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Executive Summary

In this deliverable we give a preliminary overview of the TClouds architecture, which is devoted
to providing incrementally high levels of security and dependability to cloud infrastructures, in
an open, modular and versatile way. To put matters in context, we start by discussing the moti-
vation and requirements that make up the rationale for the model and architecture of TClouds,
and we review the state-of-the-art in the area. Then we present the architecture specification,
by introducing the main building blocks and enabling components. Then, we present several
possible instantiations of the architecture addressing the security and dependability problems of
as many realistic cloud-related scenarios. We conclude the report by introducing and discussing
several components for adaptive resilience, to be designed in the project. These components are
just a subset of the possible components that can be envisaged for TClouds, but they constitute
a representative set allowing the development of several proof-of-concept prototypes.
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Chapter 1

Introduction

Chapter Authors:
Paulo Verissimo (FFCUL) and Marcelo Pasin (FFCUL)

Cloud Computing (CC) is a process and business model building on some recent technolo-
gies and paradigms, such as: Web services, storage as a service, inexpensive storage, service
oriented architecture, on demand computing, grid computing, utility computing, virtualization,
etc. CC seems to have definitely emerged as a model capable of organizing this forest of
technologies and paradigms into a solid way of providing ubiquitous scale computing services
(quoting NIST [JG11]): “... on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction”.

Alongside with the advantages brought by CC, some challenges loom, and recent surveys
have placed security and resilience as prime sources of concern, as companies and organiza-
tions seriously consider “cloudifying” their IT. As more and more services migrate to CC, so
increases the dependence of the IT business on the latter. However, short of promising adequate
security management of the infrastructure and perhaps some form of disaster recovery, there
is little evidence of what has been offered by cloud providers so far. This can be testified by
the numerous failures of cloud provider services made public, having caused service and data
loss, as well as confidentiality compromises [Sar09, Nao09]. This scenario is bound to evolve
positively under stakeholders pressure, at the very least by provision of (potentially proprietary)
accredited cloud environments, but we believe that built-in, open, and diverse solutions to cloud
dependability and security are required.

Our intuition is that a resilient cloud computing infrastructure should: be based on a cloud-
of-clouds setting; achieve resilience against both attacks and accidents; do so in as automated
as possible a way; be open but not replace but act in complement or in addition to commodity
clouds.

In this report we give a preliminary overview of the TClouds architecture and components,
which are devoted to provide incremental levels of security and dependability to cloud infras-
tructures, in an open, modular and versatile way. To put matters in context, we start by dis-
cussing the motivation and requirements in Chapter 2, that make up the rationale for the model
and architecture of TClouds, the we review the state-of-the-art in the area in Chapter 3. Then,
in Chapter 4, we discuss how TClouds addresses several realistic resilient cloud computing
scenarios, by presenting as many deployment alternatives. This objective will be attained by
offering the designer different instantiations of the architecture, addressing the security and
dependability problems put by each scenario. To keep complexity to a manageable level, the
TClouds architecture should serve these objectives essentially by re-using and reconfiguring
the same basic components providing trusted IaaS and PaaS services. In particular, we discuss
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implementations of TClouds functionality from minimal changes preserving the use of legacy
commodity clouds IaaS, to more ambitious steps, such as commodity cloud provider migration
to native TClouds.

Chapter 5 follows the architecture presentation by introducing and discussing several com-
ponents for adaptive resilience, to be designed in the project. These components are just a
subset of the possible components that can be envisaged for TClouds, but they constitute a
representative set allowing the development of several prototypes as a proof-of-concept of the
architecture’s effectiveness in promoting open, modular and versatile resilient cloud computing.

Specific descriptions of the cloud-of-clouds components under design and development in
TClouds (called subsystems in WP2.4) appear in Chapters 6 to 11. Chapter 6 describes an
Object Storage subsystem built on top of commodity cloud storage. Chapter 7 presents solutions
for ensuring consistency when running services in untrusted clouds. State Machine Replication
is proposed in Chapter 8 for executing trusted services under Byzantine failures. Chapter 9
proposes a fault-tolerant component to execute workflows. Chapter 10 presents a modified
Mapreduce platform-as-a-service, in order to tolerate Byzantine failures. The report concludes
with Chapter 11, proposing cloud-of-clouds logging services.
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Chapter 2

Motivation and Requirements

Chapter Author:
Paulo Verissimo (FFCUL)

In this section, we discuss the motivation and requirements that make up the rationale for the
model and architecture of TClouds. The diagnosis of the security and dependability problems
faced by current cloud computing systems, which led to the design of TClouds, can be described
succintly by the following:

• A “cloudified” scenario has dependability and security needs that cannot be met by the
application layer alone, requiring security-specific solutions to be provided at lower layers
of the cloud architecture.

• However, specific and proprietary IaaS or PaaS approaches to achieving security can make
migration or interoperation difficult and expensive, creating vendor lock-in and competi-
tion exclusion.

• Finally, even open approaches to these problems, if confined to a single-cloud provider,
will not address high-resilience objectives, since they are, at organizational level, a single
point of failure.

These problems can however be solved and we propose to address them in the TClouds
architecture, pretty much in the way depicted in Figure 2.1. In short, the architecture fore-
sees the introduction of an infrastructure providing resilience, between commodity untrusted
services, and the applications requiring security and dependability, as depicted in Figure 2.1b.
This infrastructure should in essence provide automated computing resilience against attacks
and accidents in complement or in addition to commodity clouds.

The functionality of this infrastructure will be defined ahead, and in order to serve a set of
requirements of resilient cloud computing. We state below the necessary requirements, by lining
up a set of propositions which translate into desirable macroscopic properties of the system,
and by discussing their rationale. Consequently, the architecture will be developed having in
mind the requirements imposed by these propositions. This way, the reader and/or potential
developer or user can get a clear view of what is behind the architectural options proposed for
TClouds and, vice-versa, can gain confidence that the architecture and respective algorithms
and middleware are bound to satisfy the imposed requirements.

Complement classical security techniques with resilience mechanisms
Classical security techniques are largely based on prevention, human intervention and ulti-
mately disconnection. There is thus a need for achieving tolerance, automation and availability,
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Figure 2.1: TClouds resilient cloud-of-clouds infrastructure: (a) Using untrusted cloud services;
(b) Achieving cloud resilience with TClouds

both under attack and in the presence of major accidents [VNC+06].

Promote automatic control of macroscopic information flows

In such complex, large-scale and distributed infrastructures, any solution, to be effective, has
to involve automatic mechanisms to secure the macroscopic command and information flows
between the major modules, such as: between layers of different trustworthiness, from unpro-
tected commodity cloud layers up to the end user; amongst peer layers implementing resilience-
improving mechanisms [VNC08].

Preserve legacy needs whilst enabling a diverse ecosystem

One should ease migration of commodity cloud providers to whatever cloud resilience solu-
tions to be advanced, by preserving legacy IaaS-level technology and components as much as
possible. On the other hand, those solutions should be open, facilitating the emergence of new
players such as intermediate added-value (e.g., resilient) cloud service providers, between the
very-large-scale commodity cloud providers and the final end-users.

Avoid single points-of-failure

This objective is at the very least meaningful at individual cloud level, by foreseeing mecha-
nisms providing availability, privacy and integrity at overall service level. However, it is also
very relevant in the sense of foreseeing mechanisms avoiding dependence on a single cloud
provider, which at organizational level is also a single point-of-failure. This points to exploiting
the redundancy and diversity that comes from relying on multiple cloud providers (clouds-of-
clouds). The relevant mechanisms should, however, be as transparent as possible to users.
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Address multiple resilient cloud computing deployment alternatives
An architecture having in mind addressing some of the objectives above should also take into
account the multiple facets of the cloud computing business, offering multiple deployment alter-
natives for resilience. However, to avoid an explosive growth of complexity, this implies being
modular and versatile enough to allow different instantiations under the same generic structure.
As an example, it should support some key interaction modes: simultaneous use of commod-
ity clouds from different providers (untrusted cloud-of-clouds); introduction of resilient cloud
service mediators, acting as added-value cloud providers; accommodation of devices for “in-
house cloudification” (allowing an organisation to build its own resilient private cloud); support
of lightweight end-users directly over commodity clouds.
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Chapter 3

State of the Art and Basic Concepts

Chapter Authors:
Alysson Bessani (FFCUL), Marcelo Pasin (FFCUL), Miguel Correia (FFCUL), Paulo Verís-
simo (FFCUL), Christian Cachin (IBM), Johannes Behl (FAU), Klaus Stengel (FAU), Rüdiger
Kapitza (FAU) and Davide Vernizzi (POL)

3.1 Replication for Byzantine Failures

Today’s information society increasingly depends on computer-provided services. This be-
comes evident the minute these services are no longer accessible due to faults and, even worse,
in the catastrophic case when faulty results are provided to users. While the first category can
be treated by standard replication solutions, the second category, so-called Byzantine failures,
presenting themselves in the form of software bugs, intrusions, viruses and hardware errors,
is far more difficult and resource intensive to handle. So far, industry has been reluctant to
employ approaches to address Byzantine failures generically as associated financial costs are
considered as too high. However, there is an ongoing trend in our society to rely more and
more on IT-based solutions and recent studies indicate that, for instance, non-benign hardware
errors are more frequent than previously assumed. Furthermore, rate as well as severity of bug
reports concerning all kinds of software appliances, is, despite numerous countermeasures, still
high. Accordingly, one can draw two conclusions: best practices to avoid software as well as
hardware errors are not enough and due to the rising importance of IT-based systems, new ways
to provide dependable systems need to be explored. As a consequence, this chapter details
approaches to tolerate Byzantine faults as they are a promising technology to make future IT
solutions more robust and dependable. We consider cloud computing and especially intra-could
replication as an ideal starting point to initiate this development. As of today, cloud and large
cluster systems already employ replication to ensure the availability of important information
necessary for configuring and coordinating large distributed applications. Prominent examples
are ZooKeeper developed by Yahoo and the Chubby lock service. So far, these services only
tolerate benign faults and a typical installation comprises five service instances, which allows to
tolerate up to two simultaneous failures. Making these services Byzantine fault tolerant is very
attractive and necessary, since they might be directly exposed to the Internet and are central for
distributed applications that potentially control a large number of resources.

In the course of this chapter, we will give a brief introduction into BFT and present a set
of initial systems showing that BFT can be practical and provides sufficient performance to
legitimate further research for building the basis of intra-cloud middleware. While some of these
systems already demonstrated their usability by replicating real life services (e.g., a network
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file system (NFS)) these systems still suffer from multiple problems such as resource demand,
limited or even no support for parallel execution as well as missing support for diversity. The
first aspect can be directly translated to high working costs, the second strongly constraints
throughput and the last aspect basically decreases the degree of fault tolerance.

In fact, support for parallelism as well as support for diversity is largely orthogonal to the
actual replication infrastructure that, at its core, executes a distributed protocol. However, as
both lack a sufficient and generic solution, they can be seen as inhibitors for the wide spread use
of BFT. Fortunately, recent research efforts in the field of deterministic execution indicate that
this is addressed now and solutions are readily available. Furthermore, we consider diversity as
a less pressing issue as there is a common interest to make standalone systems heterogeneous
(e.g., at the process level using address space randomization) to reduce the success of viruses
and similar malware. This leaves resource demand as a core problem. Traditionally, BFT
demands for 3f+1 replicas to tolerate f Byzantine faults, meaning in a minimal setting 4 service
instances to tolerate a single Byzantine fault. To circumvent this theoretical barrier, one can
apply a hybrid fault model that basically assumes that some limited part of a system can only
fail by crashing. This way, the resource demand of a BFT system can be reduced to the demand
of a classical crash stop system which requires only 2f+1 replicas. Accordingly, we discuss
recent results following this direction of research.

In the following section, we will first detail system requirements for BFT. Next, Quorum
as well as state machine replication will be discussed. In doing so, practical aspects as well as
recent advances to reduce the resource demand of BFT will be detailed. In the end of the section,
aspects concerning the programming model like diversity and parallel request processing will
be investigated and limitation of current approaches are identified.

The chapter is concluded with two sections: one on cloud storage, another on cloud process-
ing. The first of them presents current solutions to support high-availability and trustworthiness
from cloud storage, showing what could be done to improve them. The second and last section
describes the problems of ensuring the integrity of operational data and outsourced computa-
tions.

3.1.1 System Models

All works described in this chapter consider a distributed system composed by a set of processes
(clients and servers) interconnected by point-to-point channels.

A fundamental notion of a system model is its synchrony which defines how strong timing
assumptions of the model are. At one end of the spectrum of all possible timing models, one can
find the asynchronous distributed system model, in which time is regarded as completely absent
[FLP85]. At the other end, there is the synchronous system model, in which every communica-
tion and computation takes at most a bounded and known amount of time. Between the many
intermediate models of synchrony, one is especially relevant for BFT replication protocols: the
eventually synchronous system model [DLS88]. In this model, there is a bound ∆ and an instant
GST (Global Stabilization Time) for all executions of the system, so that every message sent by
a correct process to another correct process at instant u > GST is received before u+∆, with ∆

and GST unknown. The intuition behind this model is that the system can work asynchronously
(with no bounds on delays) most of the time, but there are stable periods in which the commu-
nication and processing delays are bounded1. This model is particularly important, because it

1In practice, this stable period has to be long enough for the distributed computation to terminate, but does not
need to hold forever.
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represents the best effort networks like the Internet or the ones employed inside a datacenter.
Unless stated otherwise, all protocols described in this chapter follow this model.

All components of the systems we consider can be subject to faults. Usually, it is said that
a distributed system composed by n processes can tolerate at most f < n faults. The bound
f is called fault-threshold. The three most popular fault models are crash, crash-recovery and
Byzantine. In the crash fault model, also called fault-stop, a faulty process just halts and stops
interacting with other components of the system for the remaining of the execution. The crash-
recovery model is a variation of the crash fault model in which faulty processes may recover
after some time. In the Byzantine or arbitrary fault model [LSP82a], a faulty process may
deviate arbitrarily from its specification and can exhibit any behavior. This last fault model is in
particular relevant for the TClouds project since a faulty process in the Byzantine model (also
called a Byzantine process) can be used to model a process controlled by a malicious adversary,
that is a process having been subject of an intrusion [VNC03]. Due to this reason, unless said
otherwise, we always consider protocols and systems tolerant to Byzantine faults, usually called
BFT systems.

3.1.2 Replication Models
One key mechanism for implementing fault-tolerant services is replication. In a replicated
system there is an unbounded set of clients interacting with a set of n servers acting as service
replicas. Communication between clients and servers as well as among the servers is carried
out according a protocol that implements a replication scheme.

Since most replication work in TClouds revolves around the tolerance of Byzantine faults,
we preclude the use of the replication model usually employed for (crash only) fault tolerance:
passive (or primary-backup) replication [BMST93]. In this model there is a primary replica that
executes all operations issued by the clients, and forwards the results of these operations to a
set of backup replicas able to take over the primary role in case of failures.

The problem in using passive replication with Byzantine failures is that a malicious primary
may execute operations in a wrong way to fool both clients and backup replicas. Since the reply
sent by the primary is not verified or compared with the result of the execution of the operation
in other replicas (in fact, the backup replicas do not execute the request, only store the update
result), there is no way to verify the correctness of the primary’s computation.

Given this limitation, in the remaining of this section we discuss two classical replication
models in which clients effectively compare results from different replicas to extract meaningful
responses.

Quorum Systems

Quorum systems are a technique for implementing dependable shared memory objects in mes-
sage passing distributed systems [Gif79]. Given a universe of data servers, a quorum system is
a set of server sets, called quorums, that have a non-empty intersection. The intuition is that if,
for instance, a shared data block is stored on all servers, any read or write operation has to be
done only in a quorum of servers, not in all of them. The existence of intersections between the
quorums allows the development of read and write protocols that maintain the integrity of the
shared variable even if these operations are performed in different quorums.

Byzantine quorum systems are an extension of this technique for environments in which
clients and servers can be subject of Byzantine failures [MR98a]. Formally, a Byzantine quorum
system is a set of server quorums in which each pair of quorums intersect in sufficiently many
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servers (consistency) and there is always a quorum in which all servers are correct (availability).
The servers can be used to implement one or more shared memory objects. Among the many
types of quorum systems, two of them are fundamental for implementing Byzantine replication.

In the first type, the servers form a f -masking quorum system that tolerates at most f faulty
servers, that is, it masks their failures [MR98a]. This type of Byzantine quorum systems requires
the correctness of the majority of the servers in the intersection between any two quorums, i.e.,
∀Q1,Q2 ∈Q, |Q1∩Q2| ≥ 2 f +1. Given this requirement, each quorum of the system must have
q = dn+2 f+1

2 e servers and the quorum system can be defined as: Q = {Q⊆U : |Q|= q}. This
implies in |U |= n≥ 4 f +1 servers.

The second type is called f -dissemination quorum system in which a value is disseminated
among n servers despite the existence of f faulty servers. This type of system requires data
to be self-verifiable, i.e., any faulty server that corrupts its replica of the shared object will be
detected. For such systems, at least one correct server is required in the intersection between
any two quorums, thus ∀Q1,Q2 ∈Q, |Q1∩Q2| ≥ f +1. Given this requirement, each quorum
of the system must have q = dn+ f+1

2 e servers and the quorum system can be defined as: Q =
{Q⊆U : |Q|= q}, which implies |U |= n≥ 3 f +1 servers.

