenario, the enterprise is an additional stakeholder on the employees’ devices and
requires the protection of its delivered assets (software and data). Corporate assets may be
compromised, e.g., when the user installs applications from untrusted public sources. Moreover,
the employee accesses the enterprise internal network from his device and thus malware can
potentially spread from the device into the corporate network.

A straightforward solution would be to prohibit any non-corporate app on the device (as
proposed by, e.g., [DGLI10]). However, this is counter-intuitive to the idea of a smartphone and
might even tempt employees to circumvent or disable this too restrictive security policy, e.g., by
rooting the device. The default Android security mechanisms and recent extensions, on the other
hand, are insufficient to provide enough isolation of untrusted applications and thus to protect
the enterprise’s assets. Virtualization can provide strong isolation between trusted and untrusted
domains, but noticeably use up the battery life of the device, because major parts of the software
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stack are duplicated and executed in parallel in currently available virtualization solutions.
Consequently, an isolation solution is required, which preserves the battery life by minimizing

the computational overhead and still provides isolation of corporate assets from untrusted
applications.

Adversary and Trust Model

We consider software attacks launched by the adversary on the device at different layers of the
Android software stack. The adversary’s goal is to get access to corporate assets, e.g., to steal
confidential data, to compromise corporate applications or to infiltrate the corporate network.
The adversary can penetrate the system by injecting malware (e.g., by spreading it through the
Android Market) or by exploiting vulnerabilities of benign applications. Malicious applications
may either be granted by the user the privileges to access sensitive resources (see Gemini [Loo10])
or try to extend their privileges by launching privilege escalation attacks [DDSW10, SZZ+11,
LRW10, Goo10a, Nil10, Obe10, Bra11].

We assume that the enterprise is trusted, and that the employee is not malicious, i.e., he does
not intendedly leak the assets stored on his device. However, he is prone to security-critical
errors, such as installing malware or disabling security features of his device.

The device is generally untrusted, but has a trusted computing base (TCB) which is responsi-
ble for security enforcement on the platform. The TCB is trusted by the enterprise.

Objectives and Requirements

We require the integrity and confidentiality of the corporate assets on the device, while preserving
the usability. Furthermore, we require that the integrity of the corporate network will be preserved
even if malware infiltrated employees’ devices. With respect to these objectives, we define the
following requirements:

• Isolation. Corporate assets must be isolated in a separate domain from untrusted data
and software, and any communication between different domains must be prevented. In
particular, the following communication channels must be considered: IPC channels, the
file system and socket connections. In addition, potential malware on the device must be
prevented from accessing the corporate network.

• Access control. Access of applications to assets stored on the device must be controlled
by the enterprise by means of access control rules defined in a security policy, e.g., a
new application can be installed in the corporate domain only if the policy states that it is
trusted.

• Legacy and Transparency. To preserve the smartphone’s functionality, we require our
solution to be compatible to the default Android OS and to 3rd party applications. Further,
it should be transparent to the employee.

• Low overhead. With respect to the constrained resources of smartphones, in particular, the
battery-life, our solution has to be lightweight.

Assumptions

We consider the underlying Linux kernel and the Android middleware as Trusted Computing
Base (TCB), and assume that they have not been maliciously designed. Moreover, we assume
the availability of mechanisms on the platform to guarantee integrity of the TCB (i.e., OS and
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Figure 5.5: Approaches to isolation: (a) TrustDroid; (b) OS-level virtualization; (c) Hypervi-
sor/VMM

firmware) on the device. For instance, this can be achieved with secure boot which is a feature of
off-the-shelf hardware (e.g., M-Shield [SA05] and ARM TustZone [ARM]) or software security
extensions for embedded devices (e.g., a Mobile Trusted Module (MTM) [Tru]).

5.2.4 Design of TrustDroid

In this section we describe the design and architecture of TrustDroid. The main idea is to group
applications in isolated domains. With isolation we mean that applications in different domains
are prevented from communicating with each other via ICC, Linux IPC, the file system, or a
local network connection. Figure 5.5 illustrates different approaches to achieve isolation: (a) the
approach taken by TrustDroid, which extends Android’s middleware and kernel with mandatory
access control; (b) OS-level virtualization, where each domain has its own middleware; (c)
isolation enforced via a hypervisor and virtual machines, where each domain contains the full
Android software stack. Comparing these approaches, TrustDroid has on the one hand the largest
TCB, but on the other hand it is the most lightweight one, since it does not duplicate the Android
software stack, and still provides good isolation, as we will argue in the remainder of this section.

Our extensions to the Android OS are presented in Figure 5.6. The middleware extensions
consist of several components: Policy Manager, Firewall Manager, Kernel MAC Manager, an
additional MAC for Inter Component Communication (ICC), and finally a modified Package
Installer. The Policy Manager is responsible for determining the color for each installed applica-
tion, for issuing the corresponding policies to enforce the isolation between different colors, and
to enforce these policies on any kind of ICC. The Firewall Manager and the kernel-level MAC
Manager are instructed by the Policy Manager to apply the corresponding rules to enforce the
isolation on the network layer and the kernel layer. To enforce the latter, TrustDroid relies on
default features of the Linux kernel, which can also be activated in Android’s Linux kernel: a
firewall (FW) and a Kernel-level MAC mechanism. Since we modified the Android middleware a
company which wants to make use of TrustDroid has to roll out a customized version of Android
to their employees’ smartphones.

In the subsequent sections, we elaborate in more detail on the components of TrustDroid that
enforce domain isolation.
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Policy Manager

In this section we explain the Policy Manager component of TrustDroid and elaborate in more
detail on how it colors applications and enforces domain isolation in the middleware.

Application Coloring The fundamental step in our architecture to isolate apps is to assign
each app a trust level, i.e., to color them. In TrustDroid, we assume three trust levels for
applications: 1) pre-installed system apps, which include System Content Providers and Services
(cf. Section 5.2.2); 2) trusted third party apps provided by the enterprise; 3) untrusted third party
apps, which are retrieved from public sources such as the Android Market. While trusted and
untrusted apps must be isolated from each other, system applications usually have to be accessible
by all installed applications in order to preserve correct functionality of those applications and
sustain both transparency and legacy compliance of our solution.

In TrustDroid, system apps (i.e., pre-installed apps) are already colored during platform
setup in accordance with the enterprise’s security policies. Additionally installed third party
apps are colored upon installation, before any code of the app is executed. In Android, the
PackageManager is responsible for the installation of new applications and in TrustDroid we
extended it to interface with the Policy Manager, such that the Policy Manager can determine the
color of the new app, issue the necessary rules for its isolation in the middleware, and instruct
the Firewall Manager and Kernel MAC Manager to enforce the corresponding policies on the
lower levels.

Determining the color of an app can be based on various mechanisms. For instance, it can be
based on a list of application hashes for each color or based on the information available about
the new app, such as developer signature or requested permissions. For TrustDroid we opted for
a certification based approach. The Policy Manager recognizes a special certificate (issued by
the enterprise), which is optionally contained in the application package of apps. Based on this
certificate, TrustDroid’s PolicyManager verifies the authenticity and integrity of the new app.
Moreover, the certificate may define a platform state, (e.g., the already installed applications), in
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which the certificate is only valid. A trusted service on the device is responsible for verifying
these certificates. This service also measures the platform state, provides secure storage for
the certificate verification keys, and maintains the verification key hierarchy such that only the
enterprise can issue valid certificates. We use a Mobile Trusted Module (MTM) and as certificate
format Remote Integrity Metrics (RIM) certificates, both defined by the Trusted Computing
Group (TCG) [Tru]. We refer to Section 5.2.5 for more details on how we use and implement
those.

If such a RIM certificate is present, it must be successfully verified to continue the installation,
i.e., the certificate must have been issued by the enterprise, the application package’s integrity
must be verified, and the platform state defined in the certificate must be fulfilled. Otherwise, the
installation is aborted. In case of a successful verification, the certificate determines the color of
the new app. In our corporate scenario with only two domains, successfully verified apps are in
the trusted corporate domain. If no certificate is found, the app is by default colored as untrusted.
This applies, for example, to all Android Market apps.

Alternatively, the certificates can already be pre-installed on the phone and the Policy
Manager checks for a pre-installed certificate corresponding to the new app.

Generating the RIM certificates for applications requires a corresponding PKI inside the
company. However, almost all companies today have integrated a PKI into their IT infrastructure.
For the initial setup of the mobile devices the certificates are generated and integrated once
for every pre-installed trusted application. By integrating the deployment of RIM certificates
into a mobile device management solution or a company internal app market the process of
app-certification can be automated for updates or applications installed later.

Inter Component Communication As described in Section 5.2.2, Android uses Inter Com-
ponent Communication as the primary method of communication between apps. Although ICC
is technically based on IPC at the kernel level, it can be seen as a logical connection in the
middleware. Thus, enforcement of isolation in the middleware has to be implemented based on
access control on ICC.

In general, one can distinguish different kinds of ICC which can be used by apps for
communication.

Direct ICC. The most obvious way for apps to communicate via ICC is to establish direct
communication links. For instance, an app could send an Intent to another app, connect to its
service, or query the content provider of another app. The TrustDroid MAC on ICC detects this
communication and prevents it in case the sender and receiver app of the ICC have different
colors. It thereby acts as an additional MAC besides the default access control of Android. As
mentioned in Section 5.2.4, system apps form an exception and direct ICC is not prohibited if
either sender or receiver of the ICC is a system app.

If two applications depend on each other, it is the responsibility of the certificate issuer, i.e,
the enterprise in our scenario, to take care that these applications are in the same domain and to
resolve any conflict in case the applications should have different trust levels according to the
issuer’s security policy.

Broadcast Intents. Besides the obvious direct ICC, apps are also able to send broadcast
Intents, which are delivered to all registered receivers. Similar to the approaches taken in
[OMEM09] and [BDD+11a], TrustDroid filters out all receivers of a broadcast which have a
different color than the sender before the broadcast is delivered. Again, system apps are an
exception and are not filtered from the receivers list.

System Content Providers. A mechanism for apps from different domains to communicate
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Figure 5.7: Coloring of data (1) and isolation of data from different colors in the (2) System
Content Providers and (3) System Service.

indirectly is to share data in System Content Providers, such as the Contacts database, the
Clipboard, or the Calendar. The ICC call to read data from such a provider does not give any
information on the origin of the data, i.e., who wrote the data to the provider. We achieve domain
isolation for System Providers as depicted in Figure 5.7. TrustDroid extends the System Content
Providers such that all data is colored with the color of its originator app (Step (1) in Figure 5.7).
Upon read access to a provider, all data colored differently than the reader app is filtered from
the response (Step (2) in Figure 5.7).

System Service Providers. A covert method for apps to communicate are System Service
Providers, such as the Audio Manager [SZZ+11]. However, in our adversary model (cf. Sec-
tion 5.2.3), we assume that corporate apps are trusted and not malicious and thus no sender for
such a covert channel exists in the trusted corporate domain. Nevertheless, data might leak via
System Services from the trusted to the untrusted domain and thus isolation should be enforced
here as well. Thus, as for the System Content Providers, TrustDroid tags the read-/writable data
values of the System Service Providers with the color of the last app updating them, e.g., when
setting the volume level (Step (1) in Figure 5.7). Read access to these values is denied in case the
colors of the reader and the data differ (Step (3) in Figure 5.7). Although this approach does not
prevent this kind of covert channel per se, it drastically reduces its bandwidth to 1-bit, because
the reader only gains information if his corresponding writer changed the value or not.

Alternatively, TrustDroid could return a pseudo or null value instead of denying the read
access. However, in contrast to System Content Providers, on which a read operation by design
might return an empty response, System Services are expected to return the requested value.
Thus, returning a pseudo or null value may crash the calling app, or even cause more severe
harm to the hardware or user, for instance, if the app reads a very low volume level when instead
the real volume level is very high.
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Kernel MAC Manager

The Kernel MAC Manager is responsible for communication with and management of the MAC
mechanism provided by the underlying Linux kernel. Such mechanisms, like SELinux [Nat]
or TOMOYO Linux [HHT04], are already by default features of the Linux kernel and provide
mandatory access control on various aspects of the OS, including the file system and the Inter-
Process Communication. Thus, by employing such a MAC mechanism, TrustDroid achieves the
isolation of domains on file system and IPC level. More explicitly, we create a MAC domain
for each color and each app is added to the domain of its color upon installation. The Policy
Manager instructs the Kernel MAC Manager to which domain a new application has to be added
and the Kernel MAC Manager translates this instruction into low-level rules, which are inserted
into the MAC mechanism and which define the isolation of domains at file system and IPC level.

File System. The file system is a further communication channel for applications. Apps are
able to share files system-wide, by writing them to a system-wide readable location. Thus, a
sending application can write such a file and a receiving application would simply read the same
file. The mandatory access control mechanism enforces isolation on the file system in addition
to the discretionary access control applied by default. TrustDroid applies rules, which enforce
that a system-wide readable file can be only read by a another app of the same color as the writer.
Thus, if an app declares a file system-wide readable, it is shared only within the domain of the
writer.

Moreover, mandatory access control can, with corresponding policies, even be used to
constrain the superuser account. Hence, even if a malicious application gains superuser privileges,
it’s file system scope could be limited to it’s domain.

Inter-Process Communication. To prevent any communication of apps through Linux IPC
(e.g., pipes, sockets, messages, or shared memory), TrustDroid leverages the same domains
already established for the file system access control. Thus, apps are not able to establish IPC
with differently colored apps. However, system applications form an exception, since denial of
communication to system apps renders any application dysfunctional.

Potentially, ICC, which is based on Binder (and hence on shared memory based IPC), can
be essentially addressed with kernel level MAC. However, in this case the policy enforcement
would be limited to direct ICC between apps and would miss indirect communications, e.g., via
Content Providers or Broadcast Intents. In this sense, MAC on shared memory based IPC is
supplementary to the ICC MAC, because it enforces policies even in case (malicious) applications
manage to disable the ICC MAC.

Firewall Manager

A further channel that has to be considered is Internet networking, i.e., network sockets used for
communication via Internet protocols (such as TCP/IP). Based on these sockets applications are
able to communicate with remote hosts, but also with other applications on the same platform.
Thus, isolation with respect to the corporate smartphone scenario has to take both local and
remote communication into consideration. To enforce isolation, TrustDroid employs a firewall
to modify or block Internet socket based communication. Managing the firewall rules based on
the policies from the Policy Manager is the responsibility of the Firewall Manager component.

Local Isolation. To locally enforce isolation between domains on the platform, TrustDroid
prohibits any communication from a local network socket of an untrusted application to another
local network socket. Although, on first glance, this might appear over-restrictive, it is a
reasonable enforcement, because applications residing on the same platform usually employ
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lightweight ICC to communicate instead of network channels.
Alternatively, network communication within each domain could be allowed and only cross-

domain traffic be prevented. However, this would require that the Firewall Manager knows which
Internet socket belongs to which application and which address has been assigned to each socket.

Remote Isolation and Context-Awareness. Enforcing isolation between domains on the
network traffic between the platform and remote hosts, e.g., web-servers, is a harder problem than
local enforcement. All data that leaves the phone is beyond the policy enforcement capabilities
of TrustDroid. For instance, applications in different domains could exchange data via a remote
web-service. Moreover, with respect to the corporate scenario, one must consider that malware
on the phone might spread into the corporate network once the phone connects to it.

To address the former problem, TrustDroid uses a firewall that is able to tag (color) the
network traffic, e.g., VLAN. If the network infrastructure supports the isolation of traffic, for
instance in Trusted Virtual Domains (TVDs) [DEK+09], the policy enforcement is extended
beyond the mobile platform.

To address the latter problem, TrustDroid employs context-aware policy enforcement on
outgoing traffic. The context can be composed of various factors, for instance, the absence/pres-
ence of a user, the temperature of the device, or the network state. In TrustDroid, the context
means the physical location of the device and the network the device is connected to. Each
context definition is associated with a policy that defines how to proceed with the network traffic
of untrusted applications, e.g., blocking all traffic or manipulating it in a particular way. Thus,
if the platform is physically on corporate premises or connected to the corporate network, all
untrusted, non-corporate apps could be denied network access or their traffic can be manipulated,
for instance, to reroute it to a security proxy or an isolated guest network.

5.2.5 Implementation and Evaluation

Implementation

We implemented TrustDroid based on the Android 2.2.1 sources and the Android Linux kernel
version 2.6.32.

We extended the default Android ActivityManager with a new component for the TrustDroid
Policy Manager and the additional policy enforcement on ICC. We implemented the Firewall
Manager and Kernel MAC Manager as new packages in the system services in the middleware.

The Policy Manager contains a minimal native MTM implementation, which is loaded as a
shared library and called via the Java Native Interface (JNI). Alternatively, TrustDroid could use
more sophisticated and secure MTM implementations as proposed in [EB09, Win08, ZAS07].
The MTM provides the means to verify Remote Integrity Metrics (RIM) certificates, to measure
the software state of the platform, and to securely maintain monotonic counters.

Figure 5.8 illustrates the control flow for coloring a new application during installation and
mapping the policies from the Policy Manager to the kernel and network level. Solid lines
illustrate the control flow in case the application package contains a RIM certificate. Dashed
lines show the deviation from this flow in case no RIM certificate is included in the package.

Application Coloring. To color new apps during installation, we extended the Android
PackageManager to call the TrustDroid Policy Manager during the early installation procedure
(step 1 in Figure 5.8) in order to verify the certificate potentially included in the application
package (denoted APK) and determine the color of the new app. Therefore, the certificate is first
extracted from the APK (steps 2 and 3a) and the resulting APK is verified with this certificate
(steps 4a and 5a). In case the verification fails, the installation is aborted by throwing a Security
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Figure 5.8: Control flow for the installation of a new application in case the installation package
contains a RIM certificate (solid lines). If no RIM certificate is included in the package, this flow
deviates (dashed lines).

Exception back to the PackageManager (step 6a). In case no RIM certificate is contained in the
APK, the installation proceeds normally (step 3b). If the installation is continued and succeeds
(step 7), a second remote call from the PackageManager informs the Policy Manager of this
success (step 8) and thus triggers the issuing of corresponding policies to isolate the new app
from other apps with a different color at ICC level (steps 9a and 9b), at file system and IPC level
(steps 10a and 10b), and the network level (step 11).

RIM Certificates and life-cycle management. As certificate format, we chose the RIM
certificates as defined in the TCG Mobile Trusted Module (MTM) specifications [Tru]. In
addition to the authenticity and integrity verification provided by other certificate standards
such as X.509, RIM certificates additionally provide valuable features for a trusted life-cycle
management. RIM certificates define a platform state in which the certificate is valid. This state
is composed of monotonic counter values of the MTM and the measured software state. If either
the counter value or software state defined in a RIM certificate mismatches the corresponding
value of the MTM, the certificate verification fails. RIM certificates are signed with so-called
verification keys. These verification keys form a key hierarchy, whose root key can be exclusively
controlled by a particular entity, the enterprise in our scenario. Thus, only the enterprise is able to
create valid RIM certificates for it’s employees’ devices and thus only successfully certified apps
are considered as trusted. Examples for MTM-based enhanced life-cycle management of apps
are the prevention of version rollback attacks based on monotonic MTM counters, the binding of
the installation to a certain platform state, or the trustworthy reporting of the software state, i.e.,
installed applications.

To certify APKs, we developed a small tool written in Java and that makes use of the jTSS6.
Network, Default IPC, and File System Isolation. To implement isolation at network,

6http://trustedjava.sourceforge.net/
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default Linux IPC, and file system level, our implementation employs netfilter7 present in the
kernel and TOMOYO Linux8 v1.8 available as a kernel patch. To maintain them from the Firewall
Manager and Kernel MAC Manager, respectively, we cross-compiled and adapted the user-
space tools iptables and ccs-tools. The former is used to administrate netfilter and the latter for
TOMOYO Linux policy management.

In TrustDroid, we created two TOMOYO Linux domains for third party apps, trusted and
untrusted, and policies that isolate these domains on file system and default Linux IPC level.
Upon installation of a new application, the UID of the new application is inserted into either one
of those domains (steps 10a and 10b in Figure 5.8). A third domain for system apps is accessible
by both the trusted and untrusted domains.

By default, TrustDroid denies all untrusted applications network communication to local
addresses on the phone and the Policy Manager instructs the FW Manager to enforce this isolation
also for newly installed untrusted applications (step 11 in Figure 5.8). Thus, any local network
communication between trusted apps is isolated from untrusted apps.

A particular technical challenge was the adaption of the TOMOYO Linux user-space pro-
grams, in order to be able to maintain the TOMOYO Linux policies locally on the device. Recent
documentation for TOMOYO Linux on the Android emulator describes the policy administra-
tion from a remote host instead of locally on the device and thus required certain adaption for
TrustDroid.

Although TOMOYO Linux in version 1.8 provides MAC for Internet sockets as well, thus
the means to exclude applications with fine-grained policies (e.g., UID, port or IP address) from
Internet access, we opted for netfilter for two major reasons: 1) Unexpectedly denying access to
sockets is much more likely to crash affected applications, in contrast to simply blocking the
outgoing traffic and thus faking a disabled network connection; 2) netfilter provides much more
flexibility than simply access control, e.g., manipulating or tagging network traffic for advanced
security infrastructures such as TVDs or security proxies.

An alternative building block to TOMOYO Linux would be SELinux, which is based on
extended file attributes and thus provides a more intuitive solution for domain isolation at the file
system level. On the other hand, it is more complex to administer than TOMOYO Linux and
requires modifications to the default Android file system, because the default file system does
not support extended file attributes.

Context-Awareness. A context in our current implementation is simply the definition of a
WiFi state and/or location. For instance, it could be the SSID of the wireless network, the MAC
address of the access point, a certain latitude/longitude range, or proximity to a certain location.

To implement the context-aware management of the netfilter rules (cf. Section 5.2.4), the
current Firewall Manager uses two state listeners – one for changes of the WiFi state and one for
updates on the location. The former is simply a receiver for notification broadcasts about the
changed Wifi state. The latter is an LocationListener thread registered at the LocationManager.
In case one of the two listeners is triggered, the new state is compared with the installed contexts
and the policies of any matched context are activated. The active policies of contexts that are not
fulfilled anymore are revoked.

Middleware Isolation. The implementation of the additional policy enforcement on ICC
is based on the XManDroid framework presented in [BDD+11a], which provides the neces-
sary hooks in the Android middleware to easily implement policy enforcement on direct ICC,
broadcast Intents, and channels via System Content Providers and Services.

7http://www.netfilter.org/
8http://tomoyo.sourceforge.jp/
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To prevent direct ICC between applications with different colors, we wrapped the check-
Permission function of the ActivityManager, which is called every time a new ICC channel
shall be established. If the default MAC of Android permits the new ICC, TrustDroid performs
an additional check to compare the colors of the caller and callee. On mismatch, the previous
decision is overruled and the ICC denied. To prevent data flow between different domains via
Broadcast Intents, our implementation is similar to [OMEM09] and implements hooks in the
broadcast management in the ActivityManager to filter out all receivers of a broadcast that do not
have the same color as the sender. As described in Section 5.2.4, we extended the interfaces of
System Content Providers, such as the Settings or Contacts, and of the System Services, such as
the Audio Manager, to color data upon write access and filter data/deny access upon read access.

Moreover, the PackageManagerService allows applications to iterate over the information of
installed packages, e.g., to find a specific application that might provide supplementary services.
In TrustDroid we extended this functionality with additional filters, such that applications can
only receive a list of and information about applications of the same color or about system
applications.

Evaluation

We evaluated the performance overhead and memory footprint of our extensions to the mid-
dleware with 50 apps from the Android Market, categorized in two domains (plus one domain
for system apps). On average our additional policy enforcement on ICC added 0.170ms to the
decision process on whether or not an ICC is allowed (default Android requires on average
0.184ms). The standard deviation in this case was 1.910ms, caused by high system-load due to
heavy multi-threading during some measurements. The verification of the RIM certificate during
the installation of new packages required on average 869.750ms with a standard deviation of
645.313ms. The average memory footprint of our extensions to the Android system server was
348.2 KB with a standard deviation of 200.8 KB, which is comparatively small to the default
footprint of approximately 2 MB.

In our prototype implementation, the policy file of TOMOYO consumes on average a little
more than 200 KB of memory. The policy file includes access control rules for file system and
standard IPC mechanisms e.g. communication based on Unix domain sockets.

5.2.6 Discussion
In this section we discuss the security of TrustDroid and highlight possible extensions.

Security Considerations

The main goal of TrustDroid is to provide an efficient and practical means to enforce domain
isolation on Android. In particular, TrustDroid isolates applications by their respective trust
levels, meaning that applications have no means to communicate with each other if their trust
levels mismatch. Our requirement of access control is achieved by including certificates into
an application package. Further, to control as many communication channels as possible,
TrustDroid targets different layers of the Android software stack. First, IPC traffic (in the
middleware and the kernel) is completely mediated by TrustDroid and is target to domain
policies. Hence, malicious applications cannot use interfaces of applications belonging to other
domains, even if the interfaces are exposed as public. Thereby TrustDroid prevents privilege
escalation attacks from affecting other domains. Second, TrustDroid prevents unauthorized

TClouds D2.1.2 Page 73 of 138



D2.1.2 – Preliminary Description of Mechanisms and Components for
Single Trusted Clouds

data access, by performing fine-grained data filtering on application data and data stored in
common databases (SMS, Contacts, etc.). In particular, this prevents malicious applications
from reading data of the corporate domain, as long as the malicious application has not been
issued by the enterprise itself, which is excluded in our Adversary Model (cf. Section 5.2.3).
Third, TrustDroid successfully mitigates the impact of kernel-exploits, because our TOMOYO
policies prevent an adversary from accessing files of another domain. Finally, communication
over socket connections are constrained to the domain boundary.

Although our approach is lightweight and practical, it does not provide the same degree of
isolation as full-virtualization would do. In particular, TrustDroid only mitigates kernel-level
attacks by restricting access to the file-system, but in general, it cannot prevent an adversary from
compromising the Trusted Computing Base (TCB), which for TrustDroid includes the underlying
Linux kernel and the Android middleware (see Section 5.2.3). In practice, static integrity of the
TCB can be insured by means of secure boot. However, the TCB is still vulnerable to runtime
attacks subsequent to a secure boot. Solving this problem is orthogonal to the solution presented
in this section.

The primary cause for runtime attacks on Android is the deployment of native code (shared
C/C++ libraries) [Obe10]. Although Android applications are written in Java, a type-safe
language, the application developers may also include (custom) native libraries via the Java
Native Interface (JNI). Moreover, many native system libraries are mapped by default to the
program memory space.

A straightforward countermeasure against native code attacks would be to prohibit the
installation of applications that include native code. However, this is rather over restrictive and,
similar to prohibiting any non-corporate app (cf. Section 5.2.3), contradicts the actual purpose of
smartphones or might even tempt the phone user to break the security mechanisms in place.

Another approach to address native code attacks is Native Client [SMB+10], which provides
an isolated sandbox for native code. However, this solution requires the recompilation of all
available applications that contain native code.

Moreover, as argued and shown in [ZSA10], mandatory access control can also be efficiently
deployed on mobile platforms to enforce isolation for the complete Linux kernel. We consider
this as a valuable extension to TrustDroid to mitigate kernel attacks, which could easily be
integrated in TrustDroid, since a kernel-level MAC mechanism is already a building block of our
design (see Section 5.2.4).

Finally, TrustDroid uses a separate, accessible domain for system applications and services,
which is due to the fact that all applications require these system apps to work correctly. If an
adversary identifies a vulnerability in one of these applications, he may potentially circumvent
domain isolation and access data not belonging to his domain. However, until today, vulnera-
bilities of system applications were constrained to confused deputy attacks and did not allow
an adversary to access sensitive data [FWM+11]. Protecting system applications and services
from being exploited is orthogonal to harden the kernel, and we aim to consider this in our future
work. Alternatively, one could deploy apps in the trusted domain which offer the functionality of
certain system apps (e.g., business contacts app or enterprise browser; cf. [ent]) and isolate the
now redundant system apps by classifying them as untrusted.

Trusted Computing

Our TrustDroid design leans towards possible extensions with Trusted Computing functionality.
Currently, we leverage a Mobile Trusted Module (MTM) to validate application installation

packages and to determine their color. The features of the employed RIM certificates in contrast
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to established certification standards such as X.509 provide the means for an enhanced life-cycle
management based on monotonic counters and the platform state, e.g., version rollback preven-
tion. The current implementation of our MTM is simple, but more sophisticated approaches may
be integrated into our current design [EB09, Win08, ZAS07].

Moreover, our design includes the fundamentals for the integration of Trusted Computing
Group (TCG) mechanisms such as the attestation of the domains [NKZS10], e.g., in the context
of Trusted Network Connect [Tru09], or the isolation of network traffic for infrastructures like
Trusted Virtual Domains [DEK+09].

5.2.7 Related work

In this section we provide an overview of related work with respect to the establishment of
domains and policy enforcement on Android.

Virtualization

A “classical” approach from the desktop/server area to establish isolated domains on the same
platform is based on virtualization technologies. This approach has been ported to the mobile
area [Ope, BBD+10, SSFG10]. Although virtualization provides strong isolation, it duplicates
the entire Android software stack, which renders those approaches quite heavy-weight in consid-
eration of the scarce battery life of smartphones. Possible approaches to mitigate this problem
could be the automatic hibernation of VMs currently not displayed to the user or the applica-
tion of a just-enough-OS/Middleware to minimize the resident memory footprint of domains.
However, currently available mobile virtualization technology does not provide these features.
In contrast, our solution is more lightweight, since the creation of a new domain simply requires
the definition of a new string value and deployment of a new MTM verification key. Moreover,
from our past experience with mobile virtualization technology [DDKW11], we conclude that
our solution is more practical in the sense that it is more portable to new hardware, because
we can re-use the provided proprietary hardware drivers, while virtualization requires new (re-
implemented) drivers or an additional driver-domain that multiplexes the hardware between the
VMs (e.g., dom0 in Xen [HSH+08]).

Kernel-level Mandatory Access Control

Another well established mechanism, that is now being ported to the Android platform, is kernel-
level mandatory access control like SELinux or TOMOYO [SFE10, DT]. These mechanisms
allow, e.g., policy enforcement on processes, the file system, sockets, or IPC. In SEIP [ZSA10],
SELinux was used to establish trusted and untrusted domains on the LiMo platform in order to
protect the platform integrity against malicious third party software. The work further shows
how unique features of mobile devices can be leveraged to identify the borderline between
trusted/untrusted domains and to simplify the policy specification, while maintaining a high
level of platform integrity. The authors of [RJ09] show how policies in the context of multiple
mobile platform stakeholders can be created dynamically and present a prototype based on
SELinux. Low-level mandatory access control is an essential building block in our design
(see Section 5.2.4). However, it is insufficient for isolating domains because it does not consider
the Android middleware system components, such as System Content Providers/Services or
Broadcast Intents, as communication channels between domains (see Section 5.2.3). Without
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high-level policy enforcement in the middleware, low-level MAC mechanisms can only grant/-
deny applications the access to System Content Providers and Services as a whole. However,
generally denying an app access to system components most likely crashes this app or at least ren-
ders it dysfunctional. Moreover, although these mechanisms allow to some extend fine-grained
access control policies on the network, they do not support the manipulation of network packets
like netfilter does (cf. Section 5.2.4). Nevertheless, the approach of [ZSA10] could enhance the
integrity protection of our TCB (see Section 5.2.6).

Android Security Extensions

In the last few years, a number of security extensions to the Android security mechanisms have
been introduced [CNC10, NKZ10, OBM10, EOM09a, EGC+10, BDD+11a]. Based on very
similar incentives to TrustDroid, Porscha proposes a DRM mechanism to enforce access control
on specifically tagged data, such as SMS, on the phone. However, this approach is limited to
isolate data assets, but is not suitable to isolate particular (sets of) apps.

Similarly, the TaintDroid framework [EGC+10] tracks the propagation of tainted data from
sensible sources (in program variables, files, and IPC) on the phone and detects unauthorized
leakage of this data. However, it is limited to tracking data flows and does not consider control
flows. Moreover, it does not enforce policies to prevent illegal data flows, but notifies the user
in case an illegal flow was discovered. Nevertheless, TaintDroid could form a very valuable
building block in our TrustDroid design to isolate data assets, if it would be extended with policy
enforcement.

Both APEX [NKZ10] and CRePE [CNC10] focus on enabling and disabling functionalities
and enforcing runtime constraints. While APEX provides the user with the means to selectively
choose the permissions and runtime constraints (e.g., limited number of text messages per day)
each application has, CRePE enables the enforcement of context-related policies of the user or
a third party (e.g., disabling bluetooth discovery). In this sense, both are related to our design
goal to isolate untrusted applications based on the context (cf. Section 5.2.4) or protect data
assets in shared resources like System Content Providers. However, the enforcement described
in [NKZ10] and [CNC10] is too coarse-grained. For instance, networking would be disabled for
all applications, not just particular ones, or not only the access to certain data but to the entire
Content Provider would be denied to selected applications.