With these constraints, a f -masking quorum system (resp. f -dissemination quorum system)
with n = 4 f +1 (resp. n = 3 f +1) will have quorums of 3 f +1 servers (resp. 2 f +1 servers).

State Machine Replication

A natural way to make a service fault-tolerant is to model it as a deterministic state machine,
and replicate the service implementation over a set of servers, while ensuring that all of them
start with the same state and execute the same sequence of operations. This is the main idea
behind the State Machine Replication (SMR) model [Sch90], also called active replication.

In this model, the servers, hereafter called replicas, receive an operation request issued by a
client, process it (possibly) modifying their states and send a reply. Formally, a state machine
replication is characterized by three properties:

1. Initial state : All correct replicas start in the same state;

2. Determinism : Two correct replicas on identical states that execute the same request go to
the same next state and generate equal results;

3. Coordination : All correct replicas receive and execute the same sequence of requests.

Although property 1 is trivial to implement, property 2 severely constraints the kind of ser-
vices that one can replicate using this technique. The problem is that by requiring determinism,
the state machine replication model rules out the possibility of replicas to independently gener-
ate timestamps, random numbers or even to run multiple threads, due to the fact of the inherent
non-determinism of these actions that can lead to divergent states of correct replicas. Some
work has been devoted to replicate non-deterministic state machines (e.g., [CRL03, KSC+10]),
but they are still not supported by practical implementations.

Property 3 requires the use of a total order broadcast protocol. The idea is to make clients
issue their requests through this communication primitive ensuring that all replicas receive (and
process) the same sequence of requests.
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Quorum Systems vs. State Machine Replication

One advantage of quorum systems in comparison to the state machine approach is that they
do not require that operations are executed in the same order at all replicas, so they do not
need to solve consensus. Quorum protocols usually scale much better due to the opportunity
of concurrency in the execution of operations and the shifting of hard work from servers to
client processes [AEMGG+05]. On the other hand, pure quorum protocols cannot be used to
implement objects stronger than register (in asynchronous systems), on the contrary of state
machine replication, which is more general [ES05] (but require additional assumptions).

3.1.3 Byzantine Fault Tolerance

After presenting the main assumptions required for implementing replication for critical ser-
vices and discussing the two main replication models, we now describe the most relevant works
on Byzantine fault-tolerant (BFT) replication in the context of the TClouds project.

Practical Byzantine Fault Tolerance

In this section we discuss the most important works showing that BFT replication can be effi-
cient enough to be used in practice.

Castro-Liskov BFT. The CL-BFT is a state machine replication protocol in which a total
order broadcast algorithm is used to ensure that all replicas execute all operations issued to
them in the same order [CL02]. This total order broadcast protocol is based on a leader that
sends sequence numbers for each operation issued to the replicated service. The system repli-
cas execute two communication rounds of message exchanges in order to be sure that the order
defined by the leader is correct. An important part of this protocol is the leader election algo-
rithm, triggered when the leader do not send a sequence number for a message or send different
sequence numbers to different replicas. CL-BFT always ensures linearizability (i.e., the repli-
cated deterministic service emulates a corresponding non-replicated one [HW90a]) but liveness
is satisfied only if the assumptions defined by the eventually synchronous model are satisfied.
The basic CL-BFT replication protocol requires 3 f + 1 replicas and five communication steps
to execute an operation, however, some optimizations can be used to reduce the latency by one
step [CL02, MA06].

Q/U. The work by Abd-El-Malek et al. aims to implement general services using quorum-
based protocols in asynchronous BFT systems. Since this cannot be done ensuring uncon-
ditional termination (called wait-freedom [Her91] in the distributed computing parlance), the
approach sacrifices liveness: the operations are only obstruction-free [HLM03], i.e., an opera-
tion is guaranteed to terminate only if there is no other operation executing concurrently. The
main benefit of Q/U is its fault scalability: it attains high throughput even when the number of
faults tolerated is high. Moreover, since only basic quorum-based protocols are employed, the
Q/U protocols have linear message complexity and expected small latency (two communication
steps). On the other hand, Q/U has mainly two drawbacks when compared with other BFT al-
gorithms: (i.) it is, as stated before, only obstruction-free, so in a Byzantine-prone environment
malicious clients could invoke operations continuously, causing a denial of service; and (ii.) it
requires at least 5 f + 1 servers instead of 3 f + 1, which is the lower bound on the number of
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servers required for BFT, and it has a further impact on the costs of the system due to the costs
of diversity [GPS07, GBG+11].

HQ-Replication. Cowling et al. proposed HQ-REPLICATION [CML+06], an interesting repli-
cation scheme that uses quorum protocols when there is no contention in an object access and
consensus protocols to resolve contention situations. HG requires n≥ 3 f +1 replicas and pro-
cesses reads and writes in two (four when write-backs are needed) and four communication
steps, respectively, in contention-free executions. When contention is detected (in reads too,
due to the write-back), the system uses CL-BFT protocol [CL02] to order contending requests.
This contention resolution protocol adds great latency, reaching more than ten communica-
tion steps even in synchronous and failure-free executions. It is true that in contention-free
executions, HQ is expected to be very fast, however, in unpredictable networks (in terms of
transmission delay) and Byzantine-prone environments, the usual assumption that contention
will happen rarely is not obvious for two reasons: (i.) If the replicas are deployed in different
domains (a required deployment strategy to enforce faulty independence [OBLC06]), this can
lead to unexpected communication delay between clients and different replicas in situations
with high loads; and (ii.) there is a possibility that Byzantine clients execute operations on the
system only to create contention and consequently make it less efficient.

Zyzzyva. Kotla et al. [KAD+07] proposed a protocol that uses speculation to decrease the
expected latency of BFT replication. The protocol is mainly based on a recent insight that shows
that Paxos-based Byzantine consensus can be executed in two communication steps [MA06].
This insight is applied to make a speculative BFT replication protocol: The client receives the
responses from the servers and knows if the operation result was correct, but the servers do
not know if the result sent by them is in accordance with the other servers. Results and server
states are called speculative and for ensuring the system correctness despite failures, previous
state must be stored to be rolled back if some inconsistencies are found during the speculative
execution. One of the key ideas of ZYZZYVA is that inconsistencies on system state are verified
by clients that inform the servers. The resulting protocol is very efficient when there are no
server failures and communications are timely. In this case, only three communication steps
are required and linear message complexity is presented. However, there are two drawbacks
in ZYZZYVA. First, a client must wait for equal replies from all 3 f + 1 replicas to be able
to use the speculative response (instead of the usual 2 f + 1). This means that a timer must
be set to wait for these replies (if there are faults, up to f servers could not send replies).
A recent study presented in [JMM07] shows that some “fast” protocols perform worst than
theoretically slower ones due to the requirement of waiting replies from more servers. This
happens because in real networks, there is almost always some communication link connecting a
client and a replica that requires much more time to deliver messages. Second, since ZYZZYVA

uses speculative states, the servers must store several versions of the system state until the
replicas state is committed. Besides the algorithmic complications due to the management
of several speculative states of the system, the manipulations of these state versions can have
significant processing and transmission costs, especially if there is a lot of object state processed
by the system.

BFT under Non-favorable Conditions

Two papers describe the performance of some BFT protocols under non-optimistic assump-
tions. In [SDM+08] the performance of several BFT protocols under different configurations
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and network conditions is examined. This study shows that there is no protocol that is good
in all possible conditions and that current optimistic protocols behavior can differ substantially
depending of the execution environment properties. Although this work shows that there are
some ignored problems with these protocols, it does not study the performance of them under
attack. Amir et. al [ACKL08] identify possible malicious behaviors of faulty replicas using
the CL-BFT protocol that can turn them very inefficient, and propose a performance-oriented
criteria (prime-stability) and a new protocol that satisfies this criteria (PRIME) even in faulty
conditions. Unfortunately, the prime protocol is much more costly than current optimistic pro-
tocols presented within the previous section due to the cost of the extra communication steps
required by the protocol and the cryptographic mechanisms introduced to nullify the possibility
of a malicious replica to delay its execution.

More recently, Clement et al. proposed the Aardvark algorithm that modifies PBFT in or-
der to protect it from attacks against performance [CWA+09a]. The architecture defined in
this work advocates the use of resource isolation to make correct replicas tolerate flooding at-
tacks (DoS) from malicious replicas and clients. Moreover, Aardvark also changes the primary
whenever the primary seems to be performing slowly, but it does this change by running a view
change operation, limiting the damage done by a performance degradation attack launched by
a faulty primary.

Spinning is another protocol in which the primary role keeps changing constantly in such
a way that each replica is a primary for at most one consecutive ordering protocol execution
[VCBL09]. This simple idea makes the protocol very efficient in absence of faults and dilutes
the performance degradation imposed by faulty replicas.

Finally, there exists a set of completely decentralized protocols that do not rely on pri-
mary replicas to propose order for messages: the randomized protocols. The most efficient
BFT replication library based on this technique is RITAS [MNCV06]. This system shows that
randomization-based protocols, which have very interesting features such as absence of a leader
and signature-freedom, can be efficient and present competitive performance values (latency
and throughput) when compared with other leader/timing-based protocols.

The Use of Trusted Components for Improved BFT

Most works about BFT replication use a homogeneous fault model, in which all components can
fail in the same way, although bounds on the number of faulty components are established (e.g.,
less than a third of the replicas). With this fault model and a non-synchronous system model it
has been shown that it is not possible to do Byzantine fault-tolerant state machine replication
with less than 3 f +1 replicas [Tou84].

The idea of using a hybrid fault model in the context of intrusion tolerance or Byzantine
fault tolerance, was first explored in the MAFTIA project with the TTCB work [CLNV02]. The
idea was to extend the replicas with a tamper-proof subsystem. It was in this context that the
first 2 f +1 state machine replication solution appeared [CNV04]. However, it was based on a
distributed trusted component, with a harder to enforce tamperproofness, specially in wide area
networks.

More recently Chun et al. presented another 2 f +1 BFT algorithm based on similar ideas,
A2M-PBFT-EA [CMSK07]. This algorithm requires only local tamper-proof components,
dubbed Attested Append-Only Memory (A2M). The A2M is an abstraction of a trusted log.
A2M offers methods to append values and to look up values within the log. It also provides a
method to obtain the end of the log and to advance the suffix stored in memory (used to skip
ahead by multiple sequence numbers). There are no methods to replace values that have al-
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ready been assigned. The main goal of this trusted component is to provide a mechanism for
algorithms to become immune to duplicity. Replicas using the A2M are forced to commit to
a single, monotonically increasing sequence of operations. Since the sequence is externally
verifiable, faulty replicas can not present different sequences to different replicas.

A latter paper [LDLM09] shows how the A2M abstraction can be implemented using only
the TCG Trusted Platform Module (TPM) [Gro07a, Gro07b], a standard trusted computing
platform chip present in many modern computers. The implementation is based on the use of
monotonic counters, a TPM service that appeared only in version 1.2. The TCG specifications
mandate the implementation of four monotonic counters in the TPM, but also that only one
of them can be used between reboots [Gro07a]. Sarmenta et al. override this limitation by
implementing virtual monotonic counters on an untrusted machine with a TPM [SvDO+06].
These counters are based on a hash-tree-based scheme and the single usable TPM monotonic
counter. These virtual counters are shown to allow the implementation of count-limited objects,
e.g., encrypted keys, arbitrary data, and other objects that can only be used when the associated
counter is within a certain range.

Concurrently with this previous work, Veronese et. al. propose a new BFT protocol called
MinBFT that also uses the TPM monotonic counters to build an abstraction called USIG (Unique
Sequential Identifier Generator) [VCB+09]. In their work this abstraction was used to build
state machine protocols that are optimal in required number of replicas (2 f +1 instead of 3 f +1)
and number of communication steps (4 instead of 5). The reduced number of communication
steps is a fundamental difference between MinBFT and A2M-PBFT-EA implemented as in
[LDLM09]. Besides MinBFT, Veronese et. al. also shows how to use the USIG service to
implement a version of Zyzzyva requiring only 2 f +1 replicas called MinZyzzyva.

Table 8.1 shows a comparison of some of the most important protocols discussed in this
section.

PBFT Zyzzyva TTCB A2M-PBFT-EA MinBFT
[CL02] [KAD+07] [CNV04] [CMSK07] [VCB+09]
(+[YMV+03])

Model Trusted Comp. no no TTCB A2M USIG

Speculative no yes no no no

Cost Total replicas 3 f +1 3 f +1 2 f +1 2 f +1 2 f +1
Replicas 2 f +1 2 f +1 2 f +1 2 f +1 2 f +1
with state [YMV+03]

Throughput HMAC ops 2+ (8 f+1)
b 2+ 3 f

b 3 2+ (2 f+4)
b 2+ ( f+3)

b

Latency Num. comm. 5 / 4 3 5 5 4
steps

Table 3.1: Comparison of BFT algorithms, expanding Table 1 in [KAD+07]. The throughput
and latency metrics are for each request. f is the maximum number of faulty servers and b the
size of the batch of requests used. (†) MinZyzzyva does 2 HMAC operations and one signature.

3.1.4 Extensions to the Programming Model
Layered BFT. Yin et al. presented a BFT algorithm for an architecture that separates agree-
ment (made by 3 f + 1 servers) from service execution (made by 2 f + 1 servers) [YMV+03].
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This was an important contribution to the area because service execution is expected to require
much more computational resources than agreement. However, agreement still needs 3 f + 1
machines, while in the present work we need only 2 f +1 replicas also for agreement.

An interesting extension of this model is proposed by Wood et. al. in a very recent pa-
per [WSV+11]. The approach, named ZZ, exploits the use of VMs on the execution layer to
implement services requiring only f +1 replicas in fault-free and synchronous executions (ex-
pected to be a common case in datacenters), starting more machines on-demand if divergence
of replies is detected.

Parallel processing of requests. In traditional BFT systems [CL02], correct replicas pro-
cess requests sequentially in the order determined by a total order broadcast protocol to ensure
consistency. For multithreaded service implementations, this practice usually leads to a perfor-
mance hit as application parallelism cannot be exploited. To mitigate this problem, Kotla et
al. [KD04] proposed to relax the order in which requests are executed on different replicas by
using application-specific knowledge to safely process independent requests in parallel; two re-
quests are independent, if they both perform read operations, or if they access (read or modify)
different parts of the application state.

ODRC [DK11] extends the idea of executing independent requests in parallel by dividing
the overall application state machine into multiple object state machines, one for each state
object. Using this approach, only requests accessing the same object have to be processed
sequentially to guarantee replica consistency. ODRC also supports requests accessing multiple
objects by synchronizing the object state machines involved on demand.

Storyboard [KSC+10] allows an even greater degree of parallelism by limiting sequential
execution to critical sections only. In case two threads ask to acquire a lock protecting the same
critical section, a customized thread library ensures that the threads enter the critical section in
the order of the requests they execute.

Diversity. Common vulnerabilities and bugs that affect more than one replica of a replicated
system can break the assumption that the system tolerates f faults since a single fault (a com-
mon vulnerability) can bring down more than one replica. To deal with this problem, the use
of diverse replicas is a common assumption. There is a common understand that the use of
N-version programming [AC77] is too costly for practical systems, however, opportunistic di-
versity of operating systems and database management systems were shown to be very effective
to avoid common faults and bugs on these types of components [GPS07, GBG+11].

Even knowing that diversity is indeed effective in preventing common mode faults and vul-
nerabilities, there still remain the problem of integrating these diverse components in a single
(replicated) system. The work described in [CRL03] advocates the idea of using abstraction
layers to deal with this problem. It proposes to implement diverse versions of a BFT file system
and a BFT object database above the CL-BFT protocol [CL02]. Gashi et. al. also present a pro-
totype of a replicated system integrating diverse databases [GPS07]. Their approach revolves
around using generic database access libraries like ODBC and JDBC to access these databases
using the same code.

3.1.5 Conclusions
Using BFT protocols as a basis for intra-cloud middleware seems to be unavoidable when recent
studies about hardware faults and software vulnerabilities are taken into account. This gets even
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more clear considering that cloud infrastructures need central services to coordinate and manage
large resource pools that are publicity accessible. This makes these services to neuralgic spots
of cloud infrastructures and to high value targets for attackers.

We identified three shortcomings to enable wide spread use of BFT: resources, parallel
execution, and diversity. The resource demand problem can be solved by resorting to a hybrid
fault model. The problem of parallel execution and the demand to enforce replica determinism
is not specific to BFT, but a general problem or state machine replication. We presented some
solutions that reduce the problem but demand for manual intervention. Despite the encouraging
results about the effectiveness of diversity [GPS07, GBG+11], there are still areas that deserve
more work. Diversity can be enable at different levels and at varying degree. At the momenti,
there is no generic and widely applicable solution that is effective and cost efficient.

In large parts, the provided information can be projected to a service replication in a clouds-
of-clouds scenario. Furthermore, such a scenario can be beneficial in terms of diversity as
factors like natural disasters or bad administration are addressed. As an additional factor, latency
has to be taken into account, however, there is already a fair number of proposals to considering
that.

3.2 Cloud Storage

The increasing maturity of cloud computing technology is leading many organizations to mi-
grate their computing infrastructure to the clouds. Some are fully embracing the cloud, oth-
ers are adapting their software solutions to operate partially in the cloud. Even governments
and companies that maintain critical infrastructures (as healthcare or telecommunications) are
adopting cloud computing as a way of reducing costs [Gre10]. Nevertheless, cloud computing
has limitations related to security and privacy, which should be accounted for, especially in the
context of critical applications. In TClouds we intend to leverage the benefits of cloud comput-
ing by using a combination of diverse commercial clouds to build a trustworthy cloud-of-clouds.