Saint [OMEM09] introduces a fine-grained, context-aware access control model to enable
developers to install policies to protect the interfaces of their apps. Although Saint could, with a
corresponding system centric policy, provide the isolation of apps on direct and broadcast ICC,
it can not prevent indirect communication via System Components (see Section 5.2.4).

XManDroid [BDD+11a] addresses the problem of ICC-based privilege escalation by col-
luding apps and is also able to enforce policies on ICC channels via System Components. The
XManDroid framework formed the basis for our TrustDroid implementation, but had to be
extended to enable application coloring and mapping of policies for domain isolation from the
middleware onto the network and kernel level.

In general, none of these extensions provides any policy enforcement on the file system,
IPC, or local Internet socket connections in order to enforce isolation of domains. However,
TaintDroid with its data flow tracking mechanism has the potential to implement fine-grained
policy enforcement.
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5.2.8 Conclusion
Existing smartphone operating systems, such as Google Android, provide no data and application
isolation between domains of different trust levels. In particular, there exists no efficient solution
to isolate corporate and private applications and data on Android: the existing security extensions
for Android only focus on one specific layer of the Android software stack, and hence, do not
provide a general and system-wide solution for isolation.

In this section we present TrustDroid, a framework which provides practical and lightweight
domain isolation on Android, i.e., it does not affect the battery life-time significantly, requires no
duplication of Android’s software stack, and supports a large number of domains. In contrast to
existing security extensions, TrustDroid enforces isolation on many abstraction layers: (1) in
the middleware and kernel layer to constrain IPC traffic to a single domain, and to enforce data
filtering for common databases such as Contacts, (2) at the kernel layer by enforcing mandatory
access control on the file system, and (3) at the network layer to regulate network traffic,
e.g., denying Internet access by untrusted applications while the employee is connected to the
corporate network. Our evaluation results demonstrate that our solution adds a negligible runtime
overhead, and in contrast to contemporary virtualization-based approaches [Ope, BBD+10], only
minimally affects the battery’s life-time.

We also provide a detailed discussion on the design of TrustDroid and argue that TrustDroid
can be used as a foundation for Trusted Computing enhanced concepts such as Trusted Virtual
Domains (TVD), a distributed isolation concept known from the desktop world. In our future
work, we aim to adopt domain isolation on the underlying Linux kernel so that an adversary can
no longer exploit kernel vulnerabilities to circumvent domain isolation.
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Chapter 6

Initialization and Update Mechanisms for
TrustedServer

Chapter Authors:
Alexander Kasper (SRX)

In this chapter we describe the initialization and update mechanisms for a TrustedServer as
introduced in Deliverables D2.1.2 Chapter 12 and D2.4.2 Section 7.5. The TrustedServer is
managed solely by the TrustedObjects Manager (TOM) which communicates securely via the
TrustedChannel. Trusted Computing technology is employed to secure the communication and
to guarantee integrity of the TrustedServer. During initialization the TrustedServer is bound to a
dedicated TOM which thenafter is responsible for the complete management and maintainence
of the TrustedServer including updates. In this architecture there is no need for manual adminis-
tration of the TrustedServer and thus no need for an elevated root account for an administrator of
the TrustedServer. The only administration port is via the TrustedChannel to the TOM and is
completely automated. Hence this architecture provides a novel trustmodel suitable for cloud
computing. The (remote) administrator of the cloud infrastructure no longer has to be trusted, as
she has no privileges on a TrustedServer.

6.1 Introduction to Initilization
The target of initialization is to configure the hardware to meet the requirements of a Trusted-
Server. The initialization is split up into the configuration of the BIOS or any other initial system,
TPM (Trusted Platform Module) initialization which includes taking the ownership, preparation
of the blockdevice which holds the OS, the installation of valid Platform Configuration Register
(PCR) certificates and the initial connection to a TrustedObjects Manager (TOM) (cf. Deliverable
D2.4.1 Section 9.2), the management component. In this first section we describe how these
separate phases lead to a trustworthy server. The later sections provide some technical details
how to achieve those targets and give some examples with reasonable defaults for the necessary
tools. The last sections describe an update system to be able to update the TrustedServer without
the need for reinstallation.

6.2 Initilization
To install a TrustedServer the TPM must be activated and support for hardware virtualization
must be enabled. The TPM is used to seal the blockdevice. If Intel TXT is enabled it can be
used to establish a Dynamic Root of Trust Measurement. Currently (June 2012) most systems
run a BIOS to initialize the hardware. If an Unified Extensible Firmware Interface (UEFI) is
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used appropriate actions must be performed to activate the needed components. Trusted boot
is designed to establish a trusted bootchain where no secure bootchain is possible. The secure
boot technology, which is part of the UEFI specification, can enforce a specific secure bootchain.
Durring a secure boot the signature of every binary executed durring boot is verified agains a CA
before the control of the bootprocess is handed over to the binary. In a trusted boot environment
the binary executed durring boot are measured. As one of the final commands the TPM decrypts
the harddisc decryptionkey if the measured values matches predefined values.

During the setup of a TrustedServer three blockdevices are necessary. The first blockdevice
provides storage for the configuration of the bootloader and holds any additional stages needed
by the bootloaderchain. The second blockdevice holds the kernel of the operating system and a
minimal OS, or in general the code which is executed to start and run the TrustedServer OS. The
minimal system is used to unseal the third blockdevice. The third blockdevice holds the entire
system which is furthermore separated into three sections. Those sections are configuration,
operating system and compartment data (see Figure 6.1)

Figure 6.1: High-Level disk layout of a TrustedServer

The TrustedServer generates an unique update-, identity- and a TLS-keys. The identity key
is used for remote attestation. The TLS-key is used to generate TLS-client certificates which
are signed with the identity key. The update key is used to decrypt updates for the operation
system. The public parts of the update key and the identity key are transmitted to the TOM.
Finaly PCR-Certificates - which are signed by a configuration CA - must be provided by the
initialization process. On the lower level the Trusted Server is managed by a dedicated system
account. This system account is not able to login via remote or local terminal sessions. No
user or admin account must have the possibility to login to the Trusted Server. The only way to
manage and administrate the Trusted Server is via TOM.
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6.3 HDD Layout
To provide different blockdevices to the kernel we structure the harddrive disk (HDD) into
partitions. Every HDD in a TrustedServer does have three partitions. The partition table layout
follows the MS-DOS layout. It is also possible to use the GPT layout of the EFI-Specification.
The MS-DOS partion table layout limits the accessible storage to 2 terrabytes. The unit used
to describe size or offset of a partition is megabytes. One megabyte can be expressed as 2048
blocks of 512 bytes or as 256 blocks of 4096 bytes. Using one megabyte as smallest unit leads
to the opportunity to treat drives with different physical blocksizes equally. The first partition
must start at megabyte 1. The offset of 1 megabyte from the beginning of the HDD is needed to
provide some storage for the first stage of the bootloader. To install the MS-DOS partition layout
the following command can be use.

parted /dev/sda mktable msdos

For a GPT layout one can use

parted /dev/sda mktable gpt

6.3.1 Bootloader partition
The bootloader partition holds the configuration and the second stage of the bootloader and is
expected to change not very frequently. The bootloader partition can be small. This partition is
not needed during normal operation of the TrustedServer. The filesystem on this partition can be
very simple. There is no need for filesystem features like journaling, de-duplication or access
control mechanisms For creating the bootpartition we use following commands.

parted -a optimal -s /dev/sda mkpart primary 1 11

It is also necessary to set the bootflag for this partition.

parted -a optimal -s /dev/sda set 1 boot on

The kernel must be informed to reread the partition table.

sfdisk --re-read /dev/sda

Finally we need to create a filesystem on that new partition.

mkfs.ext2 /dev/sda1

6.3.2 Init partition
The “Init” partition holds a minimal initial system and the kernel which is used during the
runtime of the TrustedServer. This separation from the bootloader is used to establish some
advanced full disc encryption technologies and to seal and unseal the third partition. The “Init”
partition with kernel and initrd must be referenced by the configuration of the bootloader. The
filesystem on this partition can be very simple - eg without journaling, without deduplication and
even without any access control mechanism. The setup of that partition can be established with
the following comandlines.

parted -a optimal -s /dev/sda mkpart primary 11 111
sfdisk --re-read /dev/sda
mkfs.ext2 /dev/sda2

This creates an 100 megabyte partition right after the boot partition.
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6.4 HDD Encryption (FDE)

The third partition is entirely encrypted on blockdevice level. But it is also necessary to separate
firmware - e.g. the operating system - the configuration and the compartment data. To achieve
this logical volumes inside the encrypted partition are used. The entire remaining free space is
used for the last partition.

parted /dev/sda unit MB print free

Shows the remaining free size, in our example the remaining of a 160GB blockdevice.

parted -a optimal -s /dev/sda mkpart primary 111 161900

This final partition is encrypted on blockdevice level. For the encryption AES with a keysize of
128Bits in XTS mode is used. 1 2. The plaintext keyfile is generated via a cryptographic secure
random number generator. The random number generator from the TPM can be used.

cryptsetup luksFormat /dev/sda3 \
-c aes-xts-plain \
-s 256 \
--key-file=keyfile.plaintext

In the second step this encrypted partition is opened to have access to the plaintext data.

cryptsetup luksOpen /dev/sda3 crturaya --key-file=keyfile.plaintext

This creates a new blockdevice /dev/mapper/crturaya. To provide a different blockdevice
which resists inside the encrypted blockdevice, LVM in version two or higher is used. As
mentioned before three blockdevices inside the encrypted container are needed. A volumegroup
containing those three volumes resp blockdevices needs to be create. First it is necessary to mark
the encrypted partition as a physical member of a volumegroup.

pvcreate /dev/mapper/crturaya

Now the initialization of the volumegroup takes place.

vgcreate vgturaya /dev/mapper/crturaya

The needed logical volumes are created as follows

lvcreate -n ROOT -L 10G vgturaya lvcreate -n CONFIG -L 10G vgturaya
lvcreate -n COMP -l 100%FREE vgturaya

1Finally, in January, 2010, NIST added XTS-AES in SP800-38E, recommendation for block cipher modes of
operation: The XTS-AES mode for confidentiality on storage devices; The XTS-AES mode was not designed for
other purposes, such as the encryption of data in transit.

2Luks was choosen because of the following provided features: compatiblity via standardization (TKS1 - An
anti-forensic, two level, and iterated key setup scheme), secure against low entropy attacks, support for multiple
keys, effective passphrase revocation
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The requirements for the filesystems of the running system are higher then those of the boot
process due to the contiguous access. Journaling is used to recover the system from a power lost.
Access control is needed to further limit permissions to certain systemusers. Whereby the core
permissions are enforced via SELinux. SELinux stores policies in the extended attributes of the
filesystem. There are many filesystems available which supports all three features, but the linux
ext4 filesystem was used for longterm support. Interresting features not provided by ext4 are
transparent de-duplication on blocklevel and transparent compression of files. But these features
are only needed for the compartment aka userdata partition. So it is possible to use Btrfs in the
future.

mkfs.ext4 /dev/mapper/vgturaya-ROOT
mkfs.ext4 /dev/mapper/vgturaya-CONFIG
mkfs.ext4 /dev/mapper/vgturaya-COMP

6.5 TPM initialization
The sealing process relies on an inialized Trusted Platform Module. The TPM must be enabled,
active and unhidden in the BIOS. It should not be possible to reset the TPM from inside the OS.
As part of the initialization process of the TrustedServer it is assumed, that ownership of the TPM
is taken. Furthermore a storage root key (SRK) must be create inside the TPM. The NVRAM
should be empty. An attestation identity key is installed inside the NVRAM to remotely identify
the TrustedServer. A not cryptographical secure representation of the AIK is the serial number
of the TrustedServer.

6.6 Public Key Infrastructure (PKI)
The Public Key Infrastructure ensures that only a valid chain of trust can be establish. From a
root CA the intermediate CA is derived. This intermediate CA is signed by the root CA and
is called configuration CA. The platform certificates (see below) are verified against the root
CA. As a side effect it is possible to reflect different continuous integration states with different
intermediate CAs.

6.7 Platform Configuration Certificates
Platform configuration certificates are kept in extensions of the X509 structure. Those extensions
are identified by OIDs. The private part of the certificates are not needed since those certificates
will never be used to encrypt anything. Only the configuration and the signature will be verified.
Different stages of the bootprocess are kept in different configuration certificates. The four
different PCR certificates are needed for the core root of trust for measurement (CRTM), the
hardware configuration, the bootloader and the operating system. As an example consider the
following. The certificate for the CRTM includes the value of platform configuration register
with index zero. It also includes the type “crtm” as an integer encoding. To establish a chain of
trust the successor type “hardware” and the desired pcr index values 1, 2, 3 are included. See
Figure 6.2 for a common configuration.
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NAME TYPE MASTER HASH E.TYPE E.DEST

CRTM 0 sha1(PCR0) 1 1,2,3
Hardware 1 sha1(PCR1 + PCR2 + PCR3) 2 4,8,9,12
Bootloader 2 sha1(PCR4 + PCR8 + PCR9 + PCR12) 3 14
Operating System 3 sha1(PCR14)

Figure 6.2: CoData to be included in the client certificate for Key-Based TLS

It is also possible to setup a more complex PCR configuration chain as shown in Figure 6.3.

PCR Certificate

     Type: 2

     Value: 0x00 0x01 ... 0x13 

     Extends: <3>

     ExtendDest: <<15>>

PCR Certificate

     Type: 1

     Value: 0x00 0x01 ... 0x13 

     Extends: <2>

     ExtendDest: <<13,14>>

PCR Certificate

     Type: 1

     Value: 0x00 0x01 ... 0x13 

     Extends: <4,5>

     ExtendDest: <<13>,<14>>

PCR Certificate

     Type: 5

     Value: 0x00 0x01 ... 0x13 

     Extends: <3>

     ExtendDest: <<15>>

PCR Certificate

     Type: 4

     Value: 0x00 0x01 ... 0x13 

PCR Certificate

     Type: 0

     Value: 0x00 0x01 ... 0x13 

     Extends: <1>

     ExtendDest: <<9,10>>

PCR Certificate

     Type: 3

     Value: 0x00 0x01 ... 0x13 

PCR Certificate

     Type: 0

     Value: 0x00 0x01 ... 0x13 

     Extends: <1>

     ExtendDest: <<9,10>>

PCR Certificate

     Type: 3

     Value: 0x00 0x01 ... 0x13

Figure 6.3: Two example PCR chains

With those platform certificates, a trusted boot and remote attestation, which takes place
durring every connection attempt of the TrustedChannel to the TrustedObjectManager the
trusted boot is directly linked to the TrustedChannel. For instance if the CRTM is changed
the TrustedChannel can no longer be established since the TPM quote does no match the
certificates. The certificates can not be altered under the assumption that it is hard to find a
collision for the signed certificate.
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TYPE DESCRIPTION

live Perform a live measurement (the PCR as it is at the time of sealing)
file Measure the file given by the filename parameter (optional params offset

and length)
mbr Measure the MBR of the given block device
luks Measure the LUKS Master Digest of the given block device or container
static Specify the measurement value statically as a hash - This value will be

extended eg sha1(oldpcr + hexvalue)
evsep Measure an event separator (constant string 0xFF 0xFF 0xFF 0xFF)
evcall19h Measure a call INT 19h event (constant string "Calling INT 19h")
evret19h Measure an event separator (constant string "Returned INT 19h")
fixed assumes the measurement and extensions has been performed elseware -

this value is to be expected in the PCR

Table 6.1: Options for sealing configuration

# pcrIndex measurementType measurementParameters (optional)
0 live
17 fixed ffffffffffffffffffffffffffffffffffffffff
4 mbr /dev/sda
10 file tests/testFile1
14 static 924e1ffd32bb1d4761ae653934c700d430f53713
15 evcall19h
15 evsep
15 evret19h

Figure 6.4: Configuration example 1 for sealing

6.8 Key sealing
The TrustedServer is able to operate without an established connection to a TrustedObjectMan-
ager for an accurately defined time. To enforce this operation window it must be ensured the
TrustedServer was booted with a proper TrustedBoot. To enforce the TrustedBoot the HDD
encryption key is sealed (see TPM 1.2 Specifications) against every PCR register specified in the
PCR certificate chain (see above) plus the luks header of the encrypted partition (cf. section 6.4).
Since the size for the sealed data is bound to the size of the SRK it is necessary to define a
key encryption key (KeK). This KeK is used to encrypt the HDD encryption key. So the HDD
encryption key is not limited in size. The KeK encrypts the HDD encryption key with AES128
in CBC mode. The PCR-values are partly measured during the sealing of the KeK and partly
precomputed. It is possible to precompute every needed pcr-value but different hardware vendors
are using different optional roms to initialize hardware. Those optional roms are messuared
durring the boot process. To reflect this behavior the sealing process needs some configuration
which is done in a configuration file. The table Table 6.1 shows all supported options while
Figure 6.4 and Figure 6.5 provide some example configurations.