Unavailability can be experienced when accessing data in the cloud. Such accesses rely on
the Internet, which can be partially unavailable at times. Denial-of-service attacks can also
cause unavailability, as happened with a service hosted in Amazon EC2 in 2009 [Met09].
Furthermore, a subsidiary of Microsoft lost contact names and photos of a large number of
Sidekick users in 2009 [Sar09], while Ma.gnolia lost hundreds of megabytes of users data
[Nao09]. TClouds components exploit Byzantine fault-tolerant replication and diversity on
several clouds, allowing access to services as long as a subset of them is available and keeping
the service correct even in cases of data loss or corruption.

Data stored in the cloud as well as access patterns are subject to the provider’s discretion,
especially in applications involving private data like health records or secret data as information
about new products being developed by a company. Cryptography may be used, but the keys
must be transferred to the cloud if data records have to be processed there, and malicious insiders
are a problem even in diligent providers.

Many users are concerned to move to the clouds and be locked inside, as providers may
become dominant [ALPW10], or it may cost too much to move all data out of it. This concern
is amplified in Europe, as all major players are in the United States. TClouds protocols allow
to store fragments of encrypted data at multiple cloud providers and to reduce costs associated
with data access.

Cloud storage is a hot topic with several papers appearing recently. However, most of these
papers deal with the intricacies of implementing a storage infrastructure for single cloud of-
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ferings [MJWS10]. Work in TClouds is closer to others that explore the use of existing cloud
storage services to implement enriched storage applications. There are papers showing how
to efficiently use storage clouds for backup [VSV09], implement a database [BFG+08] or add
provenance to the stored data [MRMS10]. However, none of these works provide guarantees
like confidentiality and availability and none considers a cloud-of-clouds.

Some works on cloud storage deal with the high-availability of stored data through replica-
tion of this data on multiple clouds, and thus are closely related with the work done in TClouds.
The HAIL (High-Availability Integrity Layer) protocol set [BJO09] aggregates cryptographic
protocols for proof of recoveries with erasure codes to provide a software layer to protect the
integrity and availability of the stored data, even if the individual clouds are compromised by
a malicious and mobile adversary. HAIL has at least three limitations: it only deals with static
data (it is not possible to manage multiple versions of data), it requires that the servers run some
code, and does not provide guarantee of confidentiality of the stored data. The RACS system
(Redundant Array of Cloud Storage)[ALPW10] employs RAID5-like techniques (mainly era-
sure codes) to implement high-available and storage-efficient data replication on diverse clouds.
It does not try to solve security problems of cloud storage, but instead deals with “economic
failures” and vendor lock-in. In consequence, the system does not provide any mechanism to
detect and recover from data corruption or confidentiality violations. Moreover, it does not
provide updates of the stored data. Finally, it is worth to mention that none of these cloud
replication works present an experimental evaluation with diverse clouds.

There are several works about obtaining trustworthiness from untrusted clouds. Depot im-
proves the resilience of cloud storage making assumptions that storage clouds are fault-prone
black boxes [MSL+10a]. However, it uses a single cloud, so it provides a solution that is cheaper
but does not tolerate total data losses and the availability is constrained by the availability of the
cloud on top of which it is implemented. Works like SPORC [FZFF10a] and Venus [SCC+10a]
make similar assumptions to implement services on top of untrusted clouds. Wang et al. present
a scheme to improve the integrity guarantees of data stored in a cloud, by allowing a third party
auditor to verify this integrity on behalf of the data owner [WWL+09]. Santos et al. and Cabuk
et al. use trusted computing to ensure the integrity of the infrastructure with the objective of
guaranteeing the integrity and confidentiality of data in a cloud [SGR09, CDE+10]. Brugher
presents solutions to protect storage clouds from web attacks like SQL injection and cross site
scripting by using techniques such as input validation [Bru10]. All these works consider a sin-
gle cloud (not a cloud-of-clouds), require a cloud with the ability to run code, and have limited
support prevent service outages.

3.3 Computing in Clouds

Besides storing huge amounts of data in clouds, the outsourcing of computing tasks is an-
other fundamental pillar of cloud computing. Being cost efficient especially if the demand
for computing power is very unsteady, this approach involves a high risk regarding security of
operational data and integrity of the services executed in clouds [csa09].

Whereas data can be stored confidentially by encrypting it, ensuring the integrity of op-
erational data and outsourced computations is a much harder problem. A subtle change in
the remote computation, whether caused inadvertently by a bug or deliberately by a malicious
adversary, may result in wrong responses to the clients. Such deviations from a correct specifi-
cation can be very difficult to spot manually.

Suppose a group of clients, whose members trust each other, relies on an untrusted remote
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server for a collaboration task. For instance, the group stores its project data on a cloud service
and accesses it for coordination and document exchange. Although the server is usually correct
and responds properly, it might become corrupted some day and respond wrongly. One objec-
tive of TClouds is to discover such misbehavior and take compensation measures by leveraging
the cloud-of-clouds concept.

A common approach for tolerating faults, including adversarial actions by malicious, so-
called Byzantine servers, relies on replication [CBPS10]. However, as long as replicated ser-
vices are only exported to a single cloud, their reliability and availability depends solely on the
reliability and availability of the chosen cloud provider. Distributing replicated services over
multiple cloud providers will allow TClouds to offer highly available execution of arbitrary
services.

Moreover, TClouds will implement different techniques which can be used to check the
consistency of the clouds combined in a cloud of clouds. This can be achieved, for instance, on
the basis of authenticated data structures [NN00, MND+04, TT05], a variant of Merkle hash
trees for memory checking [BEG+94] generalized to arbitrary search structures on general data
sets. Authenticated data structures consist of communication-efficient methods for authenticat-
ing database queries answered by an untrusted provider. The two- and three-party models of
authenticated data structures allow only one client as a writer to modify the content. In contrast,
components of TClouds will allow any client to issue arbitrary operations, including updates.

This entails a multi-writer model as it is addressed, for example, by Mazières and Shasha [MS02].
They introduce untrusted storage protocols and the notion of fork-linearizability (under the
name of fork consistency), and demonstrate them with the SUNDR storage system [LKMS04].
Subsequent work of Cachin et al. [CSS07] improves the efficiency of untrusted storage pro-
tocols. A related work demonstrates how the operations of a revision control system can be
mapped to an untrusted storage primitive, such that the resulting system protects integrity and
consistency for revision control [CG09].

FAUST [CKS09] and Venus [SCC+10b] extend the model beyond the one considered here
and let the clients occasionally exchange messages among themselves. This allows FAUST and
Venus to obtain stronger semantics, in the sense that they eventually reach consistency (in the
sense of linearizability) or detect server misbehavior. TClouds proposes a service-integrity ver-
ification component that follows a model without client-to-client communication, which makes
fork-linearizability, or one of the related “forking” consistency notions [CKS09], the best that
can be achieved [MS02].

Several recent cloud-security mechanisms aim at a similar level of service consistency as
guaranteed by TClouds. They include the Blind Stone Tablet [WSS09] for consistent and private
database execution using untrusted servers, the SPORC framework [FZFF10b] for securing
group collaboration tasks executed by untrusted servers, and the Depot [MSL+10b] storage
system.
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Chapter 4

Initial Architecture Specification

Chapter Author:
Paulo Veríssimo (FFCUL)

4.1 Initial Architecture Specification
In this section, we present the architecture. We begin by introducing the key aspects of the ar-
chitecture, contrasting them, when appropriate, with the propositions enumerated earlier. Then,
we discuss the main building blocks and enabling components: diverse baseline multi-cloud
services; trusted subsystems and mechanisms which induce baseline fault and intrusion preven-
tion; middleware devices that achieve runtime automatic tolerance and protection; middleware
protocols promoting intra- and inter-cloud fault and intrusion tolerance. We briefly discuss the
placement of the components for adaptive resilience to be presented later in the report. Fi-
nally, we present several possible instantiations of the architecture addressing the security and
dependability problems of as many realistic cloud-related scenarios.
Several mechanisms (replication, Byzantine fault-tolerance, proactive recovery, randomisation,
trusted platform modules, etc.) are selectively used in the TClouds architecture, to build layers
of progressively more trusted components and middleware subsystems (trusted IaaS and PaaS),
from baseline untrusted components (basic multi-cloud untrusted services). This leads to an au-
tomation of the process of building trust: for example, at lower layers, basic intrusion tolerance
mechanisms are used to construct a trustworthy communication subsystem, which can then be
trusted by upper layers to securely communicate amongst participants, and/or managing a set
of replicas, without bothering about network or host intrusion threats.

4.1.1 Overview of the key architecture aspects
The key aspects of the architecture are presented and put in perspective, whenever appropriate,
with the propositions enumerated earlier. The TClouds architecture, despite being inspired by
previous secure and dependable architectures, such as MAFTIA [VNC+06], for the lower level
mechanisms, extends them significantly to attend to the specific challenges of cloud computing
infrastructures, for example by identifying such important middleware components as Trusted
Infrastructure as a Service (T-IaaS) or Trusted Platform as a Service (T-PaaS), as well as the
requirements to implement them. Likewise, the architecture is conceived so as to allow the
coexistence of legacy cloud systems with a native TClouds one, or the recursive construction of
a TClouds-enabled system by superimposing a resilience layer on top of a legacy cloud system.

As mentioned before, TClouds could be described, in short, as a resilient cloud-of-clouds
infrastructure providing automated computing resilience against attacks and accidents, in com-
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plement or in addition to commodity clouds. This enhanced functionality will be achieved
through specialised middleware standing between low-level, basic multi-cloud untrusted ser-
vices, and the applications requiring security and dependability, as depicted in Figure 4.1.
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Figure 4.1: TClouds middleware: (a) Services; (b) Use of services

The main characteristics of the architecture should lead to the fulfillment of the set of re-
quirements originating from the propositions made earlier. The TClouds Middleware will be an
enabler of these objectives, by providing:

• Support for heterogeneity and openess of individual resilient clouds: (a) promoting eco-
nomically inclusive clouds ecosystems; (b) improving resilience by enabling diverse fault
tolerance schemes. Figures 4.1a and 4.1b convey that message, by illustrating that so-
lutions can be defined by using heterogeneous commodity clouds (where a single-cloud
implementation is possible, as a particular case), and combining heterogenous degrees of
resilience. Inserting the cloud federation aspect right at the commodity cloud level allows
cloud-of-clouds protocols to be built at all layers of the middleware.

• Transparent resilience, with regard to failures of individual clouds, extended seamlessly to
cloud federations, as depicted in Figure 4.1a. There, we can see that the TClouds appara-
tus is foreseen to run over basic (untrusted) cloud services potentially bought from more
than one provider, masking individual cloud failures. As explained in Figure 4.1a, the
TClouds middleware lowest layer, Trusted Infrastructure as a Service, T-IaaS, provides
services which are built on the services provided by the commodity untrusted clouds
ecosystem, at the Multi-Cloud IaaS Interface, the lower interface of the TClouds mid-
dleware which, as the name says, provides the standard IaaS services, such as storage,
processing, etc. The T-IaaS services can either be used directly by application users at the
top TClouds middleware interface, the Cloud-of-Clouds Trusted Interface, or recursively
by the next layer up, the Trusted Platform as a Service, T-PaaS. The latter services can be
implemented as well by using Multi-Cloud IaaS Interface basic cloud services.

• Incremental resilience, which can be built by the applications according to their needs,
by selectively using the services provided at the Cloud-of-Clouds Trusted Interface, with
different degrees of resilience, as exemplified in Figure 4.1b: untrusted commodity cloud
IaaS services; middleware T-PaaS, Trusted Platform Services; middleware T-IaaS, Trusted
Infrastructure Services; advanced native (resilient) TClouds implementations (in green in
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the Figure), built from scratch by cloud providers (to sell resilient public clouds), or by
other companies (to “cloudetise” their IT into private clouds), over their bare resources.

• Modular functions and protocols, to be re-used at the different instantiations of the ar-
chitecture, namely for the construction of resilient cloud middleware at different lev-
els, satisfying different deployment modes, from software appliances near end users,
through middleware based mediators achieving resilience over remotely accessed com-
modity clouds-of-clouds, to encapsulating local resilience layers over commodity clouds,
or native resilient clouds.

• Seamless deployment of the necessary TClouds functions and protocols: between soft-
ware and hardware based implementations; in single- and multiple-cloud environments;
in server-side and client-side implementations.

The last two bullets will depend on implementation strategies for resilience, to be discussed
ahead.

4.1.2 Main Building Blocks
The TClouds architecture thus provides applications with a wealth of interfaces to produce
incremental resilience solutions with single or multiple clouds: TClouds Trusted Platform ser-
vices (T-PaaS) on top of the middleware layer; TClouds Trusted Infrastructure services (T-IaaS)
from within the middleware layer; Infrastructure services (IaaS) from available commodity un-
trusted clouds.

The main building blocks of the architecture that implement this functionality, illustrated
by Figure 4.2a, are introduced and explained in this section. We discuss the distributed ser-
vices contributing to the TClouds middleware, namely the placement of the components and
services for adaptive resilience to be presented later in the report, alternatively at infrastructure-
as-service (IaaS) or platform-as-a-service (PaaS) level.

Basic multi-cloud untrusted services

This block represents the available standard functionality, at IaaS level, offered by commodity
market players. Available services may evolve with the evolution of these systems, but are
normally confined to storage, processing power, networking, and several input/outputs.

Trusted Infrastructure Services

This building block represents trusted-trustworthy versions of IaaS services, namely storage
and processing power. The idea is to offer file systems, and low-level virtual machines, resilient
to attacks and faults, by combinations of fault/intrusion prevention and tolerance mechanisms
and protocols which build a resilience layer on top of the corresponding untrusted storage and
processing systems.

Trusted Platform Services

This building block represents trusted-trustworthy services at a higher level of abstraction, pro-
vided through extensions of the resilience layer implemented by the TClouds middleware, built
on top of either or both the IaaS and the T-IaaS. These services normally deploy a semantics
useful to build complex reliable and distributed applications. Examples are: state machine
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replication, consistent service execution, etc. Once more, these services are implemented by
combinations of fault/intrusion prevention and tolerance mechanisms and protocols, for exam-
ple, Byzantine fault-tolerant (BFT) protocols.TCLOUDS A hit t Bl k DiTCLOUDS Architecture Block Diagram
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Figure 4.2: TClouds architecture: (a) Block diagram; (b) TIS - TClouds Information Switch

TClouds Information Switches (TIS)

TClouds can either be deployed by final users, third-party added-value providers, or commodity
providers wishing to directly offer some form of cloud resilience. To allow seamless deployment
of these alternatives, we need to materialize the middleware in a modular way that can morph
to each particular configuration of TClouds.

The resilience mechanisms implemented in a distributed way (inter-cloud or, more appro-
priately, above the commodity or native cloud interface) are essentially based on a conceptual
“box”, the TClouds Information Switch or TIS, which runs the middleware protocols and mech-
anisms implementing the resilience components already mentioned, as shown in Figure 4.2b.
Each TIS instantiation encapsulates the services in use by that configuration, which are all or
part of the services defined in the TClouds architecture. These units, with the adequate config-
uration and placement, materialize the several TClouds incarnations in a seamless and modular
way, as required by the architecture analysis previously made.

TIS implementation depends on the particular incarnation: dedicated machine; fault and
intrusion tolerant (FIT) appliance box containing several TIS replicas implemented as virtual
machines; may run different sets of functions, depending on location. The TIS can be built with
incremental levels of resilience, depending on its criticality.

Trustworthy TIS-TIS interconnection through TClouds communication services secures in-
formation flows in the architecture.

TClouds Information Agents (TIA)

The TClouds Information Agent (TIA) can be seen as a particular implementation of a TIS, as
a software appliance residing with end clients. Like the TIS, it runs different sets of functions,
depending on specific protocols being used on the client side.
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TIAs require no additional hardware as a general rule. However, running in the client space,
they are subject to a great level of threat. This can be mitigated by configurations where the
TIA logic is aware of the existence of minimal additional hardware (e.g., trusted components)
to improve its resilience. On the other hand, the TIA option requires client modifications to
achieve the desired TClouds functionality.

Whenever needed, trustworthy TIA-TIS interconnection through TClouds communication
services secures information flows in the architecture.

4.2 TClouds deployment alternatives

In this section, we discuss how TClouds addresses several realistic resilient cloud computing
(CC) scenarios, by presenting as many deployment alternatives. This objective will be attained
by offering the designer different instantiations of the architecture, addressing the security and
dependability problems put by each scenario. To keep complexity to a manageable level, the
TClouds architecture should serve these objectives essentially by re-using and reconfiguring the
same basic components providing trusted IaaS and PaaS services.