6.9 Updatekey and Updates
The updatekey is generated during the initialization but before the initial first contact to a
TrustedObjectManager (TOM). The key is generated by the TPM and marked as a legacy key.
During the first contact to the TOM this key is transfered via the TrustedChannel (cf. Deliverable
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0 live
1 live
2 live
3 live
4 static 95abfad66465021b58258c6171e4c0e174faa64b
4 evsep
4 evret19h
4 mbr /dev/sda
8 file /boot/grub/stage2 0 512
9 file /boot/grub/stage2 512
12 grubcfg /boot/grub/menu.cfg
14 file /boot/kernel.img
14 file /boot/initrd.img
15 luks /dev/sda3

Figure 6.5: Configuration example 2 for sealing

2.4.1 Section 9.3) to the TOM. Any incremental update is encrypted with a masterkey which
is unique for one update. To apply an update to a specific TrustedServer the masterkey for the
update is encrypted with the updatekey of the specific TrustedServer.

6.10 Attestation and Identity Key

This section is dedicated to describe the initial setup of the Trusted Channel which also provides
remote attestation. In this authentication mode, the client has an attestation identity key (AIK)
which is an identity keypair K = (pK, sK). The secret key sK resides within a TPM and
can be used for remote attestation and key certification. The public key pK is well known.
Furthermore, the client has a TLS keypair TK = (pTK, sTK). The secret key sTK also resides
in the TPM. This keypair can be generated on-the-fly or kept statically and is not known to the
server beforehand.

Prior to any communication between the server and the client, the serial number (or fin-
gerprint) S of the public key pK must be authorized within the server (e.g. through a system
administrator).

Once this step is complete, the serial number S and hence the keypair (pK, sK) is considered
trustworthy by the server. Furthermore, the client has a list of certificate chains that are trusted
for signing server certificates .

With these prerequisites, mutual authentication can be achieved with standard TLS using
client and server certificates.

In the following, the different steps of the TLS handshake are explained in detail.

(1) Client/Server Hello To establish a connection between the client and the server, the client
first issues a TLS Client Hello to the server. The server responds with a TLS Server Hello.
By the TLS specification, both messages contain a certain amount of random data (28 byte
randomness + 4 byte timestamp). By nonceS we denote certain amount of bits (at least
160) of the randomness included in the server hello message.

(2) Server Authentication The server sends its certificate to the client, including the server
public key pKS . This certificate is signed by a trusted authority and can hence be validated
by the client. Furthermore, the server sends the ServerKeyExchange message, which in
general contains all necessary parameters for a key exchange. In our case, we perform the
key exchange using RSA and this message contains the necessary RSA parameters (e.g.
modulus, exponent). This message is signed by the server.
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(3) Client Authentication The server now requests a certificate from the client for authentica-
tion. At this point, the client obtains the secondary keypair TK = (pTK, sTK) residing
in the TPM and constructs an X509 certificate, including the information as described in
table Figure 6.6. The certificate is self-signed.

(4) Handshake Completion In order to complete the handshake, the client must now encrypt a
pre-master secret using pKS and send it to the server. After the handshake is completed,
both parties can use this to derive the master secret. Finally, the client sends the Cer-
tificateVerify message. This message contains a signature over all previous handshake
messages and is performed using sTK. The client performs this message both to prove
that it possesses the secret key that matches the public key shown in the client certificate
and to ensure the integrity of all previous client messages.

Information Purpose
Public Key pTK Public key of X509 Certificate S (signing)
Public Key Info/Signature
ci(pK, pTK)

Certification for pTK by pK (key authentication)

Public Key pK Allow the server to derive the serial number S (identity)

Trusted Version Information
Allow the server to validate our configuration during remote
attestation (PCRs)

Actual Version Information
Provide the server with information about current configuration
(PCRs) (remote attestation).

nonceS
The nonce that is used during the handshake and for quote
(informative, additional replay protection)

sign(sTK,
Hash(ClientCertificate))

Prove that the certificate originates from the client and was not
altered (part of X509, integrity)

Figure 6.6: Data to be included in the client certificate for Key-Based TLS

By ci(pK, pTK) we denote the output of a TPM_CertifyKey call to authenticate the key
pTK through the known TPM key pK. Without this call, there is would be no binding between
these two keys and no assurance that the key pTK is really in possession of the client.

Inclusion of remote attestation specific data (Trusted/Actual Version Information) is optional.
The server may enforce the presence of this data for certain types of clients (e.g. appliances).

The presence of the nonceS within the client certificate makes the whole certificate unique
for this session and prevents replay attacks on the certificate .
Important: The primary keypair K = (pK, sK) must be an attestation identity key (AIK). If a
TPM_SS_RSASSAPKCS1v15_SHA1 signing key would be in use, the attacker could fake the
output of TPM_Quote using this key, as there is no way to distinguish the output of TPM_Sign
and TPM_Quote with this key type.

The whole process is also depicted in Figure 6.7 for an appliance that also performs remote
attestation.
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Figure 6.7: Sequence diagram for a successful key-based authentication
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One of the main reasons why Byzantine fault-tolerant (BFT) systems are not widely used lies
in their high resource consumption: 3f+1 replicas are necessary to tolerate only f faults. Recent
works have been able to reduce the minimum number of replicas to 2f + 1 by relying on a trusted
subsystem that prevents a replica from making conflicting statements to other replicas without
being detected. Nevertheless, having been designed with the focus on fault handling, these
systems still employ a majority of replicas during normal-case operation for seemingly redundant
work. Furthermore, the trusted subsystems available trade off performance for security; that is,
they either achieve high throughput or they come with a small trusted computing base.

In this chapter we present CheapBFT, a BFT system that, for the first time, tolerates that
all but one of the replicas active in normal-case operation become faulty. CheapBFT runs a
composite agreement protocol and exploits passive replication to save resources; in the absence
of faults, it requires that only f + 1 replicas actively agree on client requests and execute them.
In case of suspected faulty behavior, CheapBFT triggers a transition protocol that activates
f extra passive replicas and brings all non-faulty replicas into a consistent state again. This
approach, for example, allows the system to safely switch to another, more resilient agreement
protocol. CheapBFT relies on an FPGA-based trusted subsystem for the authentication of
protocol messages that provides high performance and comprises a small trusted computing
base.

7.1 Introduction
In an ongoing process, conventional computing infrastructure is increasingly replaced by services
accessible over the Internet. On the one hand, this development is convenient for both users and
providers as availability increases while provisioning costs decrease. On the other hand, it makes
our society more and more dependent on the well-functioning of these services, which becomes
evident when services fail or deliver faulty results to users.

Today, the fault-tolerance techniques applied in practice are almost solely dedicated to
handling crash-stop failures, for example, by employing replication. Apart from that, only
specific techniques are used to selectively address the most common or most severe non-crash
faults, for example, by using checksums to detect bit flips. In consequence, a wide spectrum of
threats remains largely unaddressed, including software bugs, spurious hardware errors, viruses,
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and intrusions. Handling such arbitrary faults in a generic fashion requires Byzantine fault
tolerance (BFT).

In the past, Byzantine fault-tolerant systems have mainly been considered of theoretical
interest. However, numerous research efforts in recent years have contributed to making BFT
systems practical: their performance has become much better [CL02, KD04, KAD+09, DK11],
the number of required replicas has been reduced [YMV+03, CNV04, WSV+11], and methods
for adding diversity and for realizing intrinsically different replicas with varying attack surfaces
have been introduced [Cac01, SZ05]. Therefore, a debate has been started lately on why, despite
all this progress, industry is reluctant to actually exploit the available research [CMW+08, KR09].
A key outcome of this debate is that economical reasons, mainly the systems’ high resource
demand, prevent current BFT systems from being widely used. Based on this assessment, our
work aims at building resource-efficient BFT systems.

Traditional BFT systems, like PBFT [CL02], require 3f + 1 replicas to tolerate up to f
faults. By separating request ordering (i. e., the agreement stage) from request processing (i. e.,
the execution stage), the number of execution replicas can be reduced to 2f + 1 [YMV+03].
Nevertheless, 3f + 1 replicas still need to take part in the agreement of requests. To further
decrease the number of replicas, systems with a hybrid fault model have been proposed that
consist of untrusted parts that may fail arbitrarily and trusted parts which are assumed to only fail
by crashing [CNV04, CMSK07, RK07, LDLM09, VCB+11, VCBL10, WSV+11]. Applying
this approach, virtualization-based BFT systems can be built that comprise only f + 1 execution
replicas [WSV+11]. Other systems [CNV04, CMSK07, VCB+11, VCBL10] make use of a
hybrid fault model to reduce the number of replicas at both stages to 2f + 1 by relying on a
trusted subsystem to prevent equivocation; that is, the ability of a replica to make conflicting
statements.

Although they reduce the provisioning costs for BFT, these state-of-the-art systems have
a major disadvantage: they either require a large trusted computing base, which includes the
complete virtualization layer [RK07, VCBL10, WSV+11], for example, or they rely on trusted
subsystems for authenticating messages, such as a trusted platform module (TPM) or a smart
card [LDLM09, VCB+11]. These subsystems impose a major performance bottleneck, however.
To address these issues, we present CheapBFT, a resource-efficient BFT system that relies on
a novel FPGA-based trusted subsystem called CASH. Our current implementation of CASH is
able to authenticate more than 17,500 messages per second and has a small trusted computing
base of only about 21,500 lines of code.

In addition, CheapBFT advances the state of the art in resource-efficient BFT systems by
running a composite agreement protocol that requires only f + 1 actively participating replicas
for agreeing on requests during normal-case operation. The agreement protocol of CheapBFT
consists of three subprotocols: the normal-case protocol CheapTiny, the transition protocol
CheapSwitch, and the fall-back protocol MinBFT [VCB+11]. During normal-case operation,
CheapTiny makes use of passive replication to save resources; it is the first Byzantine fault-
tolerant agreement protocol that requires only f + 1 active replicas. However, CheapTiny is
not able to tolerate faults, so that in case of suspected or detected faulty behavior of replicas,
CheapBFT runs CheapSwitch to bring all non-faulty replicas into a consistent state. Having
completed CheapSwitch, the replicas temporarily execute the MinBFT protocol, which involves
2f + 1 active replicas (i. e., it can tolerate up to f faults), before eventually switching back to
CheapTiny.
The particular contributions of this chapter are:

• To present and evaluate the CASH subsystem (Section 7.2). CASH prevents equivocation
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and is used by CheapBFT for message authentication and verification.

• To describe CheapBFT’s normal-case agreement protocol CheapTiny, which uses passive
replication to save resources (Section 7.4). CheapTiny works together with the novel
transition protocol CheapSwitch, which allows to abort CheapTiny in favor of a more
resilient protocol when faults have been suspected or detected (Section 7.5).

• To evaluate CheapBFT and related BFT systems with different workloads and a Byzantine
fault-tolerant variant of the ZooKeeper [HKJR10] coordination service (Section 7.7).

In addition, Section 7.3 provides an overview of CheapBFT and its system model. Section 7.6 out-
lines the integration of MinBFT [VCB+11]. Section 7.8 discusses design decisions, Section 7.9
presents related work, and Section 7.10 concludes.

7.2 Preventing Equivocation
Our proposal of a resource-efficient BFT system is based on a trusted subsystem that prevents
equivocation; that is, the ability of a node to make conflicting statements to different participants
in a distributed protocol. In this section, we give background information on why preventing
equivocation allows one to reduce the minimum number of replicas in a BFT system from 3f +1
to 2f + 1. Furthermore, we present and evaluate CheapBFT’s FPGA-based CASH subsystem
used for message authentication and verification.

7.2.1 From 3f + 1 Replicas to 2f + 1 Replicas
In traditional BFT protocols like PBFT [CL02], a dedicated replica, the leader, proposes the
order in which to execute requests. As a malicious leader may send conflicting proposals to
different replicas (equivocation), the protocol requires an additional communication round to
ensure that all non-faulty replicas act on the same proposal. In this round, each non-faulty
replica echoes the proposal it has received from the leader by broadcasting it to all other replicas,
enabling all non-faulty replicas to confirm the proposal.

In recent years, alternative solutions have been introduced to prevent equivocation, which
eliminate the need for the additional round of communication [VCB+11] and/or reduce the
minimum number of replicas in a BFT system from 3f + 1 to 2f + 1 [CMSK07, CNV04,
VCB+11]. Chun et al. [CMSK07], for example, present an attested append-only memory (A2M)
that provides a trusted log for recording the messages transmitted in a protocol. As every replica
may access the log independently to validate the messages, non-faulty replicas are able to detect
when a leader sends conflicting proposals.

Levin et al. [LDLM09] show that it is sufficient for a trusted subsystem to provide a mono-
tonically increasing counter. In their approach, the subsystem securely assigns a unique counter
value to each message and guarantees that it will never bind the same counter value to a different
message. Hence, when a replica receives a message, it can be sure that no other replica ever sees
a message with the same counter value but different content. As each non-faulty replica validates
that the sequence of counter values of messages received from another replica does not contain
gaps, malicious replicas cannot equivocate messages. Levin et al. used the trusted counter to
build A2M, from which a BFT system with 2f + 1 replicas has been realized.

We propose CheapBFT, a system with only f + 1 active replicas, built directly from the
trusted counter. In the following, we present the trusted counter service in CheapBFT.
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7.2.2 The CASH Subsystem
The CASH (Counter Assignment Service in Hardware) subsystem is used by CheapBFT for
message authentication and verification. To prevent equivocation, we require each replica to
comprise a trusted CASH subsystem; it is initialized with a secret key and uniquely identified
by a subsystem id, which corresponds to the replica that hosts the subsystem. The secret key is
shared among the subsystems of all replicas. Apart from the secret key, the internal state of a
subsystem as well as the algorithm used to authenticate messages may be known publicly.

For now, we assume that the secret key is manually installed before system startup. In a future
version, every CASH subsystem would maintain a private key and expose the corresponding
public key. A shared secret key for every protocol instance may be generated during initialization,
encrypted under the public key of every subsystem, and transported securely to every replica.

Trusted Counter Service

CASH prevents equivocation by issuing message certificates for protocol messages. A message
certificate is a cryptographically protected proof that a certain CASH instance has bound a unique
counter value to a message. It comprises the id of the subsystem that issued the certificate, the
counter value assigned, and a message authentication code (MAC) generated with the secret key.
Note that CASH only needs symmetric-key cryptographic operations for message authentication
and verification, which are much faster than public-key operations.

The basic version of CASH provides functions for creating (createMC) and verifying
(checkMC) message certificates (see Figure 7.1). When called with a messagem, the createMC
function increments the local counter and uses the secret key K to generate a MAC a covering
the local subsystem id S, the current counter value c, and the message (L. 7-8). The message
certificate mc is then created by appending S, c, and a (L. 9). To attest a certificate issued by
another subsystem s, the checkMC function verifies the certificate’s MAC and uses a function
isNext() to validate that the sequence of messages the local subsystem has received from
subsystem s contains no gaps (L. 14). Internally, the isNext() function keeps track of the
latest counter values of all subsystems and is therefore able to decide whether a counter value
cs assigned to a message is the next in line for subsystem s. If this is the case, the isNext()
function increments the counter corresponding to subsystem s and returns success; otherwise,
the counter remains unchanged.

To support distinct counter instances in a protocol and several concurrent protocols, the full
version of CASH supports multiple counters, each specified by a different counter name. All
counters to be used have to be provisioned during initialization. In the counter implementation,
the name becomes a part of the argument passed to the MAC for the creation and verification of
message certificates. In the remainder of this chapter, the counter name is written as a subscript
to CASH operations (e. g., createMCc for counter c).

Furthermore, CASH provides operations for verifying a certificate without checking the
correspondence of the counter values and without the side-effect of incrementing the counter in
isNext(); there are also administrative operations for reading the subsystem id, the configured
counter names, and the values of all internal counters. These operations are omitted from
Figure 7.1. There are no means for the host system to modify subsystem id, counter names, or
counter values after the initialization stage.

Implementation

We developed CASH to meet the following design goals:
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1 upon initialization do
2 K := secret key;
3 S := local subsystem id;
4 c := 0;

6 upon call createMC(m) do
7 c := c+ 1;
8 a := MAC(K,S‖c‖m);
9 mc := (S, c, a);

10 return mc;

12 upon call checkMC(mc,m) do
13 (s, cs, a) := mc;
14 if MAC(K, s‖cs‖m) = a and isNext(s, cs) do
15 return TRUE;
16 else
17 return FALSE;

Figure 7.1: Implementation of CASH’s trusted counter.

• Minimal trusted computing base: The code size of CASH must be small to reduce
the probability of program errors that could be exploited by attackers. Given its limited
functionality, there is no need to trust an entire (hardened) Linux kernel [CNV04] or
hypervisor [RK07].

• High performance: As every interaction between replicas involves authenticated mes-
sages, we require CASH to handle thousands of messages per second. Therefore, the use
of trusted platform modules or smart cards is not an option, as on such systems a single
authentication operation takes more than 100 milliseconds [LDLM09, VCB+11].

Our implementation of CASH is based on a commodity Xilinx Spartan-3 XC3S1500 FPGA
mounted on a dedicated PCI card. Both the program code and the secret key are stored on the
FPGA and cannot be accessed or modified by the operating system of the host machine. The
only way to reprogram the subsystem is by attaching an FPGA programmer, which requires
physical access to the machine.

As depicted in Figure 7.2, applications communicate with the FPGA via a character device
(i. e., /dev/cash). To authenticate a message, for example, the application first writes both a
CREATEMC op code and the message to the device, and then retrieves the message certificate as
soon it becomes available. Our current prototype uses an HMAC-SHA-256 for the authentication
of messages.

Integration with CheapBFT

In CheapBFT, replicas use the CASH subsystem to authenticate all messages intended for other
replicas. However, this does not apply to messages sent to clients, as those messages are not
subject to equivocation. To authenticate a message, a replica first calculates a hash of the message
and then passes the hash to CASH’s createMC function. Creating a message certificate for the
message hash instead of the full message increases the throughput of the subsystem, especially
for large messages, as less data has to be transferred to the FPGA. To verify a message received
from another replica, a replica calls the checkMC function of its local CASH instance, passing
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Figure 7.2: Creation of a message certificate mc for a message m using the FPGA-based trusted
CASH subsystem.

the message certificate received as well as a hash of the message. Note that, for simplicity, we
omit the use of this hash in the description of CheapBFT.

Performance Evaluation

We evaluate the performance of the CASH subsystem integrated with an 8-core machine (2.3 GHz,
8 GB RAM) and compare CASH with three other subsystems that provide the same service of
assigning counter values to messages:

• SoftLib is a library that performs message authentication and verification completely in
software. As it runs in the same process as the replica and therefore does not require any
additional communication, we consider its overhead to be minimal. Note, however, that
it is not feasible to use SoftLib in a BFT setting with 2f + 1 replicas because trusting
SoftLib would imply trusting the whole replica.

• SSL is a local OpenSSL server running in a separate process on the replica host. Like
SoftLib, we evaluate SSL only for comparison, as it would also not be safe to use this
subsystem in a BFT system with 2f + 1 replicas.

• VM-SSL is a variant of SSL, in which the OpenSSL server runs in a Xen domain on the
same host, similar to the approach used in [VCBL10]. Relying on VM-SSL requires one
to trust that the hypervisor enforces isolation.

In this experiment, we measure the time it takes each subsystem variant to create certificates
for messages of different sizes, which includes computing a SHA-256 hash (32 bytes) over a
message and then authenticating only the hash, not the full message (see Section 7.2.2). In
addition, we evaluate the verification of message certificates. Table 7.1 presents the results for
message authentication and verification for the four subsystems evaluated. The first set of values
excludes the computation of the message hash and only reports the times it takes the subsystems
to authenticate/verify a hash. With all four trusted counter service implementations only relying
on symmetric-key cryptographic operations, the results in Tables 7.0(a) and 7.0(b) show a similar
picture.

In the VM-SSL subsystem, the overhead for communication with the virtual machine domi-
nates the authentication process and leads to results of more than a millisecond, independent of
message size. Executing the same binary as VM-SSL but requiring only local socket communica-
tion, SSL achieves a performance in the microseconds range. In SoftLib, which does not involve
any inter-process communication, the processing time significantly increases with message size.
In our CASH subsystem, creating a certificate for a message hash takes 57 microseconds, which
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(a) Creation overhead for a certificate depending on
message size.

Subsystem Message size
32 B (no hashing) 32 B 1 KB 4 KB

VM-SSL 1013 1014 1015 1014
SSL 67 69 86 139
SoftLib 4 4 17 55
CASH 57 58 77 131

(b) Verification overhead for a certificate depending
on message size.

Subsystem Message size
32 B (no hashing) 32 B 1 KB 4 KB

VM-SSL 1013 1013 1013 1012
SSL 67 69 87 140
SoftLib 4 4 17 55
CASH 60 62 80 134

Table 7.1: Overhead (in microseconds) for creating and verifying a message certificate in different
subsystems.

is mainly due to the costs for communication with the FPGA. As a result, CASH is able to
authenticate more than 17,500 messages per second. Depending on the message size, computing
the hash adds up 1 to 74 microseconds per operation; however, as hash creation is done in
software, this can be done in parallel with the FPGA authenticating another message hash. The
results in Table 7.0(b) show that in CASH the verification of a certificate for a message hash
takes about 5% longer than its creation. This is due to the fact that in order to check a certificate,
the FPGA not only has to recompute the certificate but also needs to perform a comparison.

Note that we did not evaluate a subsystem based on a trusted platform module (TPM), as the
TPMs currently available only allow a single increment operation every 3.5 seconds to protect
their internal counter from burning out too soon [VCB+11]. A TPM implementation based on
reconfigurable hardware that could be adapted to overcome this issue did not reach the prototype
status due to hardware limitations [EGP+07]. Alternative implementations either perform
substantial parts in software, which makes them comparable to the software-based systems we
presented, or suffer from the same problems as commodity solutions [BCG+06, EL08].

Furthermore, we did not measure the performance of a smart-card-based subsystem: in [LDLM09],
Levin et al. report a single authentication operation with 3-DES to take 129 milliseconds, and
the verification operation to take 86 milliseconds using a smart card. This is orders of magnitude
slower than the performance of CASH.

Trusted Computing Base

Besides performance, the complexity of a trusted subsystem is crucial: the more complex a
subsystem, the more likely it is to fail in an arbitrary way, for example, due to an attacker
exploiting a vulnerability. In consequence, to justify the assumption of the subsystem being
trusted, it is essential to minimize its trusted computing base.

Table 7.2 outlines that the basic counter logic and the routines necessary to create and check
message certificates are similar in complexity for both SSL variants and CASH. However, the
software-based isolation and execution substrate for SSL and VM-SSL are clearly larger albeit
we use the conservative values presented by Steinberg and Kauer [SK10]. In contrast, the trusted
computing base of a TPM is rather small: based on the TPM emulator implementation of Strasser
and Stamer [SS08], we estimate its size to be about 20 KLOC, which is only slightly smaller
than the trusted computing base of CASH. For a smartcard-based solution, we assume similar
values for the counter logic and certificate handling as for CASH. In addition some runtime
support has to be accounted.

Going one step beyond approximating code complexity, it has to be noted that FPGAs, as
used by CASH, per se are less resilient to single event upsets (e. g., bit flips caused by radiation)
compared to dedicated hardware. However, fault-tolerance schemes can be applied that enable
the use of FPGAs even in the space and nuclear sector [SSC10]. Regarding code generation
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Subsystem Components KLOC Total
Linux 200.0

SSL Counter logic 0.3
Cryptographic functions 0.4 200.7

VM-SSL Virtualization 100.0 300.7
PCI core 18.5

CASH Counter logic 2.2
Cryptographic functions 0.8 21.5

Table 7.2: Size comparison of the trusted computing bases of different subsystems in thousands
of lines of code.

and the verifiability of code, similar tool chains can be used for CASH and building TPMs.
Accordingly, their trustworthiness should be comparable.

In summary, our CASH subsystem comprises a small trusted computing base, which is
comparable in size to the trusted computing base of a TPM, and similarly resilient to faults,
while providing a much higher performance than readily available TPM implementations (see
Section 7.2.2).

7.3 CheapBFT

This section presents our system model and gives an overview of the composite agreement
protocol used in CheapBFT to save resources during normal-case operation; the subprotocols are
detailed in Sections 7.4 to 7.6.

7.3.1 System Model
We assume the system model used for most BFT systems based on state-machine replica-
tion [CL02, YMV+03, KD04, KAD+09, VCBL09, VCB+11, VCBL10] according to which up
to f replicas and an unlimited number of clients may fail arbitrarily (i. e., exhibit Byzantine
faults). Every replica hosts a trusted CASH subsystem with its subsystem id set to the replica’s
identity. The trusted CASH subsystem may fail only by crashing and its key remains secret even
at Byzantine replicas. As discussed in Section 7.2.2, this implies that an attacker cannot gain
physical access to a replica. In accordance with other BFT systems, we assume that replicas only
process requests of authenticated clients and ignore any messages sent by other clients.

The network used for communication between clients and replicas may drop messages, delay
them, or deliver them out of order. However, for simplicity, we use the abstraction of FIFO
channels, assumed to be provided by a lower layer, in the description of the CheapBFT protocols.
For authenticating point-to-point messages where needed, the operations of CASH are invoked.
Our system is safe in an asynchronous environment; to guarantee liveness, we require the network
and processes to be partially synchronous.

7.3.2 Resource-efficient Replication
CheapBFT has been designed with a focus on saving resources. Compared with BFT systems
like PBFT [CL02, YMV+03, KD04, KAD+09, VCBL09], it achieves better resource efficiency
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Figure 7.3: CheapBFT architecture with two active replicas and a passive replica (f = 1) for
normal-case operation.

thanks to two major design changes: First, each CheapBFT replica has a small trusted CASH
subsystem that prevents equivocation (see Section 7.2); this not only allows us to reduce the
minimum number of replicas from 3f + 1 to 2f + 1 but also minimizes the number of protocol
messages [YMV+03, CNV04, CMSK07, LDLM09, VCB+11, VCBL10]. Second, CheapBFT
uses a composite agreement protocol that saves resources during normal-case operation by
supporting passive replication.

In traditional BFT systems [CL02, KD04, KAD+09, VCBL09], all (non-faulty) replicas
participate in both the agreement and the execution of requests. As recent work has shown [DK11,
WSV+11], in the absence of faults, it is sufficient to actually process a request on only f + 1
replicas as long as it is guaranteed that all other replicas are able to safely obtain changes to
the application state. In CheapBFT, we take this idea even further and propose our CheapTiny
protocol, in which only f + 1 active replicas take part in the agreement stage during normal-case
operation (see Figure 7.3). The other f replicas remain passive, that is, they neither agree
on requests nor execute requests. Instead, passive replicas modify their states by processing
validated state updates provided by the active replicas. This approach minimizes not only the
number of executions but also the number of protocol messages.

7.3.3 Fault Handling

With only f + 1 replicas actively participating in the protocol, CheapTiny is not able to tolerate
faults. Therefore, in case of suspected or detected faulty behavior of one or more active replicas,
CheapBFT abandons CheapTiny in favor of a more resilient protocol. The current CheapBFT
prototype relies on MinBFT [VCB+11] for this purpose, but we could have selected other BFT
protocols (e. g., A2M-PBFT-EA [CMSK07]) that make use of 2f +1 replicas to tolerate f faults.

During the protocol switch to MinBFT, CheapBFT runs the CheapSwitch transition protocol
to ensure that replicas start the new MinBFT protocol instance in a consistent state. The main task
of non-faulty replicas in CheapSwitch is to agree on a CheapTiny abort history. An abort history
is a list of protocol messages that indicates the status of pending requests and therefore allows the
remaining non-faulty replicas to safely continue agreement. In contrast to Abstract [GKQV10],
which relies on a similar technique to change protocols, an abort history in CheapBFT can be
verified to be correct even if it has only been provided by a single replica.
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Figure 7.4: CheapTiny protocol messages exchanged between a client, two active replicas, and a
passive replica (f = 1).

7.4 Normal-case Protocol: CheapTiny
CheapTiny is the default protocol of CheapBFT and designed to save resources in the absence
of faults by making use of passive replication. It comprises a total of four phases of communi-
cation (see Figure 7.4), which resemble the phases in PBFT [CL02]. However, as CheapBFT
replicas rely on a trusted subsystem to prevent equivocation, the CheapTiny protocol does not
require a pre-prepare phase.

7.4.1 Client
During normal-case operation, clients in CheapBFT behave similar to clients in other BFT
state-machine-replication protocols: Upon each new request, a client sends a 〈REQUEST,m〉
message authenticated by the client’s key to the leader; m is a request object containing the id
of the client, the command to be executed, as well as a client-specific sequence number that is
used by the replicas to ensure exactly-once semantics. After sending the request, the client waits
until it has received f + 1 matching replies from different replicas, which form a proof for the
correctness of the reply in the presence of at most f faults.

7.4.2 Replica

Taking up the separation introduced by Yin et al. [YMV+03], the internal architecture of an
active CheapBFT replica can be logically divided into two stages: the agreement stage establishes
a stable total order on client requests, whereas the execution stage is responsible for processing
requests and for providing state updates to passive replicas. Note that as passive replicas do not
take part in the agreement of requests, they also do not execute the CheapTiny agreement stage.

Both stages draw on the CASH subsystem to authenticate messages intended for other
replicas. To decouple agreement messages from state updates, a replica uses two trusted counters,
called ag and up.

Agreement Stage

During protocol initialization, each replica is assigned a unique id (see Figure 7.5, L. 2). Further-
more, a set of f + 1 active replicas is selected in a deterministic way. The active replica with the
lowest id becomes the leader (L. 3-5). Similarly to other PBFT-inspired agreement protocols, the
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1 upon initialization do
2 P := local replica id;
3 active := {p0, p1, . . . pf};
4 passive := {pf+1, pf+2, . . . , p2f};
5 leader := select_leader(active);

7 upon receiving 〈REQUEST,m〉 such that P = leader do
8 mcL := createMCag(m);
9 send 〈PREPARE,m,mcL〉 to all in active;

11 upon receiving 〈PREPARE,m,mcL〉 such that (mcL = (leader, ·, ·)) and checkMCag(mcL,m) do
12 mcP := createMCag(m‖mcL);
13 send 〈COMMIT,m,mcL,mcP 〉 to all in active;

15 upon receiving C := { 〈COMMIT,m,mcL,mcp〉 with mcp = (p, ·, ·) from every p in active such that
checkMCag(mcp,m‖mcL) and all m are equal } do

16 execute(m, C);
Figure 7.5: CheapTiny agreement protocol for active replicas.

leader in CheapTiny is responsible for proposing the order in which requests from clients are
to be executed. When all f + 1 active replicas have accepted a proposed request, the request
becomes committed and can be processed safely.

When the leader receives a client request, it first verifies the authenticity of the request
(omitted in Figure 7.5). If the request is valid and originates from an authenticated client,
the leader then broadcasts a 〈PREPARE,m,mcL〉 message to all active replicas (L. 7-9). The
PREPARE contains the client request m and a message certificate mcL issued by the local trusted
CASH subsystem. The certificate uses the agreement-stage-specific counter ag and contains the
leader’s identity in the form of the subsystem id.

Upon receiving a PREPARE (L. 11), an active replica asks CASH to verify that it originates
from the leader, that the message certificate is valid, and that the PREPARE is the next message
sent by the leader, as indicated by the assigned counter value. This procedure guarantees that
the replica only accepts the PREPARE if the sequence of messages received from the leader
contains no gaps. If the message certificate has been successfully verified, the replica sends
a 〈COMMIT,m,mcL,mcP 〉 message to all active replicas (L. 13). As part of the COMMIT,
the replica propagates its own message certificate mcP for the request m, which is created by
authenticating the concatenation of m and the leader’s certificate mcL (L. 12). Note that issuing
a combined certificate for m and mcL helps replicas determine the status of pending requests in
case of a protocol abort, as the certificate is a proof that the replica has received and accepted
both m and mcL (see Section 7.5.3).

When an active replica receives a COMMIT message, it extracts the sender p from mcp and
verifies that the message certificate mcp is valid (L. 15). As soon as the replica has obtained a set
C of f + 1 valid COMMITs for the same request m (one from each active replica, as determined
by the subsystem id found in the message certificates), the request is committed and the replica
forwards m to the execution stage (L. 15-16). Because of our assumption of FIFO channels and
because of the fact that COMMITs from all f + 1 active replicas have to be available, CheapTiny
guarantees that requests are committed in the order proposed by the leader without explicit use
of a sequence number.
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1 upon call execute(m, C) do
2 (r, u) := process(m);
3 ucP := createMCup(r‖u‖C);
4 send 〈UPDATE, r, u, C, ucP 〉 to all in passive;
5 send 〈REPLY, P, r〉 to client;

Figure 7.6: CheapTiny execution-stage protocol run by active replicas to execute requests and
distribute state updates.

1 upon receiving {
〈UPDATE, r, u, C, ucp〉 with ucp = (p, ·, ·)
from every p in active
such that checkMCup(ucp, r‖u‖C)
and all r are equal and all u are equal
} do

2 process(u);

Figure 7.7: CheapTiny execution-stage protocol run by passive replicas to process updates
provided by active replicas.