In particular, we discuss implementations of TClouds functionality preserving the use of
legacy commodity clouds IaaS, either by resorting to client-side software, or to server-side soft-
ware. The latter can alternatively be implemented by sub-systems located at an added-value
trusted-clouds provider offering managed resilient cloud services, or in-house, as a trusted gate-
way to commodity cloud services, providing cheap solutions for achieving trusted cloud ser-
vices. An interesting step of the in-house solution is studied, in the form of a private TCLOUD
encapsulating the organisation IT. Finally the architecture allows for more ambitious steps,
those considering that commodity cloud providers will eventually adhere to a model such as
TClouds, directly providing resilient CC. In fact, our architecture foresees two basic paths for
commodity cloud migration to TClouds: TClouds-enabled Cloud preserving data center ma-
chinery and software, and adding a resilience layer on top; TClouds native Data Center and
Cloud, built from scratch with TClouds mechanisms.

TClouds-enabled client-resident software

Depicted in Figure 4.3, client-resident software is composed of add-on modules allowing direct
implementation of some secure services over commodity clouds, by organisations’ clients.

It is the simplest TClouds implementation, not requiring additional machinery, but implying
modifications in all client machines wanting to access resilient cloud services.

TClouds-enabled cloud services mediator (client-side)

Middleware layer local to an organisation is shown in Figure 4.4, using TClouds protocols and
mechanisms as front-end of one or more commodity clouds infrastructures, centralising the
provision of resilient services to the whole organisation.

Technically, this can be seen as a generalisation of the client-resident software alterna-
tive, with dedicated machines which are “clients” to the cloud providers, and simultaneously
“servers” to the organisation’s end-clients.
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TClouds-enabled cloud services mediator (server-side)

As an alternative, Figure 4.5 illustrates a middleware layer in a stand-alone organisation, using
TClouds protocols and mechanisms as front-end of one or more commodity clouds infrastruc-
tures, posing itself as an added-value clouds provider supplying resilient services.

Technically, it can be seen as a generalisation of the client-side mediator alternative, where
the relevant machines provide services to several end-client organisations.

TClouds-enabled cloud provider

Infrastructure local to a cloud provider, using TClouds protocols and mechanisms encapsulating
a legacy commodity clouds infrastructure, is shown in Figure 4.6a, as an easy path to in-house
transformation of untrusted clouds into resilient ones, by the cloud provider industry.
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Figure 4.5: TClouds-enabled cloud services mediator: server-side

Technically, it can be seen as a specialisation of the server-side mediator, where the relevant
machines are now closely coupled to the legacy cloud data center machinery of a single cloud
provider.

The trustworthiness/performance product may increase, at the loss of diversity.
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Figure 4.6: Cloud provider solutions: (a) TClouds-enabled cloud provider; (b) Native TClouds
cloud services provider

Native TClouds cloud services provider

The utimate step is shown in Figure 4.6b, where we can see an infrastructure local to a cloud
provider, using native TClouds protocols and mechanisms in the design of the data centers from
scratch.

This alternative is bound to achieve the best trustworthiness/performance product, that is,
ultimately trustworthy T-IaaS and T-PaaS for a single cloud provider, but at the cost of losing
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diversity.

Diverse TClouds ecosystem

The final and overall goal is to be able to supply a cloud system architect with all the alternatives
above.

This rich infrastructure, depicted in Figure 4.7, will be achieved by the eventual availability
of the several alternatives discussed. It prefigures a true ecosystem capable of offering the
best possible tradeoffs to clients and providers of resilient cloud services, either end-clients or
mediators.

TCLOUDS Diverse ecosystem ‐ big pictureTCLOUDS Diverse ecosystem ‐ big picture
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Figure 4.7: Diverse TClouds ecosystem

4.3 Adaptive Resilience

Incremental levels of resilience may be obtained both at micro (local node and intra-cloud) and
macroscopic level (inter-cloud), by the definition of tradeoffs between resilience and cost or
complexity of solutions.

4.3.1 TClouds local node architecture

Trusted-trustworthy operation [VNC+06] is an architectural paradigm whereby components
prevent the occurrence of some failure modes by construction, so that their resistance to faults
and hackers can justifiably be trusted. Given the severity of threats expected, some key com-
ponents are built using architectural hybridization methods in order to achieve extremely high
robustness. In other words, some special-purpose components are constructed in such a way
that we can argue that they are always secure, so that they can provide a small set of services
useful to support intrusion tolerance in the rest of the system. This concept is in line with, but
richer than, technological concepts like trusted computing or trusted platform modules.

Transparent fault and intrusion tolerance aims at preserving the illusion of a standard cloud
system to applications, hiding the complexity of building resilience from the latter. It is achieved
by specific replica control and communication algorithms to be developed.

Some resilience mechanisms will be achieved at the node level, through the use of diverse
security and dependability mechanisms, such as: trusted-trustworthy components like TPMs
or wormwholes; VM replication and recursivity; self-healing, etc. A local node architecture is
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Figure 4.8: Local architecture of a TClouds node

proposed that allows implementing these solutions in an effective and legacy-preserving way.
A snapshot of the TClouds architecture detailing a node and its interconnection methods is
depicted in three dimensions in Figure 4.8, where we can perceive the following node structur-
ing notions, which closely follow the node structuring principles for intrusion-tolerant systems
explained in [VNC+06]:

• The notion of trusted hardware – as opposed to an untrusted one. For example, most of
the hardware of a TIS is considered to be untrusted, with small parts of it being considered
trusted-trustworthy.

• The notion of trusted support software, trusted to execute a few critical functions cor-
rectly, the rest being subjected to malicious faults.

• The notion of run-time environment, offering trusted and untrusted software and operating
system services in a homogeneous way.

• The notion of trusted distributed components, for example software functions imple-
mented by collections of interacting TIS middleware.

In the context of this chapter, we will focus on the TClouds Information Switch (TIS) nodes.
However, other specific nodes, for example, native TClouds data center nodes needing to meet
high trustworthiness standards, may be also built to a similar structure.

Firstly, there is the hardware dimension, which includes the node and networking devices
that make up the physical distributed system. As said before, we assume that most of a node’s
operations run on untrusted hardware, e.g., the usual machinery of a computer, connected
through the normal networking infrastructure. However, some nodes– TIS, for example– may
have pieces of hardware that are trusted, i.e., where by construction intruders do not have direct
access to the inside of those components. The types of trusted hardware featured in TClouds
may include standard TPMs, or dedicated appliance boards with processor, plugged into the
node’s main hardware.

Secondly, services based on the trusted hardware are accessed through the local support
services. The rationale behind our trusted components is the following: whilst we let a local
node be compromised, we make sure that the trusted component operation is not undermined
(crash failure assumption).
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Thirdly, there is the distributed software provided by TClouds: middleware layers on top
of which distributed applications run, even in the presence of malicious faults (far right in
Figure 4.8).

4.3.2 Incremental node resilience strategies
Given that different application and systems will require different levels of trust, the architecture
must allow for an incremental range of resilience solutions, in the interest of the best tradeoff
with performance, cost, or complexity.

A key issue is the resilience of the TClouds nodes (TIS) against direct attacks. We give a few
examples illustrating the possible TIS construction methods, to achieve the desired incremental
range of resilience:

Ruggedised simplex - single ruggedised machine;

Loosely coupled duplex or N-plex - replicated loosely in the network;

Closely coupled N-plex - replicated with a private broadcast network (TMR-like);

Tightly coupled N-plex - replicated and diverse VMs in a same box;

Twin quad - 2 replicas of VM quads to guarantee BFT + availability.

We recall that these construction alternatives for resilience can be used either in TIS or in
machines included in native TClouds instantiations.

4.3.3 Making TIS resilient
Let us briefly discuss how TIS are made trusted-trustworthy components. TIS are built with
a combination of untrusted and trusted hardware of varying degrees, depending on the needs
and criticality of the services they support. TIS individual resilience can be enhanced by proac-
tive resilience mechanisms providing self-healing, using a construct called Proactive Resilience
Wormhole [SNV05], aiming at providing for perpetual execution of a given set of TIS, despite
continued intrusion and/or failure of an assumed simultaneous maximum number of TIS at an
assumed maximum rate.

These notions can be recursively used to construct a logical TIS which is in fact a set of
replicated physical TIS units, running some internal intrusion-tolerant protocols so that the
whole appears to the protocol users as a single logical entity, but is in fact resilient to attacks on
the TIS themselves. This is a powerful combination since the resilience of protocols running on
such intrusion-tolerant TIS components is commensurate to arbitrary-failure counterparts.

This implementation can be simplified, by having for example the TIS be made of a single
hardware box, containing several TIS replicas implemented as virtual machines.

4.3.4 TClouds distributed middleware devices
We start by reviewing the TClouds architecture deployment alternatives:

• TClouds-enabled client-resident software

• TClouds-enabled cloud services mediator (client-side)
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• TClouds-enabled cloud services mediator (server-side)

• TClouds-enabled Cloud Provider

• Native TClouds cloud services provider

• Diverse TClouds-enabled ecosystem

Satisfying these alternatives requires a few classes of TClouds distributed middleware de-
vices, which we preliminarily discuss.

Byzantine-resilient protocols

The workhorse of the solutions for achieving resilient cloud services will be the so-called
Byzantine fault-tolerant protocols, or BFT protocols.

The basic running environment for these modular protocols will be in the form of software
modules located with end-clients, e.g., to address the TClouds-enabled client-resident software
alternative.

As shown in Figure 4.9, these protocols may involve communication between modules.
However, the dotted lines suggest possible alternatives where clients do not communicate with
one another, but directly with the several commodity clouds used.

Macro view: Arch  with Client‐resident SWMacro view: Arch. with Client‐resident SW
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Provider
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TIA

TIATIA

Figure 4.9: Byzantine-resilient protocols

Appliance-box implementation

One simple and compact way of getting TClouds technology running is through a configuration
based on a virtualised node running several TIS instantiations, amongst different functional
units and replicas. This appliance box can for example, be used to enable resilient cloud services
in an SME which has simple IT resources. As Figure 4.10 suggests, the appliance box runs the
TClouds middleware, interfaces the basic multi-cloud ecosystem and transparently supplies the
organisation clients a resilient clouds interface.

Note that the protocols discussed in the previous section can modularly be re-used within
the appliance-box’s TIS.
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Figure 4.10: TClouds Appliance box implementation

Figure 4.11 suggests how to implement a private cloud with a TClouds appliance box. The
bare IT resources of the organisation are cloudetised, wrapped by the TClouds middleware,
resident in the appliance box, and offered as resilient cloud services to the organisation users.
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Figure 4.11: Implementing a private cloud with a TClouds appliance box

Server-set implementation

A powerful alternative is given by considering the implementation of potentially the same proto-
cols run in the appliance box, by an actual set of distributed servers. The advantage is increased
processing power and greater failure independence. With this configuration, it is tecnically
feasible for a mediator, an added-value cloud provider, to establish the necessary IT to offer
resilient cloud services to end-users, by buying untrusted commodity services and enhancing
them with the TClouds middleware layer, as Figure 4.12 illustrates.

The downside may be that this configuration requires trust in a single cloud provider, by the
end users. This aspect can be mitigated by two arguments: (a) given the resilience measures we
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foresee to implement TISs, the greater failure risk lies with the raw IaaS from the commodity
providers, mitigated by the diversity of the untrusted multi-cloud ecosystem; (b) the added-
value provider may be able to provide objective evidence of its measures to reduce the risks of
single-point-of-failure, or vendor lock-in. At least in the early phases of the creation of a trusted
clouds ecosystem, we believe this to be an interesting technological alternative, for example for
SMEs.

Macro view: Arch  with OEM Cloud provider Macro view: Arch. with OEM Cloud provider 

Commodity 
Cloud 

Provider

TIS TIS Cloud
Services
Mediator
(Server-side)TIS

TIS TIS

TIS

TCLOUDS 
middleware

Org. A Org. COrg. B

. . . . . . . . .

Figure 4.12: Server-set implementation

TIS-implemented TClouds-enabled cloud

In more advanced phases of the creation of a trusted clouds ecosystem, we believe that com-
modity cloud providers themselves will improve , even if selectively, their quality of service
with regard to security and dependability. Competition by added-value providers will create a
push for open solutions, of the king offered by TClouds, which we discuss in this section.

The first and easiest way for a commodity provider to offer resilient services is to preserve its
raw (non-resilient) cloud IaaS infrastructure, and implement the TClouds middleware on top of
it. This will be implemented by several TIS topologically located in a way as to completely wrap
the cloud’s data centers, as shown in Figure 4.13a. Note that the TIS are shown as simplex, for
simplicity, but they may be constructed to be as resilient as desired, according to the strategies
discussed in Section 4.3.2.

Native TClouds installation

The most advanced and effective solution is based on the implementation of a native TClouds
system from scratch, over bare resources which can themselves already have local resilience
mechanisms, as discussed in Section 4.3.1.

As the Figure 4.13b suggests, a TClouds native cloud is achieved by re-implementing the
data centers to be TClouds compliant (DCT ). This means at least two things: (a) the use of
local fault/intrusion prevention and tolerance mechanisms to enhance the basic machines and
resources; (b) the re-design of the BFT protocols used to implement the TClouds middleware,
to run embedded in the bare resources, making them intrinsically secure and dependable. That
is, a native TClouds cloud will offer, from scratch, T-IaaS and T-PaaS, with the obvious gains
in the trustworthiness/performance product and, possibly, in functionality.
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Figure 4.13: Commodity provider evolution: (a) TClouds-enabled cloud; (b) TClouds native
Data Center and Cloud
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Chapter 5

Components for Adaptive Resilience

Chapter Authors:
Alysson Bessani (FFCUL), Marcelo Pasin (FFCUL), Christian Cachin (IBM), Johannes Behl
(FAU), Klaus Stengel (FAU) and Davide Vernizzi (POL)

In this chapter we briefly present the TClouds trusted services presently being considered,
which will be detailed later in the report (a chapter each).

5.1 Object Storage
Many current cloud providers offer object storage services similar to Amazon’s Simple Stor-
age Service (S3). These services are used to store large data blobs, identified with a unique
name. IBM and FFCUL cooperate on providing subsystems for reliable and secure blob stor-
age through a federation of object storage services from multiple providers.

Software is offered under the form of a library, linked to each client’s code, and executed
before it accesses cloud storage. Management and setup are performed the same way as for
accessing one single storage provider, and the library does not require client-to-client commu-
nication.

Multiple clients may concurrently access the same remote storage provider and operate on
the same objects. It is possible thanks to an interface that contains the basic and most common
operations of object cloud storage (read, write, remove). As all cloud storage providers offer
similar interfaces, the one proposed by IBM and FFCUL uses their common denominator.

The storage system provides confidentiality through encryption, integrity through crypto-
graphic data authentication, and reliability through data replication and erasure coding. Key
management for encryption and authentication keys is integrated.

Cloud-of-clouds object storage is very simple architecturaly. It relies on practicaly no other
building block besides the currently existing vanilla cloud storage services. Object storage can
be pictured in TClouds architecture as in Figure 5.1. A TIA represents the library (or a proxy)
in the client-side that uses services from multiple cloud providers give the client the illusion of
using a single service. This subsystem is detailed in chapter 6.

5.2 Consistency for untrusted service execution
Several tools exist today which allow a single user to verify the integrity and availability of
his own data stored in the cloud. But when multiple users access the same data, they cannot
guarantee integrity between a writer and multiple readers. And when the cloud should deliver a
more complex service than storage and retrieval, such methods must be much more elaborate.
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Figure 5.1: TCLODS object storage mapped onto its architecture.

Digital signatures may be used by a client to verify integrity of data created by others. Using
this method, each client needs to sign all his data, as well as to store an authenticated public
key of the others or the root certificate of a public-key infrastructure in trusted memory. This
method, however, does not rule out all attacks by a faulty or malicious service. Even if all data
is signed during write operations, the server might omit the latest update when responding to a
reader, and even worse, it might “split its brain,” hiding updates of different clients from each
other.

Some solutions are to use trusted components in the system, which allow clients to audit
the server, guaranteeing atomicity even if the server is faulty. But without additional trust
assumptions, the atomicity of all operations in the sense of linearizability cannot be guaranteed.
Though a user may become suspicious when he does not see any input from a collaborator, the
user can only be certain that the server is not holding back information by communicating with
the collaborator directly; such user-to-user communication is indeed employed in some systems
for this purpose.

The component described here aims at discovering such misbehavior, in order for the users
to take some compensation action against a faulty server. Ensuring the integrity of remote data
and outsourced computations in this way will benefit the users directly and enhance their trust
into the service.

The integrity verification component described in Chapter 7 guarantees atomic operations
to all clients when the provider is correct and fork-linearizable semantics when it is faulty; this
means that all clients which observe each other’s operations are consistent, in the sense that
their own operations, plus those operations whose effects they see, have occurred atomically in
same sequence. This protocol generalizes previous approaches that provided such guarantees
only for outsourced storage services to arbitrary services.

5.3 State Machine Replication
Besides security, other measures are necessary to prevent intrusions. This becomes true mainly
because of the complexity of the clouds, where programming errors will potentially exist for-
ever. A secure system can be deceived by exploiting its known defects. Because of that, specific
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measures that allow for tolerating intrusions must also be addressed when building the trustwor-
thy clouds. State machine replication is a well known technique used to build intrusion-tolerant
systems, by considering intrusions as Byzantine faults.

Server and client are the basic structures used to implement distributed systems, and clouds
are not different. Servers offer services and clients use such services by invoking them. An
invocation is done by the client, sending a request message to the server, which sends a reply
message to the client with the corresponding results.

Fault-tolerant distributed systems are implemented by replicating the components prone
to failures, so they can fail independently without compromising the service availability. A
practical way of dealing with intrusions is to model the system as being fault-tolerant, capable
of keep working well even under failures. With Byzantine failures, a component is allowed to
fail in arbitrary ways, including the most common stop and crash failures, but also processing
requests incorrectly, corrupting their local state, or producing incorrect or inconsistent outputs,
typically found in intruded software.

Byzantine fault-tolerant services are implemented using replicated state-machines, that upon
receiving a request deterministically change to a new state and send a reply. All state-machine
replicas start with the same state and requests are sent to them using reliable, ordered, broadcasts
from clients. Majority (voting) is used in the clients to select the correct reply among those from
all replicas. A system built using state-machine replication ensures availability by exploiting
replication and diversity to run the replicas of the service on several clouds, thus allowing access
to it as long as a subset of them is reachable. It also ensures integrity of the service executed as
long as the majority (at least) of the clouds are correct and run the correct service code.

To minimize the probability of correlated failures and improve the fault- and intrusion-
tolerance of a replicated set of services, we expect them to be deployed on different operating
systems, Java virtual machines and hypervisors. It allows to avoid common software faults and
shared vulnerabilities. By hosting replicas in different clouds (or in different zones of the same
cloud) we can ensure that local outages and security events do not affect more than one replica.
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Figure 5.2: State-machine replication mapped onto the TClouds architecture.

A projection of state machine replication to the TClouds architecture is diplayed in Fig-
ure 5.2. A TIA represents the library (or a proxy) in the client-side that invokes multiple repli-
cas and give the client the illusion of invoking just one. The TISs represent the libraries at-
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tached to the state-machine replicas, that give to the state-machine the illusion of being ivoked
alone, whereas multiple replicas are invoked at the same time. A much deeper presentation on
state-machines and the implementation being proposed as a subsystem of TClouds is given in
Chapter 8.

5.4 Fault-tolerant workflow execution

Following the slogan “Everything as a service”, cloud computing leads to a constantly growing
number of services, ranging from very basic infrastructure offerings such as computing power or
storage space, to more complex platform services like application and other execution environ-
ments, to entire software solutions, for example, Web-based office tools. Their growing number
comes along with a growing demand for a common way to coordinate and manage interactions
of all these services. As the majority of them can be accessed by standard Web-service technol-
ogy, this demand is basically the demand for orchestrating Web services, a problem for which
exactly the field of business process management offers solutions. For instance, infrastructures
for the Business Process Execution Language (BPEL) provide a platform for executing business
processes, or more general, workflows based on multiple simpler Web services. Offered as Web
services themselves, these complex workflows are also called composite Web services.

Most of the generic or domain-tailored solutions for creating, executing and managing com-
posite Web services exhibit sophisticated interfaces, a multitude of connectors to subsystems,
and increasing support for non-functional properties such as scalability and security. Neverthe-
less, fault tolerance has received relatively limited attention so far. Standard BPEL engines, re-
sponsible for executing composite Web services within BPEL infrastructures, log state changes
to persistent storage to enable the recovery of active business processes after a reboot or crash.
Besides slowing down the execution speed during normal operation, the reliability of this mech-
anism depends on the reliability of the storage. In addition, BPEL provides only limited means
to handle failures of the Web services the workflows are based on. Making these Web services
fault tolerant is not supported at all by standard BPEL infrastructures. Moreover, the recovery
mechanism does not provide any opportunity to tolerate arbitrary faults like malicious attacks or
hardware errors. However, recent studies on cloud offerings and hardware in general show, that
clouds are less reliable than traditional data centers and hardware failures are more common
than previously assumed. This basically inhibits outsourcing of critical processes like financial
or medical services to the cloud.

Therefore, the subsystem described in Chapter 9 offers highly available, fault-tolerant exe-
cution of critical Web-service–based workflows as a platform service within clouds. The pre-
sented solution is practice-oriented, since current BPEL infrastructures and workflows can be
widely reused, and it is extensively configurable as well as dynamically adaptable through the
use of external coordination services provided by today’s cloud infrastructures.

In contrast to other works in this field, the architecture of the subsystems provides fault
tolerance by means of active replication at both the process level and the service level. Al-
though the current implementation only tolerates crashes, using active replication is the first
step towards tolerance of arbitrary faults. In the presented solution, replication is realized trans-
parently to workflows described by means of BPEL. This is achieved by automatically trans-
forming such workflows into a replication-aware version. Thereby, custom proxy components
can intercept all Web-service invocations, which enables them to carry out tasks necessary for
replication. This approach also permits to reuse standard BPEL engines, simplifying the im-
plementation. To simplify it further, we heavily make use of Apache ZooKeeper, a service to
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coordinate distributed applications. This allows externalizing coordination tasks and realizing
global configuration as well as dynamic adaptation to changing environmental conditions.

5.5 BFT MapReduce

MapReduce is a framework developed by Google for processing large data sets [DG04]. It is
composed by a programming model and a runtime system, being used extensively by Google
in its datacenters to support core business functions such as index processing for its web search
engine. Its programming model is based on map and reduce functions as found in functional
programming (with a somewhat modified meaning). It runs using a large number of computers
as found in clusters and datacenters.

Programmers specify map and reduce functions: the former is used to process an input
file and generate key-value pairs, the latter is used to merge several such pairs (with the same
key) into a single key-value pair. The running environment first splits the input file, then feeds
several instances of the map function with those splits. The multiple map outputs are then sorted
key-wise and splitted again, now fed to multiple reduce functions, in a phase known as shuffle.
Multiple reduce outputs are finally concatenated in an output file.

Under the MapReduce model, a job is easily automatically partitioned into tasks by splitting
its input data. Having a large number of independent tasks allow for shrinking and stretching
the footprint of a job during its execution in a MapReduce environment. A job can use up to any
number of resources, it just takes longer to end when using less resources. This characteristics
make MapReduce (model and enviroment) a very suitable platform for cloud computing.

Users submit jobs to MapReduce containing map and reduce functions and an input file.
The input file is stored in a special file system that breaks it into smaller replicated pieces,
called splits, homogeneously stored in the same nodes available for running jobs. Jobs are also
broken into pieces, called tasks. Every split is fed to a different map task, preferably executed
in the node that contains the split (avoids to transfer the split). When all map tasks are ended,
their output maps are sorted and hashed into partitions, one for every reduce task. The partitions
are transfered to the corresponding reduce tasks, which reduce data producing outputs that are
concatenated into a file.

The solution proposed by FFCUL for intrusion-tolerant MapReduce includes replication of
all tasks. Every map is produced multiple times and a vote is done in the reduce tasks, before
they use their input. Every reduction is produced multiple times and is stored in multiple output
files, the vote being done by the user. Instead of implementing this solution by adding TIS or
TIA blocks to an unmodified, non-intrusion-tolerant, implementation, we decided to modify a
freely available version of MapReduce by adding to it the necessary features for replication and
voting, as described in Chapter 10. The result is a complete middleware set that is intrusion-
tolerant and distributed by itself, as a native TClouds implementation of a MapReduce PaaS
(platform-as-a-service).

5.6 Logging

In our vision of cloud, the presence of a efficient logging system is necessary. In this context we
define the Log Service, a service which has as objective to track and to log events that happen
in the cloud at different levels.

The main focus of Log Service is to log and track events originating at the infrastructure
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layer. This service is mainly based on the scheme for secure logging proposed by Schneier and
Kelsey in [SK99]. Logs are composed by log entries which are usually small pieces of data,
created at high rate and rarely deleted. For these reasons, the Log Service must be capable of
recording many log entries and of providing a view on a subset of the log entries that satisfy a
particular query. Moreover, in order to ensure the security of the log entries, the Log Service
must be capable to guarantee their integrity and confidentiality. Since the log entries may con-
tain sensitive information about the usage of a certain system, Log Service must be capable to
mediate every access in order to prevent leakage of information. Therefore the presence of an
access control system is required.

Log Service may be considered as the ensemble of three components. The Log Core which
is the main component and acts as service controller, the Log Storage which manages the storage
of the log entries and the Log Console which acts as public access interface to the Log Service.
We foresee different multi-cloud scenarios that represent possible steps along evolutionary paths
from a service entirely confined within a single cloud (described in D2.1.1 and briefly recalled
in Section 11.2) – the TClouds cloud – to a completely distributed one.

As starting point, the LS can be extended to the Log as a Service by moving the location of
the nodes originating the log events from the TClouds cloud to a remote one. A possible ex-
ample could be a remote private cloud that wants to outsource the management and the storage
of the log events originated at the infrastructure layer to an external cloud entirely dedicated to
this purpose.

Another possibility is to track and log Cloud-of-Cloud events, for instance events generated
by BFT protocols. In this scenario we consider a Cloud-of-Cloud which is composed by one
trustworthy cloud (TCloud) and less trusted clouds. In this architecture, each event generated
by the BFT protocols implies the exchange of a large amount of messages between nodes which
may be part of different clouds. These messages may be used as trigger for the identification of
a certain event. This way, by defining a proper communication protocol among Cloud-of-Cloud
nodes, it is possible to realize an event-driven logging system.

Finally, it is possible to consider advanced scenarios in which the Log Service not only runs
on the trustworthy cloud, but it can be also distributed on different clouds. The “distributed”
aspect of Log Service means that some components like Log Core (or Log Storage) can be
replicated on a different cloud nodes (which may be part of untrusted clouds) in order to build,
for instance, a fault tolerance system. In this case, special attention must be paid in order
to protect the cryptographic keys used to ensure integrity and confidentiality of log entries,
especially for those keys which are used on the nodes of the untrusted cloud.

TClouds D2.2.1 Page 37 of 100



D2.2.1 – Preliminary Architecture of Middleware for Adaptive Re-
silience

Chapter 6

Object Storage

Chapter Author:
Alysson Bessani (FFCUL)

6.1 Introduction

In this chapter we present DEPSKY, a dependable and secure storage system that leverages the
benefits of cloud computing by using a combination of diverse commercial clouds to build a
cloud-of-clouds. In other words, DEPSKY is a virtual storage cloud, which is accessed by its
users by invoking operations in several individual clouds. More specifically, DEPSKY addresses
four important limitations of cloud computing for data storage in the following way:
Loss of availability: temporary partial unavailability of the Internet is a well-known phe-
nomenon. When data is moved from inside of the company network to an external datacenter,
it is inevitable that service unavailability will be experienced. The same problem can be caused
by denial-of-service attacks, like the one that allegedly affected a service hosted in Amazon
EC2 in 2009 [Met09]. DEPSKY deals with this problem by exploiting replication and diversity
to store the data on several clouds, thus allowing access to the data as long as a subset of them
is reachable.
Loss and corruption of data: there are several cases of cloud services losing or corrupting
customer data. For example, in October 2009 a subsidiary of Microsoft, Danger Inc., lost the
contacts, notes, photos, etc. of a large number of users of the Sidekick service [Sar09]. The data
was recovered several days later, but the users of Ma.gnolia were not so lucky in February of
the same year, when the company lost half a terabyte of data that it never managed to recover
[Nao09]. DEPSKY deals with this problem using Byzantine fault-tolerant replication to store
data on several cloud services, allowing data to be retrieved correctly even if some of the clouds
corrupt or lose data.
Loss of privacy: the cloud provider has access to both the data stored in the cloud and metadata
like access patterns. The provider may be trustworthy, but malicious insiders are a wide-spread
security problem. This is an especial concern in applications that involve keeping private data
like health records. An obvious solution is the customer encrypting the data before storing it,
but if the data is accessed by distributed applications this involves running protocols for key
distribution (processes in different machines need access to the cryptographic keys). DEPSKY

employs a secret sharing scheme and erasure codes to avoid storing clear data in the clouds and
to improve the storage efficiency, amortizing the replication factor on the cost of the solution.
Vendor lock-in: there is currently some concern that a few cloud computing providers become
dominant, the so called vendor lock-in issue [ALPW10]. This concern is specially prevalent
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in Europe, as the most conspicuous providers are not in the region. Even moving from one
provider to another one may be expensive because the cost of cloud usage has a component
proportional to the amount of data that is read and written. DEPSKY addresses this issue in
two ways. First, it does not depend on a single cloud provider, but on a few, so data access can
be balanced among the providers considering their practices (e.g., what they charge). Second,
DEPSKY uses erasure codes to store only a fraction (typically half) of the total amount of data in
each cloud. In case the need of exchanging one provider by another arises, the cost of migrating
the data will be at most a fraction of what it would be otherwise.

The way in which DEPSKY solves these limitations does not come for free. At first sight,
using, say, four clouds instead of one involves costs roughly four times higher. One of the key
objectives of DEPSKY is to reduce this cost, which in fact it does to about two times the cost of
using a single cloud. This seems to be a reasonable cost, given the benefits.

The key insight here is that the limitations of individual clouds can be overcome by using
a cloud-of-clouds in which the operations (read, write, etc.) are implemented using a set of
Byzantine quorum systems protocols. The protocols require diversity of location, administra-
tion, design and implementation, which in this case comes directly from the use of different
commercial clouds [Vuk10]. There are protocols of this kind in the literature, but they either
require that the servers execute some code [CT06, GWGR04, MR98a, MR98b, MAD02], not
possible in storage clouds, or are sensible to contention (e.g., [ACKM06]), which makes them
difficult to use for geographically dispersed systems with high and variable access latencies.
DEPSKY overcomes these limitations by not requiring code execution in the servers (i.e., stor-
age clouds), but still being efficient by requiring only two communication round-trips for each
operation. Furthermore, it leverages the above mentioned mechanisms to deal with data confi-
dentiality and reduce the amount data stored in each cloud.

In summary, the main contribution of this chapter is the description of the DEPSKY system, a
storage cloud-of-clouds that overcomes the limitations of individual clouds by using an efficient
set of Byzantine quorum system protocols, cryptography, secret sharing, erasure codes and the
diversity that comes from using several clouds. The DEPSKY protocols require at most two
communication round-trips for each operation and store only approximately half of the data in
each cloud for the typical case.

6.2 Cloud Storage Applications

Examples of applications that can benefit from DEPSKY are the following:

Critical data storage. Given the overall advantages of using clouds for running large scale
systems, many governments around the globe are considering the use of this model. Recently,
the US government announced its interest in moving some of its computational infrastruc-
ture to the cloud and started some efforts in understanding the risks involved in doing these
changes [Gre10]. The European Commission is also investing in the area through FP7 projects
like TClouds [tcl10].

In the same line of these efforts, there are many critical applications managed by companies
that have no interest in maintaining a computational infrastructure (i.e., a datacenter). For these
companies, the cloud computing pay-per-use model is specially appealing. An example would
be power system operators. Considering only storage systems, power systems have historical
data databases used to store the data collected from the power system. Of course, in a system
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like this, the data should be always available for queries (although the workload is mostly write-
dominated) and access control is mandatory.

Another critical application that could benefit from moving to the cloud is a unified medical
records database, also known as electronic health record (EHR). In such an application, several
hospitals, clinics, laboratories and public offices share patient records in order to offer a better
service without the complexities of transferring patient information between them. A system
like this has been being deployed in the UK for some years [Ehs10]. Similarly to our previous
example, availability of data is a fundamental requirement of a cloud-based EHR system, and
privacy concerns are even more important.

All these applications can benefit from a system like DEPSKY. First, the fact that the
information is replicated on several clouds would improve the data availability and integrity.
Moreover, the DEPSKY-CA protocol (Section 6.3) ensures the confidentiality of stored data
and therefore addresses some of the privacy issues so important for these applications. Finally,
these applications are prime examples of cases in which the extra costs due to replication are
affordable for the added quality of service.

Content distribution. One of the most surprising uses of Amazon S3 is content distribu-
tion [Hen09]. In this scenario, users use the storage system as distribution points for their
data in such a way that one or more producers store the content on their account and a set of
consumers read this content. A system like DEPSKY that supports dependable updatable infor-
mation storage can help this kind of application when the content being distributed is dynamic
and there are security concerns associated. For example, a company can use the system to
give detailed information about its business (price, available stock, etc.) to its affiliates with
improved availability and security.

Future applications. Many applications are moving to the cloud, so, it is possible to think
of new applications that would use the storage cloud as a back-end storage layer. Systems like
databases, file systems, objects stores and key-value databases can use the cloud as storage
layer as long as caching and weak consistency models are used to avoid paying the price of
cloud access on every operation.

6.3 The DEPSKY System

This section presents the DEPSKY system. It starts by presenting the system architecture, then
defines the data and system models, the two main algorithms (DEPSKY-A and DEPSKY-CA),
and a set of auxiliary protocols.

6.3.1 DEPSKY Architecture

Figure 6.1 presents the architecture of DEPSKY. As mentioned before, the clouds are storage
clouds without the capacity of executing users’ code, so they are accessed using their standard
interface without modifications. The DEPSKY algorithms are implemented as a software library
in the clients. This library offers an object store interface [GNA+98], similar to what is used by
parallel file systems (e.g., [GGL03, WBM+06]), allowing reads and writes in the back-end (in
this case, the untrusted clouds).
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Figure 6.1: Architecture of DEPSKY (w/ 4 clouds, 2 clients).

6.3.2 Data Model

The use of diverse clouds requires the DEPSKY library to deal with the heterogeneity of the
interfaces of each cloud provider. An aspect that is specially important is the format of the data
accepted by each cloud. The data model allow us to ignore these details when presenting the
algorithms.