Execution Stage

Processing a request m in CheapBFT requires the application to provide two objects (see
Figure 7.6, L. 2): a reply r intended for the client and a state update u that reflects the changes to
the application state caused by the execution of m. Having processed a request, an active replica
asks the CASH subsystem to create an update certificate ucP for the concatenation of r, u, and
the set of COMMITs C confirming that m has been committed (L. 3). The update certificate is
generated using the counter up, which is dedicated to the execution stage. Next, the active replica
sends an 〈UPDATE, r, u, C, ucP 〉 message to all passive replicas (L. 4), and finally forwards the
reply to the client (L. 5).

Upon receiving an UPDATE, a passive replica confirms that the update certificate is correct
and that its assigned counter value indicates no gaps (see Figure 7.7, L. 1). When the replica has
received f + 1 matching UPDATEs from all active replicas for the same reply and state update,
the replica adjusts its application state by processing the state update (L. 1-2).

Checkpoints and Garbage Collection

In case of a protocol switch, active replicas must be able to provide an abort history indicating
the agreement status of pending requests (see Section 7.5). Therefore, an active replica logs all
protocol messages sent to other replicas (omitted in Figures 7.5 and 7.6). To prevent a replica
from running out of memory, CheapTiny makes use of periodic protocol checkpoints that allow
a replica to truncate its message log.

A non-faulty active replica creates a new checkpoint after the execution of every kth request;
k is a system-wide constant (e. g., 200). Having distributed the UPDATE for a request q that
triggered a checkpoint, the replica first creates an application snapshot. Next, the replica sends
a 〈CHECKPOINT, ashq, ccag, ccup〉 message to all (active and passive) replicas, which includes
a digest of the application snapshot ashq and two checkpoint certificates, ccag and ccup, issued
under the two CASH counters ag and up.

Upon receiving a CHECKPOINT, a replica verifies that its certificates are correct and that
the counter values assigned are both in line with expectations. A checkpoint becomes stable
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as soon as a replica has obtained matching checkpoints from all f + 1 active replicas. In this
case, an active replica discards all requests up to request q as well as all corresponding PREPARE,
COMMIT, and UPDATE messages.

Optimizations

CheapTiny allows to apply most of the standard optimizations used in Byzantine fault-tolerant
protocols related to PBFT [CL02]. In particular, this includes batching, which makes it possible
to agree on multiple requests (combined in a batch) within a single round of agreement. In the
following, we want to emphasize two additional optimizations to reduce communication costs.

Implicit Leader COMMIT In the protocol description in Figure 7.4, the leader sends a COM-
MIT to all active replicas after having received its own (internal) PREPARE. As this COMMIT

carries no additional information, the leader’s PREPARE and COMMIT can be merged into a
single message that is distributed upon receiving a request; that is, all replicas treat a PREPARE

from the leader as an implicit COMMIT.

Use of Hashes PBFT reduces communication costs by selecting one replica for each request
to send a full reply. All other replicas only provide a hash of the reply that allows the client to
prove the result correct. The same approach can be implemented in CheapTiny. Furthermore,
only a single active replica in CheapTiny needs to include a full state update in its UPDATE for
the passive replicas.

7.5 Transition Protocol: CheapSwitch
CheapTiny is optimized to save resources during normal-case operation. However, the subpro-
tocol is not able to make progress in the presence of suspected or detected faulty behavior of
replicas. In such cases, CheapBFT falls back to the MinBFT protocol, which relies on 2f + 1 ac-
tive replicas and can therefore tolerate up to f faults. In this section, we present the CheapSwitch
transition protocol responsible for the safe protocol switch.

7.5.1 Initiating a Protocol Switch
In CheapBFT, all nodes are eligible to request the abortion of the CheapTiny protocol. There are
two scenarios that trigger a protocol switch:

• A client asks for a protocol switch in case the active replicas fail to provide f +1 matching
replies to a request within a certain period of time.

• A replica demands to abort CheapTiny if it suspects or detects that another replica does not
behave according to the protocol specification, for example, by sending a false message
certificate, or by not providing a valid checkpoint or state update in a timely manner.

In these cases, the node requesting the protocol switch sends a 〈PANIC〉 message to all (active
and passive) replicas (see Figure 7.8). The replicas react by rebroadcasting the message to ensure
that all replicas are notified (omitted in Figure 7.8). Furthermore, upon receiving a PANIC, a
non-faulty active replica stops to send CheapTiny protocol messages and waits for the leader of
the new CheapSwitch protocol instance to distribute an abort history. The CheapSwitch leader
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Figure 7.8: CheapSwitch protocol messages exchanged between clients and replicas during
protocol switch (f = 1).

is chosen deterministically as the active replica with the lowest id apart from the leader of the
previous CheapTiny protocol.

7.5.2 Creating an Abort History
An abort history is used by non-faulty replicas to safely end the active CheapTiny instance
during a protocol switch. It comprises the CHECKPOINTs of all active replicas proving that
the latest checkpoint has become stable, as well as a set of CheapTiny protocol messages that
provide replicas with information about the status of pending requests. We distinguish three
status categories:

• Decided: The request has been committed prior to the protocol abort. The leader proves
this by including the corresponding UPDATE (which comprises the set of f + 1 COMMITs
from all active replicas) in the history.

• Potentially decided: The request has not been committed, but prior to the protocol abort,
the leader has received a valid PREPARE for the request and has therefore sent out a
corresponding COMMIT. Accordingly, the request may have been committed on some
active replicas. In this case, the leader includes its own COMMIT in the history.

• Undecided: The leader has received a request and/or a PREPARE for a request, but has not
yet sent a COMMIT. As a result, the request cannot have been committed on any non-faulty
replica. In this case, the leader includes the request in the abort history.

When creating the abort history, the leader of the CheapSwitch protocol instance has to consider
the status of all requests that are not covered by the latest stable checkpoint. When a history h
is complete, the leader asks the CASH subsystem for two history certificates hcL,ag and hcL,up,
authenticated by both counters. Then it sends a 〈HISTORY, h, hcL,ag, hcL,up〉 message to all
replicas.

7.5.3 Validating an Abort History
When a replica receives an abort history from the leader of the CheapSwitch instance, it verifies
that the history is correct. An abort history is deemed to be correct by a correct replica when all
of the following four criteria hold:

• Both history certificates verify correctly.
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• The CHECKPOINTs contained in the abort history prove that the latest checkpoint has
become stable.

• Using only information contained in the abort history, the replica can reconstruct the
complete sequence of authenticated protocol messages that the CheapSwitch leader has
sent in CheapTiny since the latest checkpoint.

• The reconstructed sequence of messages does not violate the CheapTiny protocol specifi-
cation.

Note that although an abort history is issued by only a single replica (i. e., the new leader), all
other replicas are able to verify its correctness independently: each UPDATE contains the f + 1
COMMIT certificates that prove a request to be decided; each COMMIT in turn comprises a
certificate that proves that the old leader has sent a PREPARE for the request (see Section 7.4.2).
As replicas verify that all these certificates are valid and that the sequence of messages sent
by the leader has no gaps, a malicious leader cannot modify or invent authenticated protocol
messages and include them in the history without being detected. As a result, it is safe to use a
correct abort history to get replicas into a consistent state (see Section 7.5.4).

Figure 7.9 shows an example of an abort history deemed to be correct, containing the
proof CHK that the latest checkpoint has become stable, UPDATEs for three decided requests a, b,
and c, and a COMMIT for a potentially decided request d. After verifying that all certificates are
correct, a replica ensures that the messages in the history do not violate the protocol specification
(e. g., the UPDATE for request a must comprise f + 1 matching COMMITs for a). Finally, a
replica checks that the abort history proves the complete sequence of messages sent by the leader
since the latest checkpoint; that is, the history must contain an authenticated message for every
counter value of both the agreement-stage counter ag as well as the execution-stage counter up,
starting from the counter values assigned to the last checkpoint and ending with the counter
values assigned to the abort history.

The requirement to report a complete sequence of messages prevents equivocation by a
malicious leader. In particular, a malicious leader cannot send inconsistent authenticated abort
histories to different replicas without being detected: in order to create diverging histories that
are both deemed to be correct, the leader would be forced to include the first authenticated history
into all other histories. Furthermore, the complete message sequence ensures that all decided
or potentially decided requests are included in the history: if a malicious leader, for example,
sends a COMMIT for a request e after having created the history, all non-faulty replicas will
detect the gap in the sequence of agreement counter values (caused by the history) and ignore the
COMMIT. As a result, it is impossible for e to have been decided in the old CheapTiny instance.
This property depends critically on the trusted counter.

7.5.4 Processing an Abort History
Having concluded that an abort history is correct, a replica sends a 〈SWITCH, hh, hcL,ag, hcL,up, hcP,ag, hcP,up〉
message to all other replicas (see Figure 7.8); hh is a hash of the abort history, hcL,ag and hcL,up
are the leader’s history certificates, and hcP,ag and hcP,up are history certificates issued by the
replica and generated with the agreement-stage counter and the update-stage counter, respectively.
Note that a SWITCH is to a HISTORY what a COMMIT is to a PREPARE. When a replica has
obtained a correct history and f matching SWITCH messages from different replicas, the history
becomes stable. In this case, a replica processes the abort history, taking into account its local
state.
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Figure 7.9: Dependencies of UPDATE (UPD∗) and COMMIT (COM∗) messages contained in a
correct CheapTiny abort history for four requests a, b, c, and d (f = 1).

First, a replica executes all decided requests that have not yet been processed locally, retaining
the order determined by the history, and sends the replies back to the respective clients. Former
passive replicas only execute a decided request if they have not yet processed the corresponding
state update. Next, a replica executes all unprocessed potentially decided requests as well as
all undecided requests from the history. This is safe, as both categories of requests have been
implicitly decided by f + 1 replicas accepting the abort history. Having processed the history,
all non-faulty replicas are in a consistent state and therefore able to safely switch to the new
MinBFT protocol instance.

7.5.5 Handling Faults
If an abort history does not become stable within a certain period of time after having received a
PANIC, a replica suspects the leader of the CheapSwitch protocol to be faulty. As a consequence,
a new instance of the CheapSwitch protocol is started, whose leader is chosen deterministically as
the active replica with the smallest id that has not already been leader in an immediately preceding
CheapSwitch instance. If these options have all been exploited the leader of the last CheapTiny
protocol instance is chosen. To this end, the suspecting replica sends a 〈SKIP, pNL, scP,ag, scP,up〉
message to all replicas, where pNL denotes the replica that will now become the leader; scP,ag
and scP,up are two skip certificates authenticated by both trusted counters ag and up, respectively.
Upon obtaining f + 1 matching SKIPs with correct certificates, pNL becomes the new leader and
reacts by creating and distributing its own abort history.

The abort history provided by the new leader may differ from the old leader’s abort history.
However, as non-faulty replicas only accept an abort history from a new leader after having
received at least f + 1 SKIPs proving a leader change, it is impossible that a non-faulty replica
has already processed the abort history of the old leader.

Consider two abort histories h0 and h1 that are both deemed to be correct, but are provided
by different replicas P0 and P1. Note that the extent to which they can differ is limited. Making
use of the trusted CASH subsystem guarantees that the order (as indicated by the counter values
assigned) of authenticated messages that are included in both h0 and h1 is identical across both
histories. However, h0 may contain messages that are not in h1, and vice versa, for example,
because one of the replicas has already received f + 1 COMMITs for a request, but the other
replica has not yet done so. As a result, both histories may report a slightly different status for
each pending request: In h0, for example, a request may have already been decided, whereas in
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h1 its is reported to be potentially decided. Also, a request may be potentially decided in one
history and undecided in the other.

However, if both histories are deemed to be correct, h0 will never report a request to be
decided that is undecided in h1. This is based on the fact that for the request to become decided
on P0, P1 must have provided an authenticated COMMIT for the request. Therefore, P1 is forced
to include this COMMIT in h1 to create a correct history, which upgrades the status of the request
to potentially decided (see Section 7.5.2). In consequence, it is safe to complete the CheapSwitch
protocol by processing any correct abort history available, as long as all replicas process the
same history, because all correct histories contain all requests that have become decided on at
least one non-faulty replica.

It is possible that the abort history eventually processed does not contain all undecided re-
quests, for example, because the CheapSwitch leader may not have seen all PREPAREs distributed
by the CheapTiny leader. Therefore, a client retransmits its request if it is not able to obtain a
stable result after having demanded a protocol switch. All requests that are not executed prior to
or during the CheapSwitch run are handled by the following MinBFT instance.

7.6 Fall-back Protocol: MinBFT

After completing CheapSwitch, a replica is properly initialized to run the MinBFT proto-
col [VCB+11]. In contrast to CheapTiny, all 2f +1 replicas in MinBFT are active, which allows
the protocol to tolerate up to f faults. However, as we expect permanent replica faults to be
rare [GKQV10, DK11, WSV+11], the protocol switch to MinBFT will in most cases be per-
formed to make progress in the presence of temporary faults or periods of asynchrony. To address
this issue, CheapBFT executes MinBFT for only a limited period of time and then switches back
to CheapTiny, similarly to the approach proposed by Guerraoui et al. in [GKQV10].

7.6.1 Protocol

In MinBFT, all replicas actively participate in the agreement of requests. Apart from that, the
protocol steps are similar to CheapTiny: when the leader receives a client request, it sends a
PREPARE to all other replicas, which in turn respond by multicasting COMMITs, including the
PREPARE certificate. Upon receiving f + 1 matching COMMITs, a replica processes the request
and sends a reply back to the client. Similar to CheapTiny, replicas in MinBFT authenticate
all agreement-stage messages using the CASH subsystem and only accept message sequences
that contain no gaps and are verified to be correct. Furthermore, MinBFT also relies on stable
checkpoints to garbage collect message logs.

7.6.2 Protocol Switch

In CheapBFT, an instance of the MinBFT protocol runs only a predefined number of agreement
rounds x. When the xth request becomes committed, a non-faulty replica switches back to the
CheapTiny protocol and handles all subsequent requests. Note that if the problem that led to the
start of MinBFT has not yet been removed, the CheapTiny fault-handling mechanism ensures that
the CheapSwitch transition protocol will be triggered once again, eventually initializing a new
instance of MinBFT. This new instance uses a higher value for x to account for the prolonged
period of asynchrony or faults.
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7.7 Evaluation
In this section, we evaluate the performance and resource consumption of CheapBFT. Our
test setting comprises a replica cluster of 8-core machines (2.3 GHz, 8 GB RAM) and a client
cluster of 12-core machines (2.4 GHz, 24 GB RAM) that are all connected with switched Gigabit
Ethernet.

We have implemented CheapBFT by adapting the BFT-SMaRt library [BS]. Our CheapBFT
implementation reuses BFT-SMaRt’s communication layer but provides its own composite
agreement protocol. Furthermore, CheapBFT relies on the CASH subsystem to authenticate and
verify messages. In addition to CheapBFT and BFT-SMaRt, we evaluate an implementation of
plain MinBFT [VCB+11]; note that to enable a protocol comparison the MinBFT implementation
also uses our CASH subsystem. All of the following experiments are conducted with system
configurations that are able to tolerate a single Byzantine fault (i. e., BFT-SMaRt: four replicas,
MinBFT and CheapBFT: three replicas). In all cases, the maximum request-batch size is set to
20.

7.7.1 Normal-case Operation
We evaluate BFT-SMaRt, MinBFT, and CheapBFT during normal-case operation using a micro
benchmark in which clients continuously send empty requests to replicas; each client waits to
receive an empty reply before sending a subsequent request. In the CheapBFT configuration,
each client request triggers an empty update. Between test runs, we vary the number of clients
from 5 to 400 to increase load and measure the average response time of an operation. With no
execution overhead and only small messages to be sent, the focus of the benchmark lies on the
throughput of the agreement protocols inside BFT-SMaRt, MinBFT, and CheapBFT.

The performance results in Figure 7.10(a) show that requiring only four instead of five
communication steps and only 2f + 1 instead of 3f + 1 agreement replicas, MinBFT achieves
a significantly higher throughput than BFT-SMaRt. With only the f + 1 active replicas taking
part in the agreement of requests, a CheapBFT replica needs to handle fewer protocol messages
than a MinBFT replica. As a result, CheapBFT is able to process more than 72,000 requests per
second, an increase of 14% over MinBFT.