Figure 6.3.2 presents the DEPSKY data model with its three abstraction levels. In the first
(left), there is the conceptual data unit, which corresponds to the basic storage object with
which the algorithms work (a register in distributed computing parlance [Lam86, MR98a]). A
data unit has a unique name (X in the figure), a version number (to support updates on the
object), verification data (usually a cryptographic hash of the data) and the data stored on the
data unit object. In the second level (middle), the conceptual data unit is implemented as a
generic data unit in an abstract storage cloud. Each generic data unit, or container, contains
two types of files: a signed metadata file and the files that store the data. Metadata files contain
the version number and the verification data, together with other informations that applications
may demand. Notice that a data unit (conceptual or generic) can store several versions of the
data, i.e., the container can contain several data files. The name of the metadata file is simply
metadata, while the data files are called value<Version>, where <Version> is the version
number of the data (e.g., value1, value2, etc.). Finally, in the third level (right) there is the data
unit implementation, i.e., the container translated into the specific constructions supported by
each cloud provider (Bucket, Folder, etc.).

The data stored on a data unit can have arbitrary size, and this size can be different for
different versions. Each data unit object supports the usual object store operations: creation
(create the container and the metadata file with version 0), destruction (delete or remove access
to the data unit), write and read.
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Figure 6.2: DEPSKY data unit and the 3 abstraction levels.

6.3.3 System Model
We consider an asynchronous distributed system composed by three types of parties: writers,
readers and cloud storage providers. The latter are the clouds 1-4 in Figure 6.1, while writers
and readers are roles of the clients, not necessarily different processes.

Readers and writers. Readers can fail arbitrarily [LSP82b], i.e., they can crash, fail inter-
mittently and present any behavior. Writers, on the other hand, are only assumed to fail by
crashing. We do not consider that writers can fail arbitrarily because, even if the protocol toler-
ated inconsistent writes in the replicas, faulty writers would still be able to write wrong values
in data units, effectively corrupting the state of the application that uses DEPSKY. Moreover,
the protocols that tolerate malicious writers are much more complex (e.g., [CT06, LR06]), with
active servers verifying the consistency of writer messages, which cannot be implemented on
general storage clouds.

All writers of a data unit du share a common private key Kdu
rw

used to sign some of the data
written on the data unit (function sign(DATA,Kdu

rw
)), while readers of du have access to the cor-

responding public key Kdu
uw

to verify these signatures (function veri f y(DATA,Kdu
uw
)). This public

key can be made available to the readers through the storage clouds themselves. Moreover, we
assume also the existence of a collision-resistant cryptographic hash function H.

Cloud storage providers. Each cloud is modeled as a passive storage entity that supports
five operations: list (lists the files of a container in the cloud), get (reads a file), create (creates
a container), put (writes or modifies a file in a container) and remove (deletes a file). By
passive storage entity, we mean that no protocol code other than what is needed to support the
aforementioned operations is executed. We assume that access control is provided by the system
in order to ensure that readers are only allowed to invoke the list and get operations.

Since we do not trust clouds individually, we assume they can fail in a Byzantine way: the
data stored can be deleted, corrupted, created or leaked to unauthorized parties. This is the
most general fault model and encompasses both malicious attacks and intrusions on a cloud
provider and also arbitrary data corruption (e.g., due to accidental events like the Ma.gnolia
case). The protocols require a set of n = 3 f + 1 storage clouds, at most f of which can be
faulty. Additionally, the quorums used in the protocols are composed by any subset of n− f
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storage clouds. It is worth to notice that this is the minimum number of replicas to tolerate
Byzantine servers in asynchronous storage systems [MAD02].

The register abstraction provided by DEPSKY satisfies regular semantics: a read opera-
tion that happens concurrently with a write can return the value being written or the object’s
value before the write [Lam86]. This semantics is both intuitive and stronger than the eventual
consistency of some cloud-based services [Vog09]. Nevertheless, if the semantics provided by
the underlying storage clouds is weaker than regular, then DEPSKY’s semantics is also weaker
(Section 6.3.10).

Notice that our model hides most of the complexity of the distributed storage system em-
ployed by the cloud provider to manage the data storage service since it just assumes that the
service is an object storage system prone to Byzantine faults that supports very simple oper-
ations. These operations are accessed through RPCs (Remote Procedure Calls) with the fol-
lowing failure semantics: the operation keeps being invoked until an answer is received or the
operation is canceled (possibly by another thread, using a cancel_pending special operation to
stop resending a request). This means that we have an at most once semantics for the operations
being invoked. This is not a problem because all storage cloud operations are idempotent, i.e.,
the state of the cloud becomes the same irrespectively of the operation being executed only once
or more times.

6.3.4 Protocol Design Rationale
Quorum protocols can serve as the backbone of highly available storage systems [CGKV09].
There are many protocols for implementing Byzantine fault-tolerant (BFT) storage [CT06,
GWGR04, HGR07, LR06, MR98a, MR98b, MAD02], but most of them require that the servers
execute some code, a functionality not available on storage clouds. This leads to a key differ-
ence between the DEPSKY protocols and these classical BFT protocols: metadata and data are
written in separate quorum accesses. Moreover, supporting multiple writers for a register (a
data unit in DEPSKY parlance) can be problematic due to the lack of server code able to ver-
ify the version number of the data being written. To overcome this limitation we implement a
single-writer multi-reader register, which is sufficient for many applications, and we provide a
lock/lease protocol to support several concurrent writers for the data unit.

There are also some quorum protocols that consider individual storage nodes as passive
shared memory objects (or disks) instead of servers [ACKM06, ABO03, CM02, GL03, JCT98].
Unfortunately, most of these protocols require many steps to access the shared memory, or are
heavily influenced by contention, which makes them impractical for geographically dispersed
distributed systems such as DEPSKY due to the highly variable latencies involved. DEPSKY

protocols require two communication round-trips to read or write the metadata and the data
files that are part of the data unit, independently of the existence of faults and contention.

Furthermore, as will be discussed latter, many clouds do not provide the expected con-
sistency guarantees of a disk, something that can affect the correctness of these protocols. The
DEPSKY protocols provide consistency-proportional semantics, i.e., the semantics of a data unit
is as strong as the underling clouds allow, from eventual to regular consistency semantics. We
do not try to provide atomic (linearizable) semantics due to the fact that all known techniques
require server-to-server communication [CT06], servers sending update notifications to clients
[MAD02] or write-backs [GWGR04, MR98b]. None of these mechanisms is implementable in
general-purpose storage clouds.

To ensure confidentiality of stored data on the clouds without requiring a key distribution
service, we employ a secret sharing scheme [Sha79]. In this scheme, a special party called
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dealer distributes a secret to n players, but each player gets only a share of this secret. The
main properties of the scheme is that at least f +1≤ n different shares of the secret are needed
to recover it and that no information about the secret is disclosed with f or less shares. The
scheme is integrated on the basic replication protocol in such way that each cloud receives just
a share of the data being written, besides the metadata. This ensures that no individual cloud
will have access to the data being stored, but that clients that have authorization to access the
data will be granted access to the shares of (at least) f + 1 different clouds and will be able to
rebuild the original data.

The use of a secret sharing scheme allows us to integrate confidentiality guarantees to the
stored data without using a key distribution mechanism to make writers and readers of a data
unit share a secret key. In fact, our mechanism reuses the access control of the cloud provider
to control which readers are able to access the data stored on a data unit.

If we simply replicate the data on n clouds, the monetary costs of storing data using DEPSKY

would increase by a factor of n. In order to avoid this, we compose the secret sharing scheme
used on the protocol with an information-optimal erasure code algorithm, reducing the size of
each share by a factor of n

f+1 of the original data [Rab89]. This composition follows the original
proposal of [Kra93], where the data is encrypted with a random secret key, the encrypted data
is encoded, the key is divided using secret sharing and each server receives a block of the
encrypted data and a share of the key.

Common sense says that for critical data it is always a good practice to not erase old ver-
sions of the data, unless we can be certain that we will not need them anymore [Ham07]. An
additional feature of our protocols is that old versions of the data are kept in the clouds.

6.3.5 DEPSKY-A– Available DepSky
The first DEPSKY protocol is called DEPSKY-A, and improves the availability and integrity of
cloud-stored data by replicating it on several providers using quorum techniques. Algorithm 1
presents this protocol. Due to space constraints we encapsulate some of the protocol steps in
the functions of the first two rows of Table 6.3.5. We use the ‘.’ operator to denote access to
metadata fields, e.g., given a metadata file m, m.ver and m.digest denote the version number
and digest(s) stored in m. We use the ‘+’ operator to concatenate two items into a string, e.g.,
“value”+new_ver produces a string that starts with the string “value” and ends with the value
of variable new_ver in string format. Finally, the max function returns the maximum among a
set of numbers.

The key idea of the write algorithm (lines 1-13) is to first write the value in a quorum of
clouds (line 8), then write the corresponding metadata (lines 12). This order of operations
ensures that a reader will only be able to read metadata for a value already stored in the clouds.
Additionally, when a writer does its first writing in a data unit du (lines 3-5, max_verdu is
initialized as 0), it first contacts the clouds to obtain the metadata with the greatest version
number, then updates the max_verdu variable with the current version of the data unit.

The read algorithm just fetches the metadata files from a quorum of clouds (line 16), chooses
the one with greatest version number (line 17) and reads the value corresponding to this version
number and the cryptographic hash found in the chosen metadata (lines 19-22). After receiving
the first reply that satisfies this condition the reader cancels the pending RPCs and returns the
value (lines 22-24).

The rationale of why this protocol provides the desired properties is the following (proofs
on the Appendix). Availability is guaranteed because the data is stored in a quorum of at least
n− f clouds and it is assumed that at most f clouds can be faulty. The read operation has
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Function Description
queryMetadata(du)obtains the correctly signed file

metadata stored in the container
du of n− f out-of the n clouds
used to store the data unit and re-
turns it in an array.

writeQuorum(du,
name,value)

for every cloud i ∈ {0, ...,n −
1}, writes the value[i] on a file
named name on the container du
in that cloud. Blocks until it re-
ceives write confirmations from
n− f clouds.

H(value) returns the cryptographic hash of
value.

Table 6.1: Functions used in the DEPSKY-A protocols.

Algorithm 1: DEPSKY-A
1 procedure DepSkyAWrite(du,value)
2 begin
3 if max_verdu = 0 then
4 m←− queryMetadata(du)
5 max_verdu←−max({m[i].ver : 0≤ i≤ n−1})
6 new_ver←− max_verdu +1
7 v[0 .. n−1]←− value
8 writeQuorum(du,“value”+new_ver,v)
9 new_meta←− 〈new_ver,H(value)〉

10 sign(new_meta,Krw)
11 v[0 .. n−1]←− new_meta
12 writeQuorum(du,“metadata”,v)
13 max_verdu←− new_ver

14 function DepSkyARead(du)
15 begin
16 m←− queryMetadata(du)
17 max_id←− i : m[i].ver = max({m[i].ver : 0≤ i≤ n−1})
18 v[0 .. n−1]←−⊥
19 parallel for 0 ≤ i < n−1 do
20 tmpi←− cloudi.get(du, “value” +m[max_id].ver)
21 if H(tmpi) = m[max_id].digest then v[i]←− tmpi

22 wait until ∃i : v[i] 6=⊥
23 for 0 ≤ i ≤ n−1 do cloudi.cancel_pending()
24 return v[i]

to retrieve the value from only one of the clouds (line 22), which is always available because
(n− f )− f > 1 . Together with the data, signed metadata containing its cryptographic hash
is also stored. Therefore, if a cloud is faulty and corrupts the data, this is detected when the
metadata is retrieved.

6.3.6 DEPSKY-CA– Confidential & Available DepSky
The DEPSKY-A protocol has two main limitations. First, a data unit of size S consumes n×S
storage capacity of the system and costs on average n times more than if it was stored in a single
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cloud. Second, it stores the data in cleartext, so it does not give confidentiality guarantees. To
cope with these limitations we employ an information-efficient secret sharing scheme [Kra93]
that combines symmetric encryption with a classical secret sharing scheme and an optimal
erasure code to partition the data in a set of blocks in such a way that (i.) f + 1 blocks are
necessary to recover the original data and (ii.) f or less blocks do not give any information
about the stored data1.

The DEPSKY-CA protocol integrates these techniques with the DEPSKY-A protocol (Algo-
rithm 2). The additional cryptographic and coding functions needed are in Table 6.3.6.

Function Description
generateSecretKey() generates a random secret key
E(v,k)/D(e,k) encrypts v and decrypts e with key k
encode(d,n, t) encodes d on n blocks in such a way

that t are required to recover it
decode(db,n, t) decodes array db of n blocks, with

at least t valid, to recover d
share(s,n, t) generates n shares in such a way that

at least t of them are required to
obtain any information about s

combine(ss,n, t) combines shares on array ss of size n
containing at least t correct shares to
obtain the secret s

Table 6.2: Functions used in the DEPSKY-CA protocols.

The DEPSKY-CA protocol is very similar to DEPSKY-A with the following differences: (1.)
the encryption of the data, the generation of the key shares and the encoding of the encrypted
data on DepSkyCAWrite (lines 7-10) and the reverse process on DepSkyCARead (lines 30-31);
(2.) the data stored in cloudi is composed by the share of the key s[i] and the encoded block e[i]
(lines 12, 30-31); and (3.) f +1 replies are necessary to read the data unit’s current value instead
of one on DEPSKY-A (line 28). Additionally, instead of storing a single digest on the metadata
file, the writer generates and stores n digests, one for each cloud. These digests are accessed
as different positions of the digest field of a metadata. If a key distribution infrastructure is
available, or if readers and writer share a common key k, the secret sharing scheme can be
removed (lines 7, 9 and 31 are not necessary).

The rationale of the correctness of the protocol is similar to the one for DEPSKY-A. The
main differences are those already pointed out: encryption prevents individual clouds from
disclosing the data; secret sharing allows storing the encryption key in the cloud without f
faulty clouds being able to reconstruct it; the erasure code scheme reduces the size of the data
stored in each cloud.

6.3.7 Read Optimization
The DEPSKY-A algorithm described in Section 6.3.5 tries to read the most recent version of
the data unit from all clouds and waits for the first valid reply to return it. In the pay-per-use
model it is far from ideal: even using just a single value, the application will be paying for n
data accesses. A lower-cost solution is to use some criteria to sort the clouds and try to access
them sequentially, one at time, until we obtain the desired value. The sorting criteria can be
based on access monetary cost (cost-optimal), the latency of queryMetadata on the protocol

1Erasure codes alone cannot satisfy this confidentiality guarantee.
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Algorithm 2: DEPSKY-CA
1 procedure DepSkyCAWrite(du,value)
2 begin
3 if max_verdu = 0 then
4 m←− queryMetadata(du)
5 max_verdu←−max({m[i].version : 0≤ i≤ n−1})
6 new_ver←− max_verdu +1
7 k←− generateSecretKey()
8 e←− E(value,k)
9 s[0 .. n−1]←− share(k,n, f +1)

10 v[0 .. n−1]←− encode(e,n, f +1)
11 for 0 ≤ i < n−1 do
12 d[i]←− 〈s[i],e[i]〉
13 h[i]←− H(d[i])

14 writeQuorum(du,“value”+new_ver,d)
15 new_meta←− 〈new_ver,h〉
16 sign(new_meta,Krw)
17 v[0 .. n−1]←− new_meta
18 writeQuorum(du,“metadata”,v)
19 max_verdu←− new_ver

20 function DepSkyCARead(du)
21 begin
22 m←− queryMetadata(du)
23 max_id←− i : m[i].ver = max({m[i].ver : 0≤ i≤ n−1})
24 d[0 .. n−1]←−⊥
25 parallel for 0 ≤ i ≤ n−1 do
26 tmpi←− cloudi.get(du, “value” +m[max_id].ver)
27 if H(tmpi) = m[max_id].digest[i] then d[i]←− tmpi

28 wait until |{i : d[i] 6=⊥}|> f
29 for 0 ≤ i ≤ n−1 do cloudi.cancel_pending()
30 e←− decode(d.e,n, f +1)
31 k←− combine(d.s,n, f +1)
32 return D(e,k)

(latency-optimal), a mix of the two or any other more complex criteria (e.g., an history of the
latency and faults of the clouds).

This optimization can also be used to decrease the monetary cost of the DEPSKY-CA read
operation. The main difference is that instead of choosing one of the clouds at a time to read
the data, f +1 of them are chosen.

6.3.8 Supporting Multiple Writers – Locks
The DEPSKY protocols presented do not support concurrent writes, which is sufficient for many
applications where each process write on its own data units. However, there are applications in
which this is not the case. An example is a fault-tolerant storage system that uses DEPSKY as its
backend object store. This system could have more than one node with the writer role writing
in the same data unit(s) for fault tolerance reasons. If the writers are in the same network, a
coordination system like Zookeeper [HKJR10a] or DepSpace [BACF08] can be used to elect a
leader and coordinate the writes. However, if the writers are scattered through the Internet this
solution is not practical without trusting the site in which the coordination service is deployed
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(and even in this case, the coordination service may be unavailable due to network issues).
The solution we advocate is a low contention lock mechanism that uses the cloud-of-clouds

itself to maintain lock files on a data unit. These files specify which is the writer and for how
much time it has write access to the data unit. The protocol is the following:

1. A process p that wants to be a writer (and has permission to be), first lists files on the data
unit container on all n clouds and tries to find a zero-byte file called lock-ID-T. If such
file is found on a quorum of clouds, ID 6= p and the local time t on the process is smaller
than T +∆, being ∆ a safety margin concerning the difference between the synchronized
clocks of all writers, someone else is the writer and p will wait until T +∆.