Besides performance, we evaluate the CPU and network usage of BFT-SMaRt, MinBFT,
and CheapBFT. In order to be able to directly compare the three systems, we aggregate the
resource consumption of all replicas in a system and normalize the respective value at maximum
throughput to a throughput of 10,000 requests per second (see Figure 7.10(b)). Compared to
MinBFT, CheapBFT requires 24% less CPU, which is mainly due to the fact that a passive
replica does not participate in the agreement protocol and neither processes client requests
nor sends replies. CheapBFT replicas also send 31% less data than MinBFT replicas over the
network, as the simplified agreement protocol of CheapBFT results in a reduced number of
messages. Compared to BFT-SMaRt, the resource savings of CheapBFT add up to 37% (CPU)
and 58% (network).

We also evaluate the three BFT systems in an experiment in which clients send empty requests
and receive replies of 4 kilobyte size. Note that in this scenario, as discussed in Section 7.4.2,
only a single replica responds with the actual full reply while all other replicas only provide a
reply hash to the client. Figure 7.11 shows the results for performance and resource usage for this
experiment. In contrast to the previous benchmark, this benchmark is dominated by the overhead
for reply transmission: as full replies constitute the majority of network traffic, CheapBFT
replicas only send 2% less data than MinBFT replicas and 8% less data than BFT-SMaRt replicas
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Figure 7.10: Performance and resource-usage results for a micro benchmark with empty requests
and empty replies.

over the network. Furthermore, the need to provide a passive replica with reply hashes reduces
the CPU savings of CheapBFT to 7% compared to MinBFT and 20% compared to BFT-SMaRt.

In our third micro-benchmark experiment, clients send requests of 4 kilobyte size and receive
empty replies; Figure 7.12 reports the corresponding performance and resource-usage results
for this experiment. For such a workload, transmitting requests to active replicas is the decisive
factor influencing both performance and resource consumption. With the size of requests being
much larger than the size of other protocol messages exchanged between replicas, compared to
BFT-SMaRt, CheapBFT replicas need to send 67% less data over the network (50% less data
compared to MinBFT). In addition, CheapBFT consumes 54% less CPU than BFT-SMaRt and
37% less CPU than MinBFT.

7.7.2 Protocol Switch
To evaluate the impact of a fault on the performance of CheapBFT, we execute a protocol switch
from CheapTiny to MinBFT during a micro benchmark run with 100 clients; the checkpoint
interval is set to 200 requests. In this experiment, we trigger the protocol switch shortly before a
checkpoint becomes stable in CheapTiny to evaluate the worst-case overhead caused by an abort
history of maximum size. Figure 7.13 shows the response times of 1,000 requests handled by
CheapBFT around the time the replicas run the CheapSwitch transition protocol. While verifying
and processing the abort history, replicas are not able to execute requests, which leads to a
temporary service disruption of max. 254 milliseconds. After the protocol switch is complete,
the response times drop back to the normal level for MinBFT.

7.7.3 ZooKeeper Use Case
ZooKeeper [HKJR10] is a crash-tolerant coordination service used in large-scale distributed
systems for crucial tasks like leader election, synchronization, and failure detection. This section
presents an evaluation of a ZooKeeper-like BFT service that rely on BFT-SMaRt, MinBFT, and
CheapBFT for fault-tolerant request dissemination, respectively.

TClouds D2.1.2 Page 106 of 138



D2.1.2 – Preliminary Description of Mechanisms and Components for
Single Trusted Clouds

0 10 20 30 40 50
Throughput [Kreq/s]

0
2
4
6
8

10
12
14
16
18
20

R
es

po
ns

e 
tim

e 
[m

s] BFT-SMaRt

MinBFT
CheapBFT

(a) Throughput vs. response time for an increas-
ing number of clients.

CPU Network
Resource type

BFT-SMaRt
MinBFT
CheapBFT

3.3

2.9
2.7

50MB/s 47MB/s
46MB/s

[CPU: 1.0 := 100% of one core]

(b) Average resource usage per 10 Kreq/s nor-
malized by throughput.

Figure 7.11: Performance and resource-usage results for a micro benchmark with empty requests
and 4 kilobyte replies.
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Figure 7.12: Performance and resource-usage results for a micro benchmark with 4 kilobyte
requests and empty replies.
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Figure 7.13: Response time development of CheapBFT during a protocol switch from CheapTiny
to MinBFT.

ZooKeeper allows clients to store and retrieve (usually small) chunks of information in data
nodes, which are managed in a hierarchical tree structure. We evaluate the three implementations
for different mixes of read and write operations. In all cases, 1,000 clients repeatedly access
different data nodes, reading and writing data chunks of random sizes between one byte and two
kilobytes. Figure 7.14 presents the performance and resource-usage results for this experiment.

The results show that with the execution stage (i. e., the ZooKeeper application) performing
actual work (and not just sending replies as in the micro-benchmark experiments of Section 7.7.1),
the impact of the agreement protocol on system performance is reduced. In consequence, all three
ZooKeeper implementations provide similar throughput for write-heavy workloads. However,
the resource footprints significantly differ between variants: in comparison to the MinBFT-based
ZooKeeper, the replicas in the CheapBFT-based variant save 7-12% CPU and send 12-20% less
data over the network. Compared to the BFT-SMaRt implementation, the resource savings of the
CheapBFT-based ZooKeeper add up to 23-42% (CPU) and 27-43% (network).

7.8 Discussion

As described in Section 7.5.1, the first PANIC received by a replica triggers the abort of the
CheapTiny protocol. In consequence, a single faulty client is able to force a protocol switch,
even if all replicas are correct and the network delivers messages in time. In general, we expect
such faulty behavior to be rare, as only authenticated clients get access to the system (see
Section 7.3.1). Nevertheless, if an authenticated client repeatedly panics, human intervention
may be necessary to revoke the access permissions of the client. However, even if it takes some
time to remove the client from the system, unnecessary switches to the MinBFT protocol only
increase the resource consumption of CheapBFT but do not compromise safety.

Having completed the CheapSwitch transition protocol, all non-faulty replicas are in a
consistent state. Following this, the default procedure in CheapBFT is to run the MinBFT
protocol for a certain number of requests before switching back to CheapTiny (see Section 7.6.2).
The rationale of this approach is to handle temporary faults and/or short periods of asynchrony
which usually affect only a number of subsequent requests. Note that in case such situations
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Figure 7.14: Performance and resource-usage results for different BFT variants of our ZooKeeper
service for workloads comprising different mixes of read and write operations.
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are not characteristic for the particular use-case scenario, different strategies of how to remedy
them may be applied. In fact, if faults are typically limited to single requests, for example, it
might even make sense to directly start a new instance of CheapTiny after CheapSwitch has been
completed.

CheapTiny has a low resource footprint, however, the resource usage is asymmetrically
distributed over active and passive replicas. Accordingly, the active replicas, especially the
leader, can turn into a bottleneck under high load. This issue can be solved by dynamically
alternating the leader role between the active replicas similar to Aardvark [CWA+09] and
Spinning [VCBL09]. Furthermore, one could dynamically assign the role of passive and active
replicas thereby distributing the load of agreement and execution over all nodes.

7.9 Related Work

Reducing the overhead is a key step to make BFT systems applicable to real-world use cases.
Most optimized BFT systems introduced so far have focused on improving time and communica-
tion delays, however, and still need 3f +1 nodes that actually run agreement as well as execution
stage [KAD+09, GKQV10]. Note that this is the same as in the pioneering work of Castro and
Liskov [CL02]. The high resource demand of BFT was first addressed by Yin et al. [YMV+03]
with their separation of agreement and execution that enables the system to run on only 2f + 1
execution nodes. In a next step, systems were subdivided in trusted and untrusted components for
preventing equivocation; based on a trusted subsystem, these protocols need only 2f +1 replicas
during the agreement and execution stages [CNV04, CMSK07, RK07]. The trusted subsystems
may become as large as a complete virtual machine and its virtualization layer [CNV04, RK07],
or may be as small as the trusted counter abstraction [VCB+11, VCBL10].

Subsequently, Wood et al. [WSV+11] presented ZZ, a system that constrains the execution
component to f + 1 nodes and starts new replicas on demand. However, it requires 3f + 1
nodes for the agreement task and relies on a trusted hypervisor and a machine-management
system. In a previous work, we increased throughput by partitioning request execution among
replicas [DK11]. Here, a system relies on a selector component that is co-located with each
replica, and no additional trust assumptions are imposed. Moreover, we introduced passive
execution nodes in SPARE [DKP+11]; these nodes passively obtain state updates and can be
activated rapidly. The system uses a trusted group communication, a virtualization layer, and
reliable means to detect node crashes. Of all these works, CheapBFT is the first BFT system that
limits the execution and agreement components for all requests to only f + 1 replicas, whereas
only f passive replicas witness progress during normal-case operation. Furthermore, it relies
only on a lightweight trusted counter abstraction.

The idea of witnesses has mainly been explored in the context of the fail-stop fault model
so far [Par86]. In this regard, CheapBFT is conceptually related to the Cheap Paxos proto-
col [LM04], in which f + 1 main processors perform agreement and can invoke the services of
up to f auxiliary processors. In case of processor crashes, the auxiliary processors take part in
the agreement protocol and support the reconfiguration of the main processor set.

Related to our approach, Guerraoui et al. [GKQV10] have proposed to optimistically employ
a very efficient but less robust protocol and to resort to a more resilient algorithm if needed.
CheapBFT builds on this work and is the first to exploit this approach for changing the number
of nodes actively involved (rather than only for changing the protocol), with the goal of reducing
the system’s resource demand.

PeerReview [HKD07] omits replication at all by enabling accountability. It needs a sufficient
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number of witnesses for discovering actions of faulty nodes and, more importantly, may detect
faults only after they have occurred. This is an interesting and orthogonal approach to ours, which
aims at tolerating faults. Several other recent works aim at verifying services and computations
provided by a single, potentially faulty entity, ranging from database executions [WSS09] and
storage integrity [SCC+10] to group collaboration [FZFF10].

7.10 Conclusion
CheapBFT is the first Byzantine fault-tolerant system to use f + 1 active replicas for both
agreement and execution during normal-case operation. As a result, it offers resource savings
compared with traditional BFT systems. In case of suspected or detected faults, replicas run a
transition protocol that safely brings all non-faulty replicas into a consistent state and allows
the system to switch to a more resilient agreement protocol. CheapBFT relies on the CASH
subsystem for message authentication and verification, which advances the state of the art by
achieving high performance while comprising a small trusted computing base.
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Chapter 8

Tailored Memcached

Chapter Authors:
Klaus Stengel (TUBS)

8.1 Introduction
Many new applications running on top of current cloud systems are designed according to the
principles of service oriented architecture (SOA). This means that application software no longer
just comprises a single program running in a virtual machine at the cloud provider, but assumes
the form of many concurrently running instances. These have to cooperate with each other and
they also draw on a large number of simpler low-level services in a distributed environment. Due
to this structure, the application becomes more scalable and fault-tolerant, as service instances
can be added and removed according to demand.

Unfortunately, those simple services are often implemented on top of comparatively large
general-purpose operating systems (e.g. Linux, Windows) and run-time systems (e.g. Java,
.NET). While general-purpose systems are very convenient to use, because they offer many
features, most of these are unnecessary or even harmful if the goal is to offer a secure and efficient
implementation of such simple services. Thus we present an approach to implement this kind of
services with minimized runtime overhead and improved security by applying techniques known
from tha area of Aspect-Oriented Programming (AOP) to the type-safe, functional programming
language Haskell. We demonstrate the approach using a simple in-memory key/value storage
system called memcached[Mema], which is commonly used in cloud environments to to cache
all sorts of dynamically generated data.

The rest of this chapter is structured as follows: We begin in section 8.2 introducing the
memcached service and its protocol and look at some applications to determine how this service
is typically used in different scenarios. This allows us to split the features offered by the service
into independent subsets that will be enabled only if it’s actually required by the application.
In the following section 8.3, we will go into more detail regarding the chosen implementation
language Haskell and how the implementation can made highly configurable with little effort.

8.2 Memcached Feature Sets
The first step in creating a reconfigurable service is to determine which features of a service
are required in which situation. Thus, we will have a short look at the functionality of a full
memcached implementation has to offer and what the typical use-cases are. The complete
documentation of the protocol is available at their code repository [Memb].
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8.2.1 Feature description
At the protocol level, i.e., the way client applications can access the cache, are two supported
models. One method is based on human readable text strings, while the other one uses binary
codes. Both protocols run over a standard internet TCP/IP connection and support the same set
of commands, only the encoding is different.

The memcached uses a simple Key/Value model to store information, where a user-specified
key is associated with a value that is also provided by the user. In order to retrieve the stored
value, the cache service can be asked for the value associated with the given key. The response
will either contain the previously stored value or inform the inquirer that there is no value
available for this key. Keys can be any text string, while the values consist of two parts: The first
one is just a 32-bit word for keeping status information and the second can contain binary data
of arbitrary length.

Besides the usual put and get operations to store and retrieve information from the cache,
the services also support some additional operations. Namely, the put action can be made
dependent on the current presence of an value for a given key. Using the replace command
instead of put will exclusively update an existing entry and refuses to create a new one. The
opposite behaviour is possible with the add operation, which only saves the value if the given
key is not assigned yet.

In some use cases it is desirable to update a value only if it has n’t changed since we retrived
it last time, for example to implement atomic updates. Memcached provides the Compare-and-
Swap operation (cas) for these situations, which allows wait-free implementation of consensus
algorithms [Her91].

While the previous operations only dealt with updates of entire values, it is also possible
to extend existing values by adding more data in the beginning or end using prepend and
append. Another for of value manipulation allows the user to interpret the value as a decimal
number perform increments or decrement operations (incr, decr).

As the primary purpose of the memcached service is to provide temporary storage, there are
also certain mechanisms available to remove entries from the cache. If the application wants to
control the storage duration manually, it can issue a delete command, which will cause the
specified entry to be removed instantly. Sometimes the cached information is only useful for a
certain amount of time (e.g., weather forecasts) and it does not make sense to keep it indefinitely.
In this case, the application can delegate the timely deletion to the memcached service itself
by specfiying a point in time when the data should disappear when creating an entry. It is also
possible to update this expiration date without modifying the data by using the touch command.
Thus there is no need for the application to track the entries and perform delete operations at
appropriate times. Additionally, cached data can automatically expire if the server runs out of
free memory and reclaims cache entries that weren’t used for longer time periods.

8.2.2 Feature groups
Now that we presented an overview of the features the memcached service usually supports, we
will now have a look at some common use cases and determine which of these can be made
configurable. The results of this analysis are summarized in Table 8.1 and lists and described in
the following paragraphs.

First of all, there is the question of which protocol the application actually uses to talk with
the memcached service. It makes sense to make the protocol representation configurable, as it is
quite unlikely that the same application would want to talk with the caching service using both
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Feature set Supported functions/commands
Binary protocol Support for all active commands via binary protocol
Text protocol Support for all active commands via text protocol
Core get, put
Timed expiration Cached values are removed depending on system time, touch
Least recently used Entries will be deleted automatically when memory becomes scarce
Manual expire delete
Conditional put add, replace
Atomic update cas (also enables version counters)
Extending values append, prepend
Counting incr, decr

Table 8.1: List of configurable features

ASCII and binary in parallel. However, it should not be forbidden to enable both at once, as some
use-cases, like the memcached client module included in the Nginx web server [Ngi], expect the
cache to be filled from an external data source. In that particular case, multiple programs access
the same cache and might prefer different protocols to do so.

Regarding the actually useful, the minimum core functionality consists of the obligatory get
and put operations. These do not specify any mechanism to remove entries from the cache
yet, so the cache would just fill up and it would no longer be possible to add more entries after
a certain time. Thus, depending on which expiration mode is suitable for the application at
hand, it is also necessary to enable at least either the timed, least-recently-used (LRU) or manual
delete features.

The remaining features we have to discuss are concerned with the atomic update and manipu-
lation of existing values. These are all entirely optional and only matter if the application requires
certain consistency guarantees for data stored in the cache. From an algorithmic perspective,
the append and prepend operations are very similar and only differ in the position where
the new data has to be inserted. As a result, it makes sense to group both operations into one
feature set. The same principle applies to the incr and decr operations, which differ only on
the calculation that has to be performed. Unlike the functions to merely attach data to existing
values, however, these require program code to process numbers formatted as decimal strings.
The cas operation finally deserves its own feature, as it requires additional maintenance of an
update counter for each entry.

Now that we presented an overview and categorization of the features a memcached imple-
mentation has to offer, we’ll discuss various options to implement these in an configurable way
in the following section.