2. If the test fails, p can write a lock file called lock-p-T on all clouds, being T = t +
writer_lease_time.

3. In the last step p lists again all files in the data unit container searching for other lock files
with t < T +∆ besides the one it wrote. If such file is found, p removes the lock file it
wrote from the clouds and sleeps for a small random amount of time before trying to run
the protocol again. Otherwise, p becomes the single-writer for the data unit until T .

Several remarks can be made about this protocol. First, the last step is necessary to ensure
that two processes trying to become writers at the same time never succeed. Second, locks
can be renewed periodically to ensure existence of a single writer at every moment of the ex-
ecution. Moreover, unlocking can be easily done through the removal of the lock files. Third,
the protocol requires synchronized clocks in order to employ leases and thus tolerate writer
crashes. Finally, this lock protocol is only obstruction-free [HLM03]: if several process try to
become writers at the same time, it is possible that none of them are successful. However, due
to the backoff on step 3, this situation should be very rare on the envisioned deployments for
the systems.

6.3.9 Additional Protocols
Besides read, write and lock, DEPSKY provides other operations to manage data units. These
operations and underlying protocols are briefly described in this section.

Creation and destruction. The creation of data units can be easily done through the invo-
cation of the create operation in each individual cloud. In contention-prone applications, the
creator should execute the locking protocol of the previous section before executing the first
write to ensure it is the single writer of the data unit.

The destruction of a data unit is done in a similar way: the writer simply removes all files
and the container that stores the data unit by calling remove in each individual cloud.

Garbage collection. As already discussed in Section 6.3.4, we choose to keep old versions
of the value of the data unit on the clouds to improve the dependability of the storage system.
However, after many writes the amount of storage used by a data unit can become too costly for
the organization and thus some garbage collection is necessary. The protocol for doing that is
very simple: a writer just lists all files value<Version> in the data unit container and removes
all those with <Version> smaller than the oldest version it wants to keep in the system.
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Cloud reconfiguration. Sometimes one cloud can become too expensive or too unreliable to
be used for storing DEPSKY data units. In this case we need a reconfiguration protocol to move
the blocks from one cloud to another. The process is the following: (1.) the writer reads the data
(probably from the other clouds and not from the one being removed); (2.) it creates the data
unit container on the new cloud; (3.) executes the write protocol on the clouds not removed and
the new cloud; (4.) deletes the data unit from the cloud being removed. After that, the writer
needs to inform the readers that the data unit location was changed. This can be done writing a
special file on the data unit container of the remaining clouds informing the new configuration
of the system. A process will read this file and accept the reconfiguration if this file is read from
at least f +1 clouds.

6.3.10 Dealing with Weakly Consistent Clouds

Both DEPSKY-A and DEPSKY-CA protocols implement single-writer multi-reader regular
registers if the clouds being accessed provide regular semantics. However, several clouds do
not ensure this guarantee, but instead provide read-after-write or eventual consistency [Vog09]
for the data stored (e.g., Amazon S3 [Ama10]).

With a slight modification, our protocols can work with these weakly consistent clouds. The
modification is very simple: repeat the data file reading from the clouds until the required con-
dition is satisfied (receiving 1 or f +1 data units, respectively in lines 22 and 28 of Algorithms
1 and 2). This modification ensures the read of a value described on a read metadata will be
repeated until it is available.

This modification makes the DEPSKY protocols be consistency-proportional in the follow-
ing sense: if the underlaying clouds provide regular semantics, the protocols provide regular se-
mantics; if the clouds provide read-after-write semantics, the protocol satisfies read-after-write
semantics; and finally, if the clouds provide eventually consistency, the protocols are eventu-
ally consistent. Notice that if the underlying clouds are heterogeneous in terms of consistency
guarantees, DEPSKY ensures the weakest consistency among those provided. This comes from
the fact that reading of a recently write value depends on the reading of the new metadata file,
which, after a write is complete, will only be available eventually on weakly consistent clouds.

A problem with not having regular consistent clouds is that the lock protocol may not work
correctly. After listing the contents of a container and not seeing a file, a process cannot con-
clude that it is the only writer. This problem can be minimized if the process waits a while
between steps 2 and 3 of the protocol. However, the mutual exclusion guarantee will only be
satisfied if the wait time is greater than the time for a data written to be seen by every other
reader. Unfortunately, no eventually consistent cloud of our knowledge provides this kind of
timeliness guarantee, but we can experimentally discover the amount of time needed for a read
to propagate on a cloud with the desired coverage and use this value in the aforementioned
wait. Moreover, to ensure some safety even when two writes happen in parallel, we can include
an unique id of the writer (e.g., the hash of part of its private key) as the decimal part of its
timestamps, just like is done in most Byzantine quorum protocols (e.g., [MR98a]). This simple
measure allows the durability of data written by concurrent writers (the name of the data files
will be different), even if the metadata file may point to different versions on different clouds.
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6.4 DEPSKY Implementation

We have implemented a DEPSKY prototype in Java as an application library that supports the
read and write operations. The code is divided in three main parts: (1) data unit manager, that
stores the definition and information of the data units that can be accessed; (2) system core,
that implements the DEPSKY-A and DEPSKY-CA protocols; and (3) drivers to access cloud
providers, which implement the logic for accessing the different clouds. The current implemen-
tation has 5 drivers available (the four clouds used in the evaluation - see next section - and one
for storing data locally), but new drivers can be easily added. The overall implementation is
about 2910 lines of code, being 1122 lines for the drivers.

The DEPSKY code follows a model of one thread per cloud per data unit in such a way that
the cloud accesses can be executed in parallel (as described in the algorithms). All communica-
tions between clients and cloud providers are made over HTTPS (secure and private channels)
using the REST APIs supplied by the storage cloud provider.

Our implementation makes use of several building blocks: RSA with 1024 bit keys for
signatures, SHA-1 for cryptographic hashes, AES for symmetric cryptography, Shoenmakers’
PVSS scheme [Sch99] for secret sharing with 192 bits secrets and the classic Reed-Solomon
for erasure codes [Pla07]. Most of the implementations used come from the Java 6 API, while
Java Secret Sharing [BACF08] and Jerasure [Pla07] were used for secret sharing and erasure
code, respectively.

6.5 Related Work

DEPSKY provides a single-writer multi-reader read/write register abstraction built on a set of
untrusted storage clouds that can fail in an arbitrary way. This type of abstraction supports
an updatable data model, requiring protocols that can handle multiple versions of stored data
(which is substantially different than providing write-once, read-maybe archival storages such
as the one described in [SGMV07]).

There are many protocols for Byzantine quorums systems for register implementation (e.g.,
[MR98a, GWGR04, HGR07, MAD02]), however, few of them address the model in which
servers are passive entities that do not run protocol code [ACKM06, ABO03, JCT98]. DEPSKY

differentiates from them in the following aspects: (1.) it decouples the write of timestamp and
verification data from the write of the new value; (2.) it has optimal resiliency (3 f +1 servers
[MAD02]) and employs read and write protocols requiring two communication round-trips in-
dependently of the existence of contention, faults and weakly consistent clouds; finally, (3.) it
is the first single-writer multi-reader register implementation supporting efficient encoding and
confidentiality. Regarding (2.), our protocols are similar to others for fail-prone shared memory
(or “disk quorums”), where servers are passive disks that may crash or corrupt stored data. In
particular, Byzantine disk Paxos [ACKM06] presents a single-writer multi-reader regular reg-
ister construction that requires two communication round-trips both for reading and writing in
absence of contention. There is a fundamental difference between this construction and DEP-
SKY: it provides a weak liveness condition for the read protocol (termination only when there is
a finite number of contending writes) while our protocol satisfies wait-freedom. An important
consequence of this limitation is that reads may require several communication steps when con-
tending writes are being executed. This same limitation appears on [ABO03] that, additionally,
does not tolerate writer faults. Regarding point (3.), it is worth to notice that several Byzantine
storage protocols support efficient storage using erasure codes [CT06, GWGR04, HGR07], but
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none of them mention the use of secret sharing or the provision of confidentiality. However, it is
not clear if information-efficient secret sharing [Kra93] or some variant of this technique could
substitute the erasure codes employed on these protocols.

6.6 Conclusion
This chapter presents the design and evaluation of DEPSKY, a storage service that improves
the availability and confidentiality provided by commercial storage cloud services. The system
achieves these objectives by building a cloud-of-clouds on top of a set of storage clouds, com-
bining Byzantine quorum system protocols, cryptographic secret sharing, erasure codes and the
diversity provided by the use of several cloud providers. We believe DEPSKY protocols are
in an unexplored region of quorum systems design space and can enable applications sharing
critical data (e.g., financial, medical) to benefit from clouds.
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Chapter 7

Consistency for untrusted service execution

Chapter Author:
Christian Cachin (IBM)

7.1 Introduction

As stated in previous chapters, ensuring the integrity of remote data and outsourced computa-
tions in the context of cloud computing is a very severe problem. Clients depend on the services
they use. A bug in the service implementation or a malicious adversary who compromised the
corresponding server(s) can have serious consequences. This gets even worse, when services
are not executed within a local and controllable context, but by a third party, namely the cloud
provider. Therefore, this work aims at discovering such misbehavior, in order for the clients to
take some compensation action.

When the service provides data storage (read and write operations only), some well-known
methods guarantee data integrity. With only one client, a memory checker [BEG+94] ensures
that a read operation always returns the most recently written value. If multiple clients access
the remote storage, they can combine a memory checker with an external trusted infrastructure
(like a directory service or a key manager in a cryptographic file system), and achieve the same
guarantees for many clients.

But in the asynchronous network model without client-to-client communication considered
here, nothing prevents the server from mounting a forking attack, whereby it simply omits the
operations of one client in its responses to other clients. Mazières and Shasha [MS02] put
forward the notion of fork-linearizability, which captures the optimal achievable consistency
guarantee in this setting. It ensures that whenever the server’s responses to a client A have
ignored a write operation executed by a client B, then A can never again read a value written
by B afterwards and vice versa. With this notion, the clients detect server misbehavior from
a single inconsistent operation — this is much easier than comparing the effects of all past
operations one-by-one.

This work makes the first step toward ensuring integrity and consistency for arbitrary com-
puting services running on an untrusted server. It does so by extending untrusted storage proto-
cols providing fork-linearizability to a generic service protocol with fork-linearizable semantics.
Previous work in this model only addressed integrity for a storage service, but could not check
the consistency of more general computations by the server.

Similar to the case of a storage service, the server can readily mount a forking attack by
splitting the group of clients into subgroups and responding consistently within each subgroup,
but not making operations from one subgroup visible to others. Because the protocol presented
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here ensures fork-linearizability, however, such violations become easy to discover. The method
therefore protects the integrity of arbitrary services in an end-to-end way, as opposed to existing
techniques that aim at ensuring the integrity of a computing platform (e.g., the trusted comput-
ing paradigm).

Our approach requires that (at least part of) the service implementation is known to the
clients, because they need to double-check crucial steps of an algorithm locally. In this sense,
the notion of fork-linearizable service integrity, as considered here, means that the clients have
collaboratively verified every single operation of the service. This strictly generalizes the estab-
lished notion of fork-linearizable storage integrity. A related notion for databases is ensured by
the Blind Stone Tablet protocol [WSS09].

7.1.1 Contributions
We present the first precise model for a group of mutually trusting clients to execute an arbi-
trary service on an untrusted server S, with the following characteristics. It guarantees atomic
operations to all clients when S is correct and fork-linearizability when S is faulty; this means
that all clients which observe each other’s operations are consistent, in the sense that their own
operations, plus those operations whose effects they see, have occurred atomically in same se-
quence.

Furthermore, we generalize the concept of authenticated data structures [NN00] toward
executing arbitrary services in an authenticated manner with multiple clients. We present a pro-
tocol for consistent service execution on an untrusted server, which adds O(n) communication
overhead for a group of n clients; it generalizes existing protocols that have addressed only the
special case of storage on an untrusted server.

7.1.2 Organization
Section 7.2 describes the model and recalls fork-linearizability and other consistency notions.
In Section 7.3 the notion of authenticated service execution is introduced, which plays the
main role for formalizing arbitrary services so that their responses can be verified. Section 7.4
presents the fork-linearizable service execution protocol. The detailed analysis and generaliza-
tions are omitted from this chapter.

7.2 System model

7.2.1 System
We consider an asynchronous distributed system consisting of n clients C1, . . . ,Cn and a server S.
Every client is connected to S through an asynchronous reliable channel that delivers messages
in first-in/first-out (FIFO) order. The clients and the server together are called parties. A proto-
col P specifies the behaviors of all parties. An execution of P is a sequence of alternating states
and state transitions, called events, which occur according to the specification of the system
components.

All clients follow the protocol; in particular, they do not crash. Every client has some small
local trusted memory, which serves to store keys and authentication values. The server might
be faulty and deviate arbitrarily from the protocol; such behavior is also called Byzantine. A
party that does not fail in an execution is correct.
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7.2.2 Functionality
We consider a deterministic state machine, which is modeled by a functionality F as follows.
It maintains a state s ∈ S , repeatedly takes some operation o ∈ O as input (o may contain
arguments), and outputs a response r ∈R and a new state s′. The initial state is denoted by sF0.
Formally, a step of F is written as

(s′,r) ← F(s,o).

Because operations are executed one after another, this gives the sequential specification of F .
We discuss the concurrent invocation of multiple operations later.

We extend this notation for executing multiple operations o1, . . . ,om in sequence, starting
from an initial state s0, and write

(s′,r) = F(s0, [o1, . . . ,om])

for (si,ri) = F(si−1,oi) with i = 1, . . . ,m and (s′,r) = (sm,rm).
We define the space complexity of F , denoted by SPACEF , to be the number of bits required

to store the largest of its states, i.e.,

SPACEF = max
s∈S
|s|.

The space complexity determines the amount of local storage necessary to execute F .

7.2.3 Operations and histories
Our goal is to emulate F to the clients with the help of server S. The clients invoke the operations
of F ; every operation is represented by two events occurring at the client, an invocation and a
response. A history of an execution σ consists of the sequence of invocations and responses
of F occurring in σ . An operation is complete in a history if it has a matching response.
For a sequence of events σ , complete(σ) is the maximal subsequence of σ consisting only of
complete operations.

An operation o precedes another operation o′ in a sequence of events σ , denoted o <σ o′,
whenever o completes before o′ is invoked in σ . A sequence of events π preserves the real-
time order of a history σ if for every two operations o and o′ in π , if o <σ o′ then o <π o′.
Two operations are concurrent if neither one of them precedes the other. A sequence of events
is sequential if it does not contain concurrent operations. For a sequence of events σ , the
subsequence of σ consisting only of events occurring at client Ci is denoted by σ |Ci (we use the
symbol | as a projection operator). For some operation o, the prefix of σ that ends with the last
event of o is denoted by σ |o.

An execution is well-formed if the sequence of events at each client consists of alternating
invocations and matching responses, starting with an invocation. An execution is fair, infor-
mally, if it does not halt prematurely when there are still steps to be taken or messages to be
delivered.

7.2.4 Consistency conditions
We now describe the formal consistency notions required from an untrusted service, formulated
in terms of the possible views of a client. A sequence of events π is called a view of a history σ

at a client Ci w.r.t. a functionality F if σ can be extended (by appending zero or more responses)
to a history σ ′ such that:
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1. π is a sequential permutation of some subsequence of complete(σ ′);

2. π|Ci = complete(σ ′)|Ci; and

3. π satisfies the sequential specification of F .

Intuitively, a view π of σ at Ci contains at least all those operations that either occur at Ci or are
apparent from to Ci from its interaction with F .

One of the most important consistency conditions for concurrent operations is linearizabil-
ity, which guarantees that all operations occur atomically.

Definition 1 (Linearizability [HW90b]). A history σ is linearizable w.r.t. a functionality F if
there exists a sequence of events π such that:

1. π is a view of σ at all clients w.r.t. F ; and

2. π preserves the real-time order of σ .

The notion of fork-linearizability [MS02] (originally called fork consistency) requires that
when an operation is observed by multiple clients, the history of events occurring before the
operation is the same. For instance, when a client reads a value written by another client from a
storage service, the reader is assured to be consistent with the writer up to the write operation.

Definition 2 (Fork-linearizability). A history σ is fork-linearizable w.r.t. a functionality F if
for each client Ci there exists a sequence of events πi such that:

1. πi is a view of σ at Ci w.r.t. F ;

2. πi preserves the real-time order of σ ;

3. (No-join) For every client C j and every operation o ∈ πi∩π j, it holds that πi|o = π j|o.

We now recall the concept of a fork-linearizable Byzantine emulation [CSS07]. It summa-
rizes the requirements put on our service emulation protocol, which runs between the clients
and an untrusted server. This notion means that when the server is correct, the service should
guarantee the standard notion of linearizability; otherwise, it should ensure fork-linearizability.

Definition 3 (Fork-linearizable Byzantine emulation). A protocol P emulates a functional-
ity F on a Byzantine server S with fork-linearizability whenever the following conditions hold:

1. If S is correct, the history of every fair and well-formed execution of P is linearizable
w.r.t. F ; and

2. The history of every fair and well-formed execution of P is fork-linearizable w.r.t. F .

7.2.5 Cryptographic primitives
Our implementation uses hash functions, digital signatures, and symmetric-key encryption. We
model them as ideal functionalities here. But all notions can be made formal in the model of
modern cryptography.