8.3 Implementing Variability

The programming language used has a large impact on the techniques that are readily available
to design reconfigurable programs. As a result, this section is divided in two parts: The first one
will discuss the merits of using the Haskell programming language, while the second part will
present a short survey on current research regarding aspect-oriented programming in Haskell.
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8.3.1 The Haskell programming language
In the previous deliverable D2.1.1 we already evaluated several different programming languages
for their safety properties. While they all have different approaches and reach this goal to certain
degrees, this often comes with a lack of flexibility. Language extensions like Frama-C[BCF+10]
for the C programming language or the RavenSPARK profile for Ada[CA] improve safety by
limiting the expressiveness. Most of the restrictions apply to dynamic allocation of memory,
which is either completely forbidden or very hard to make accessible to the static verification
these languages provide. This is a reasonable approach for embedded systems, where most
computations are signal processing functions that work in datasets of predetermined size. For
many cloud services, however, like the memcached we use in our example, such restrictions are
too severe. Most data structures the service needs internally need to grow dynamically. Therefore
we chose to avoid this problem by looking at the higher level languages that makes explicit
memory management unnecessary.

With Haskell, the lower level resource allocation is automatically managed by the run-time
system, so the verification can concentrate on the application-specific algorithms. Together with
the properties of the Haskell language, purity and laziness, this allows one to write programs that
is both configurable and verifyable. Layziness means that any computation is delayed until the
actual result of the computation is required to proceed. Purity ensures that each function, given
the same parameters and context, will always yield the same result. The laziness allows one to
define arbitrary control flow operators within the language, while the purity property enforces
the proper encapsulation of side-effects.

Basic control structures, like a if-then-else-statement, can be expressed as basic Lambda-
expressions in a lazy environment: True can be defined as λab.→ a and False as λab.→ b.
This definition provides functions that takes two arguments, where the first is the function that
should be returned if the value is true (if-part) and the second parameter if the value is false
(else-part). The laziness of the language then prevents the program code in the path that is not
taken from actually executing. By varying the function binding and employing more advanced
concepts like Monads or Arrows, this allows one to create flexible control structures. Such
structures will be reviewed in the following section, where we discuss current approches how to
write to highly configurable programs.

8.3.2 Aspect-Oriented Programming in Haskell
The basic idea of reconfigurable programs is realized in many widespread software systems and
probably the most prominent one today is the Linux kernel. The parts which will be compiled
into the kernel and some parameters are derived from a configuration file given at compile time.
In Haskell, a similar approach is also taken by the Xmonad[SS07] window manager. It provides
the user a configuration file that can be used to set certain paramaters and is just compiled into
the actual program. The compiler can then detect that the disabled functions are never called and
thus removes them from the program.

Unfortunately, these simple approches often have problems in places where many features
have to interact, or if an aspect requires changes spread over large portions of the code base.
Each possible combination has either to be implemented manually or the program code contains
many conditionally activated code sections. This creates maintenance problems, as it becomes
very hard to keep all parts in a consistent state when a change becomes necessary.

As a result, the idea of Aspect Oriented Programming (AOP)[KLM+97] was created to focus
exactly on this issue. The general idea is to separate the software into different aspects that arise
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from different views on the subject. The interrelationship between those aspects is then described
explicitely and used to derive possible configurations for the system. On an implementation
level, each aspect forms its own unit with information how they can interact with other ones if
they are present.

The approach taken by the popular language extensions, like AspectJ[KHH+01] for Java,
is to write special program blocks and a set of rules where they should be weaved into regular
program code. Surprisingly, there is not very much literature available on how to achieve similar
results using the Haskell programming language. An mostly equivalent concept is available in
Haskell with so called Attribute Grammars[VSS09]. As shown in the paper, it is even possible
to implement these on top of the Haskell language with the help of some commonly available
language extensions and libraries. Unfortunately, it has to manage control flow information using
dynamic list, which is still hard to optimize for the currently available compilers. As a result,
this way of achieveing reconfigurable software is not particularily efficient. Moreover, this style
of providing aspect oriented programming was only demonstrated to work on compilers or other
programs that mostly operate on tree-like data structures. Therefore it is not always clear how to
translate these ideas to a long running network service, like our memcached example, or other,
more general applications.

A different way to look at the problem is presented by EffectiveAdvice[OSC10]. The general
idea is to start from a translation of object oriented programming into Haskell, where the this
reference is implemented as a fix-point function. The extension to this model now consists of
a special proceed function, which can be used to weave in additional functionality. Although
the points where these functions can be attached to are no longer invisible (as this is the case
with the Attribute Grammars), this approach is easier to understand and more efficient. It also
addresses concerns regarding the interaction of features when internal state is involved, so that it
becomes possible to restrict the ways state transitions can be made by other aspects.

Comparing the two presented approaches, EffectiveAdvice and Attribute Grammars, the
techniques presented by EffectiveAdvice seem to be more practical and also better suited for our
tailored memcached service.

8.4 Conclusion
In this chapter we presented the memcached service, a simple Key/Value store and categorized
its protocol functions into different feature groups. As evidenced by the table 8.1, even such a
relatively simple service can be divided into many different aspects, of which most applications
only need a few.

In order to generate minimal instances of such a service, tailored to the application, we need
an approch to make our software configurable. Therefore we first had a look at the Haskell
programming language and some of its characteristics. While the language is generally very
flexible and allows for high levels of abstraction, there doesn’t seem to be any generally accepted
way how to implement fine-grained features in Haskell. From the area of Aspect Oriented
Programming, the approach taken by EffectiveAdvice[OSC10] looks like a promising candidate
to be applied to our prototype.
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Chapter 9

Log Service

Chapter Authors:
Paolo Smiraglia, Gianluca Ramunno (POL)

In this chapter we present an important component of the cloud infrastructure, the Log
Service. The main focus of this component is to log and track events generated at multiple cloud
layers (infrastructure, platform, software) with the purpose of increasing the trustworthiness of
the whole cloud infrastructure. Particularly it will be presented a draft design and implementation
of the service defined in the deliverables D2.1.1 and D2.4.1, that is mainly based on the scheme
for secure logging proposed by Schneier and Kelsey in [SK99].

9.1 Background
In this section we present the concepts necessary to understand how the Log Service works.
Since this aspect has been already treated in deep in D2.1.1, Chapter 6 and in D2.4.1, Chapter 7,
the description will be short in this document.

Schneier and Kelsey propose a scheme for secure logging in a remote environment [SK99].
For brevity, in the sequel we refer to such scheme as “SK”.

In SK they identify a trusted server T , a logging machine U and moderately-trusted person
or machine called V that wants to access and verify the logs. Moreover, they define a log entry
creation procedure which is depicted in Figure 9.1.

Such procedure makes possible the immediate identification of log tampering because all log
entries are linked in an hash-chain through the element Yj . Moreover, the integrity of the logs is
ensured by including a MAC field (Zj) in each log entry and the confidentiality of the logged
data (Dj) is guaranteed thanks to the usage of a symmetric cryptography mechanism (EKj

(Dj)).
In SK the log entries are grouped by logging sessions. Each of these is identified by a unique
identifier (e.g. UUID) and by a randomly generated authentication key (A0).

The usage of SK ensures for the generated logs the presence of the forward integrity property.
Such property implies that, if an attacker succeeds in compromising the log system, he can not
modify the log entries collected before his attack without being noticed [BY97].

A subset of key definitions relevant for the comprehension of the current Log Service imple-
mentation is listed in the following. For a complete list, refer to D2.1.1, Sections 6.2.1 and 6.2.3.

Terminology

• Log entry: a record containing information about one event.

• Log: a set of log entries.
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Figure 9.1: Schneier and Kelsey’s log entry creation scheme.

• Log file: a portion of a log, usually defined to specify a usage/security policy. A Log file
could be considered a SK logging session.

Actors

• Cloud Component: a component of the cloud infrastructure, intended as a service that can
be either provided to the User or internally used by the cloud itself.

• Log Reviewer: an external authority with enough privileges to read (part of) the logs.
Depending on its privileges, the reviewer will have access to different subsets of the logs.

Functionality

• Create log: a Cloud Component creates a log entry and stores it in the log. This operation
requires a previous initialization of the log file (logging session).

• Read logs: read stands for accessing all logs, possibly subject to a privacy-preserving
policy, but usually not restricted to a view on a specific resource

• Retrieve logs: the User accesses the logs related to his resources. This functionality can be
seen as the composition of a read and a filter.

• Verify logs: during this step, the forward integrity of the log entries is verified and,
therefore, attacks to the logs are detected.

9.2 Design
In this section we present the design of the Log Service. The description will be focused on the
building blocks and on the data exchange. The Figure 9.2 depicts an high level view of the Log
Service that is focused on the interactions among building blocks.
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Log Service

Log Core

Log Storage

Log Console Log Reviewer

Cloud Component

Cloud Component

Cloud Component

Figure 9.2: Log Service high level view.

9.2.1 Building blocks

Log Core

With the name Log Core we identify the core component of the Log Service. Referring to SK,
the Log Core may be considered the T entity. The Log Core is an application running in a secure
location (e.g. on a trusted server) that exports a RESTful service. Through these services, the
Cloud Components will be able to initialize a new logging session and the Log Reviewer, via the
Log Console, will be able to verify the already opened logging sessions.

Log Storage

The Log Storage is the component of the Log Service that manages the storage of the log entries.
Such as sub-component is an application that exports as RESTful service a storage technology
(e.g. databse system, replicated file system, etc.). In Figure 9.3 is depicted a Log Storage high
level view.

Log Storage

RESTful

interface

DBMS (MySQL, Oracle, ...)

Resilient File System (CheapBFT)

Other...

Figure 9.3: Log Storage high level view.

Log Console

The Log Console is the interface used by Log Reviewers to access the logs managed by the
Log Service. The operations provided by the Log Console are the retrieve of a list that contains
the already opened logging sessions and the possibility to request the verification for one of
these. About the verification process, in case of positive result the Log Console provides the
Log Reviewers with a temporary URL that can be used to download a dump of the just verified
logging session. We use the term dump to identify a Log File copy that has been verified.
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Cloud Component

A Cloud Component is a generic entity of the cloud that generates log entries. To take advantage
from the features provided by the Log Service, each Cloud Component has to include an
additional module that makes possible the interaction with the Log Storage and the Log Core
(Figure 9.4). An example of integration of the Log Service in a Cloud Component will be
presented in Section 9.3.4.

Log Storage

Log Core

Cloud Component

Log Service

module

Figure 9.4: Cloud Component with additional Log Service module.

9.2.2 Data exchange
Communications and data exchange among the Log Service building blocks are based on the
REpresentation State Transfer (REST) protocol. A RESTful approach makes possible the execu-
tion of CRUD operations (Create, Read, Update, Delete) on resources that can be addressed as
Universal Resource Locators (URLs). Moreover, a RESTful framework leverages the HyperText
Transfer Protocol (HTTP) infrastructure, including caching, referrals, authentication, version
control, and secure transport (HTTPS) [NPFS11].

In Log Service data are exchanged using JavaScript Object Notation (JSON) format. We use
it because JSON has several properties (language independent, easy for humans to read and write,
easy for machines to parse and generate) that make it an ideal data-interchange language [Cro12]
and because JSON is the format used for data exchange by the OpenStack API [OC12].

An example of data transferred during the Log file verification process is shown in the
following. More in details, in Listing 9.1 it is included an HTTP POST request to trigger the
verification of a certain Log file that is generated by the Log Reviewer via the Log Console. In
Listing 9.2 instead, it is shown the HTTP response to the previously mentioned HTTP POST
request that is generated by the Log Core.

POST / logservice HTTP/1.1
Host: localhost:9000
Accept-Encoding: identity
Content-Length: 94
Content-Type: application/json

{
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"operation": "verifyLogfile",
"data": {

"logfile_id": "44d3ae82-c83d-11e1-a555-0025b345ca14"
}

}

Listing 9.1: Example of HTTP POST request to verify a Log file.

HTTP/1.0 200 OK
Date: Tue, 10 July 2012 09:57:09 GMT
Server: WSGIServer/0.1 Python/2.7.3rc2
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Content-Length: 104
Content-Type: application/json

{
"operation": "verifyLogfile",
"logfile_id": "44d3ae82-c83d-11e1-a555-0025b345ca14",
"result": "success",
"dumpurl": "http://www.example.com:9000/logservice/dumps/44d3ae82-c83d-11

e1-a555-0025b345ca14.txt"
}

Listing 9.2: Example of HTTP response to a Log file verification request.

9.3 Implementation

This section is focused on the Log Service implementation details. In the following it will be
presented the state of the art about the implementation of each building block, the core library
written in C and its Python bindings. Moreover, it will be presented also an example of Log
Service integration in the open source framework for cloud computing OpenStack.

9.3.1 Core library

The core element of the Log Service is the library for C language called libsklog [Smi12].
Such library, entirely developed by Politecnico di Torino (POL), has as main objective to provide
the application developers with the functionality for secure logging proposed by Schneier and
Kelsey in [SK99]. In addition to the log entry generation scheme as depicted in Figure 9.1, the
libsklog library includes into each log entry some additional information in order to follow
the Common Event Expression (CEE) directives [Cor12]. This feature is provided thanks to
the usage of the library libumberlog [Nag12]. The Figure 9.5 depicts how the original log
entries creation scheme has been modified in order to add the CEE directives.

Following the SK roles definition (U , T , V), libsklog provides functions to implement
each role. To differentiate the functions per role, we used a specific naming convention. In
particular, functions that have the prefix SKLOG_U in their name can be used to implement a U
role. The same way, SKLOG_T to implement T role and SKLOG_V to implement V role.
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Figure 9.5: Schneier and Kelsey’s modified log entry creation scheme.

9.3.2 Bindings
The libsklog library is currently provided with bindings for the Python language. Since it is
the language used to implement OpenStack, we chose it as binding language for the libsklog
library in order to simplify the future integration of the Log Service in OpenStack.

Bindings are provided as a Python module called PySklog. Following the C library
approach, PySklog includes the definition of three Python classes, one for each SK role:
Sklog_U for U role, Sklog_T for T role and finally Sklog_V for V role. While libsklog
implements only the SK capabilities, the module PySklog implements also the REST commu-
nication protocol of the Log Service.

9.3.3 Building blocks implementation

Log Storage

Despite the definition of the Subsection 9.2.1, actually the Log Storage is not implemented as
RESTful service. In the current version, to store the log entries the Cloud Components execute a
MySQL query on a remote database. This approach could be considered the best approximation
to the real behaviour of the Log Storage that will be implemented as REST service as next step.

Log Core

The Log Core is actually a Python script that implements a standalone REST service (Figure 9.6).
It is implemented using the Python module PySklog to provide the Log Service capabilities
and the module bottlepy [Hel12] to build the REST service.

Log Console

Actually the Log Console is implemented as Python script that uses PySklog. This script can
be used by the Log Reviewer to request the verification of a certain Log File. Such a simple

TClouds D2.1.2 Page 122 of 138



D2.1.2 – Preliminary Description of Mechanisms and Components for
Single Trusted Clouds
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PySklog

libsklog
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Log Storage
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Figure 9.6: Log Core low level architecture.

console, converts the Log Reviewers’ requests in REST requests and send them to the Log Core
without performing any check about the Log Reviewer permissions.

9.3.4 Integration in OpenStack “Essex”
OpenStack [Ope12] is an open source framework for cloud computing that is implemented in
Python. It is the composition of five services: nova (computing service), glance (imaging
service), swift (object storage service), keystone (identity service) and finally horizon
(web based cloud management dashboard). The OpenStack logging system (log.py) is based
on the Python module called logging [Pyt12a]. Such module makes possible the definition of
multiple logging handlers [Pyt12b].

Cloud Component(s)

nova-api nova-scheduler

log.py
OpenStack

PySklog

libsklog

Log Service
Module

REST Log Core
Log Storage

MySQL Query

Log Storage

Figure 9.7: Integration of Log Service in OpenStack.

The integration of the Log Service in OpenStack (Figure 9.7) includes the definition of a new
logging handler called SecureLoggingHandler and the definition of a new group of nova
configuration flags that is called securelog. Such group includes the flags listed in Table 9.1.
The Listing 9.3 shows an example of the usage of the securelog flags.

...
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Flag Values Description
use_secure_log Boolean Enable or disable the securelog logging handler
logcore_address String Address where Log Core is listening
logcore_port Integer Port where Log Core is bound
securelog_logfile String Path to the file used to log sessions opening and closure
securelog_services String Services that have to log using secure logging

Table 9.1: securelog configuration flags.

[securelog]
use_secure_log = True
logcore_address = logcore.example.com
logcore_port = 9000
securelog_logfile = /var/log/nova/securelog.log
securelog_services = nova-api, nova-scheduler

...

Listing 9.3: Example of nova.conf using securelog flags group.
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Doorn, and RamÃşn CÃąceres. Trusted Virtual Domains: Toward secure dis-
tributed services. In First Workshop on Hot Topics in System Dependability (Hot-
dep’05). IEEE, 2005.

[GKQV10] Rashid Guerraoui, Nikola Knezevic, Vivien Quéma, and Marko Vukolić. The next
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