A hash function H maps a bit string x of arbitrary length to a short, unique representation of
fixed length. It is assumed to be collision-free, that is, no party can produce two different inputs
x and x′ such that H(x) = H(x′).
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A digital signature scheme provides two operations, sign and verify. The invocation of sign
takes an index i ∈ {1, . . . ,n} and a bit string m as parameters and returns a signature φ with the
response. The verify operation takes the index i of a client, a string m, and a putative signature φ

as parameters and returns a Boolean value b ∈ {FALSE,TRUE} with the response. It satisfies
that verify(i,m,φ) = TRUE for all i and m if and only if Ci has executed sign(i,m) = φ before.
Only Ci may invoke sign(i, ·) and S cannot invoke sign. Every party may invoke verify.

A symmetric encryption scheme consists of a key generation algorithm, an encryption al-
gorithm encrypt and a decryption algorithm decrypt. Initially a trusted entity runs the key
generator and obtains a key k ∈K . Algorithm encrypt takes k and a message m as inputs and
returns a ciphertext c. Algorithm decrypt takes k and a ciphertext c as inputs and returns a
message m. For any k and m, it is required that decrypt(k,encrypt(k,m)) = m. Furthermore,
any party that obtains c = encrypt(k,m) but has no access to k obtains no useful information
about m.

7.3 Service execution and authentication
This section first introduces a model for executing the service F on server S such that operations
are invoked by the clients. The primary task of S is to maintain the global state s of F ; we
intend this model for coordination services, shared collaboration spaces, light-weight databases,
storage applications and so on, with small computational expense for every operation, but high
demand on maintaining a consistent state.

Given this setting, the clients could simply send their operations to S and, since F is deter-
ministic, S could execute them and return the responses. But we are interested in a model where
the clients execute the bulk of every operation, so as to reduce the load on S. This assumption
also helps preparing the ground for authenticating the responses of S.

In the second part of this section, we introduce a model for authenticating the execution
of a sequence of operations issued by a single client (imagine for a moment there is only one
client; we extend this to multiple clients later). The client uses its local trusted memory to
maintain some authentication data, from which it verifies the responses of F sent by S. This
model closely resembles the established concept of authenticated data structures.

7.3.1 Separated execution
We model the execution of operations of F in a separated way, such that the clients do most of
the work. Not all functionalities encountered require that every operation accesses the complete
state s. An operation o can be executed in a separated way when it uses only a part so of the
global state s of the functionality; this part may depend on the operation. If o modifies the
global state, then the separated execution will also generate an updated state s′o, which must be
reconciled with s to maintain the correct semantics of F .

More formally, we say a functionality F allows separated execution when there exist three
deterministic algorithms extractF , execF , and reconcileF as follows. Algorithm extractF pro-
duces a partial state so from a global state s and an operation o,

so ← extractF(s,o);

algorithm execF executes o on the partial state so to produce a response r and a partial updated
state s′o,

(s′o,r) ← execF(so,o);
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finally, algorithm reconcileF takes s′o and o, together with the old global state s and outputs the
new global state

s ← reconcileF(s,s′o,o).

The algorithms satisfy that for any s ∈ S and o ∈ O , and for any s′,r with (s′,r) = F(s,o),
there exists a partial state so = extractF(s,o) and a partial updated state s′o such that

(s′o,r) = execF(so,o) ∧ s′ = reconcileF(s,s′o,o)

and
|so| � |s| ∧ |s′o| � |s′|.

In other words, the algorithms for the separated execution of F produce the same response and
new state as the original F , but there exist intermediate states for the operation (so and s′o),
which are much smaller than the full state(s). The latter requirement should be understood
qualitatively and is not quantified; but it is crucial for enabling efficient separated execution
between a client and a server.

The communication complexity of some F with separated execution measures the size of
the messages that must be communicated for separated execution. It is denoted by COMMF
and defined as the number of bits required to store the largest partial state so, partial updated
state s′o, together with a description of the operation o itself, for executing any operation on any
state. That is,

COMMF = max
{
|so|+ |s′o|+ |o|

∣∣s ∈S ,o ∈ O,so = extractF(s,o),(s′o,r) = execF(so,o)
}
.

7.3.2 Authenticated separated execution
When only a single client engages in separated execution of operations on the server, well-
known methods allow the client to verify the correctness of the responses. These methods
protect the client from a faulty server that tries to forge wrong responses. Known generally
as authenticated data structures [NN00, MND+04], they apply to a broad class of information
retrieval services, such as reading an item from a memory, hash tables, or search queries to a
structured data type. Such service authentication schemes rely on a small authenticator value
maintained by the client in its local trusted memory. The client can verify the response of
an operation o in such a way that it recognizes when the response differs from the correct
response r, resulting from applying o to the current state s of the service. That is, state s is
obtained by applying all past operations of the client to F in order and the correct response is
determined by (s′,r) = F(s,o). We model this concept as an extension of separated execution.

We say a functionality F allows authenticated separated execution when there exist three de-
terministic algorithms authextractF , authexecF , and authreconcileF as follows. Algorithm authextractF
produces a partial state so from a global state s and an operation o,

so ← authextractF(s,o).

The client maintains an authenticator denoted by a, which is initialized to a default value aF0.
Algorithm authexecF takes a, so, and o as inputs and produces an updated authenticator a′,
a partial updated state s′o, and a response r. In the course of executing o, the algorithm also
verifies its inputs with respect to a and may output the special symbol ⊥ as response, indicating
that the verification failed. In other words,

(a′,s′o,r) ← authexecF(a,so,o),
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with r = ⊥ if and only if verification failed. Finally, algorithm authreconcileF takes s′o and o,
together with the old global state s and outputs the new global state

s ← authreconcileF(s,s′o,o).

Its role is exactly the same as in separated execution.
A proper authenticated execution of the operation sequence o1, . . . ,om proceeds as follows.

Starting with the initial authenticator a0 = aF0 and state s0 = sF0, it computes

(si,ri) ← F(si−1,oi)

soi ← authextractF(si,o)
(ai,s′oi

,ri) ← authexecF(ai−1,soi,oi),

for i = 1, . . . ,m and outputs the triple (am,sm,rm) containing an authenticator am, state sm, and
response rm.

Consider now the proper authenticated execution of an arbitrary operation sequence and the
resulting authenticator a and state s. The following conditions must hold:

Correctness: For any o ∈O and (s′,r) = F(s,o), there exist so = authextractF(s,o) and a′, s′o,
and r 6=⊥ such that

(a′,s′o,r) = authexecF(a,so,o) ∧ s′ = authreconcileF(s,s′o,o).

and

|a′| � |s| ∧ |so| � |s| ∧ |s′o| � |s′|.

Security: For any o ∈ O and any adversary that outputs some s̃o, suppose that there exist a′

and s′o such that (a′,s′o, r̃) = authexecF(a, s̃o,o) with r̃ 6=⊥; then r̃ = r.

The correctness property is simply reformulated from the unauthenticated scheme for sepa-
rated execution. It states that for any authenticator and state s resulting from a proper authenti-
cated execution, applying separated execution of o yields a response r 6=⊥ such that verification
succeeds and, moreover, the resulting updated state s′ together with r satisfies (s′,r) = F(s,o).

The security property considers a faulty S as an adversary, which tries to forge some partial
state s̃o that causes the client to produce a wrong response r̃. But in an authenticated sepa-
rated execution scheme, algorithm authexecF either outputs the correct response (r̃ = r), or it
recognizes the forgery and the verification fails (r̃ =⊥).

The communication complexity of some F with authenticated separated execution is defined
in the same way as for separated execution and measures how much data must be communicated
between C and S.

The notion of authenticated data structures [MND+04] differs from a service with authen-
ticated separated execution in that the former does not contain a partial updated state and the
reconciliation step. In fact, the server could equally well execute the whole operation on the
state that it maintains. But in practice, many algorithms execute update operations more ef-
ficiently when the client computes the updated parts of the state and the server merely stores
them in its memory.
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7.3.3 Examples

The literature contains many examples of data structures that can be formulated as function-
alities with authenticated separated execution. They are interesting because their communi-
cation complexity for separated execution is much smaller than their space complexity. For
instance, hash trees can be used to check the correctness of individual entries in a memory with
N elements [BEG+94] with complexity O(logN), a generalization of hash trees can authenti-
cate responses produced by any DAG-structured query evaluation algorithm with logarithmic
overhead [MND+04], and cryptographic methods based on accumulators can maintain authen-
ticated hash tables with constant communication for query operations and sub-linear cost for
updates [PTT08].

As a concrete example, consider a functionality MEM whose state consists of N storage
locations denoted by MEM[1], . . . ,MEM[N]. MEM supports two operations: read( j), which
returns MEM[ j], and write(( j,x)), which assigns MEM[ j]← x and returns nothing. Note that for
N = n and when Ci may only write to MEM[i], we obtain the functionality that was considered
in most previous work on untrusted storage (e.g., [CSS07]).

A standard hash tree computed over MEM[1], . . . ,MEM[N] gives an authenticated separated
execution scheme, where the internal nodes of the tree are also stored in the state of MEM. The
authenticator is the root node of the hash tree, which commits all entries in MEM. Algorithm
authextractMEM for an operation that concerns entry j always returns the internal tree nodes
along the path from the root to the leaf node j and all their siblings, which are needed for
recomputing the root hash in order to authenticate leaf node j [BEG+94]. Verification succeeds
if the recomputed root hash matches the authenticator. For a write operation, the nodes on the
path from MEM[ j] to the root are updated and included in the partial updated state s′o. The
server extracts them from s′o and stores them in the appropriate place during authreconcileMEM.

The client must explicitly recompute the path in the hash tree also for write operations, in
order to verify the sibling nodes along the path from the modified leaf node to the root; these
nodes originate from the server and influence the computation of the new root hash. If they
are not verified, they might lead to an invalid authenticator. Because the client computes these
values anyway, they are contained in the partial updated state, and the server only needs to store
them.

In this way, our notion of authenticated separated execution closely models what happens
in practical hash tree implementations inside cryptographic storage systems; this is not possible
with the notion of an authenticated data structure, where no reconciliation algorithm is foreseen.

7.4 Fork-linearizable execution protocol

We now introduce a novel untrusted service execution protocol, which emulates an arbitrary F
on a Byzantine server with fork-linearizability. The protocol combines elements from existing
untrusted storage protocols with an authenticated separated execution scheme for F .

The protocol operates in lock-step mode, similar to the bare-bones storage protocol of
SUNDR [MS02]. This means that the server serializes all operations and does not allow them
to execute concurrently. Proceeding in lock-step is for illustration purposes only; extending it
to concurrent operations is feasible and discussed later.

At a high level, the protocol operates like this. A client assigns a local timestamp to every
one of its operations. Every client maintains a timestamp vector T in its trusted memory. At
client Ci, entry T [ j] is equal to the timestamp of the most recently executed operation by C j in
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some view of Ci. To begin executing an operation o, client Ci sends a SUBMIT message with o
to S. A correct S responds to this SUBMIT message by invoking the authenticated separated
execution scheme, and computes so← authextractF(s,o) on the current state s.

In addition to s, the server maintains a timestamp vector V , an authenticator a, and a signa-
ture ϕ , which it received in a so-called COMMIT message from the client Cc that executed the
last preceding operation at S. The signature was issued by Cc on V and a. The server sends a
REPLY message to Ci containing V , a, so, c, and ϕ .

When it receives the REPLY message, the client first checks the content. It verifies the
signature ϕ and makes sure that V ≥ T (using vector comparison) and that V [i] = T [i]. If not,
the client aborts the operation and halts, because this means that S has violated the consistency
of the service.

Then Ci verifies the response with respect to a and runs the separated execution by comput-
ing (a′,s′o,r)← authexecF(a,so,o). If the verification fails, the client again halts. Otherwise, Ci
proceeds to copying the received timestamp vector V into its variable T , incrementing T [i], and
computing a signature ϕ ′ on T and a′. The value T [i] becomes the timestamp of o. Finally, Ci
returns a COMMIT message to S containing T , a′, s′o, and ϕ ′.

It is not hard to see that all checks are satisfied when S is correct because every client only
increments its own entry in a timestamp vector. Therefore, the timestamp vectors sent out by S
in REPLY messages appear in strictly increasing order.

The description so far allows the server to learn the authenticator values, which is not fore-
seen in the model of an authenticated separated execution scheme. To prevent any damage that
might be caused by this, all clients know a common secret key k for a symmetric encryption
scheme and use it to encrypt the authenticator before sending it to S.

This completes the high-level description of the untrusted service execution protocol; the
details are given in Algorithms 1 and 2.

Intuitively, the algorithm relies on the same properties of vector clocks as previous pro-
tocols for untrusted storage [MS02, CSS07]. Note that S can only send a timestamp vector
and authenticator in a REPLY message that have been signed by a client; otherwise, the first
verification step in Algorithm 1 fails. Under this condition, S may violate the protocol only
by sending a timestamp vector/authenticator pair that is properly signed but does not satisfy a
global sequential order of the operations.

In other words, a violation by S means that there is one operation o0 whose timestamp
vector is received in a REPLY by at least two different clients C1 and C2, in operations o1 and o2,
respectively. If all other information is correct, operations o1 and o2 both succeed, but the two
clients sign incomparable timestamp vectors. According to the protocol, one can then show that
C1 will not execute any operation in a view at C1 that includes o2 and, vice versa, any operation
in a view at C2 that includes o1 will cause C2 to abort.

With the functionality MEM from the previous section and n storage locations, this protocol
gives the same guarantees as the bare-bones storage protocol of SUNDR [MS02] and the lock-
step protocol of Cachin et al. [CSS07]. As in the latter protocol, our algorithm adds a linear
(in n) overhead to the communication complexity of separated execution.

7.5 Conclusion

This chapter has introduced the first precise model for a group of mutually trusting clients
to execute an arbitrary service on an untrusted server S, such that the clients observe atomic
operations when S is correct and the service respects fork-linearizability when S is Byzantine.
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Algorithm 1 Untrusted execution protocol for client Ci

State
k ∈K // symmetric encryption key
T ∈ N0

n, initially [0]n // current timestamp vector

upon operation runF(o) do
send message [SUBMIT,o] to S
wait for message [REPLY,V, ā,so,c,ϕ]
if
(
V = [0]n∨verify(c,COMMIT‖V‖ā,ϕ)

)
∧V ≥ T ∧V [i] = T [i] then

if V = [0]n then
a← aF0

else
a← decrypt(k, ā)

(a′,s′o,r)← authexecF(a,so,o)
if r 6=⊥ then

T ←V
T [i]← T [i]+1
ϕ ′← sign(i,COMMIT‖T‖a′)
ā′← encrypt(k,a′)
send message [COMMIT,o,T, ā′,s′o,ϕ

′] to S
return r

halt

Algorithm 2 Untrusted execution protocol for server S
State

s ∈S , initially sF0 // state of F
c ∈ {1, . . . ,n}, initially 1 // index of currently or most recently served client
V ∈ N0

n, initially [0]n // timestamp vector of last committed operation
ā, initially ε // encrypted authenticator of last committed operation
ϕ , initially ε // signature of last committed operation
block ∈ {FALSE,TRUE}, initially FALSE

upon receiving message [SUBMIT,o] from Ci such that block = FALSE do
so← authextractF(s,o)
send message [REPLY,V, ā,so,c,ϕ] to Ci
c← i
block← TRUE

upon receiving message [COMMIT,o,T, ā′,s′o,ϕ
′] from Ci such that block = TRUE∧ i = c do

s← authreconcileF(s,s′o,o)
(V, ā,ϕ)← (T, ā′,ϕ ′)
block← FALSE
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An implementation of this notion has been obtained by combining any scheme for authenticated
separated execution with elements from untrusted storage protocols.

The protocol is not particularly efficient because a correct server executes all operations
in lock-step mode. Similar to untrusted storage protocols, the protocol can be improved by
letting the clients execute some operations concurrently, as long as they do not conflict. Some
restrictions on the achievable parallelism have been identified [CSS07].
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Chapter 8

State Machine Replication

Chapter Authors:
Alysson Bessani (FFCUL) and JoÃčo Sousa (FFCUL)

8.1 Introduction
The last decade saw an impressive amount of papers on Byzantine Fault-Tolerant (BFT) State
Machine Replication (SMR) (e.g., [CL02, CWA+09a, VCBL09, CKL+09], to cite just a few),
but almost no practical use of these techniques in real deployments.

Our view of this situation is that the fact that there is no robust-enough implementation of
BFT SMR available makes it quite difficult to use this kind of technique, since implementing
this type of protocol is very far from trivial. To the best of our knowledge, from all “BFT sys-
tems” that appeared on the last decade, only the original PBFT system [CL02] and the very
recent UpRight [CKL+09] implement a complete replication system (which deal with the nor-
mal synchronous fault-free case and all corner cases that happen when there are faults and
asynchrony). However, our experience with PBFT shows that it is not robust enough (e.g.,
we could not make it survive a primary failure) and it is not being maintained anymore, and
UpRight uses a 3-tier architecture which tends to be more than a simple BFT replication library.

In this chapter we describe a 3-year effort in implementing BFT-SMART [sma], a Java-
based BFT SMR library which implements a protocol similar to the one used in PBFT but
targets not only high-performance in fault-free executions, but also correctness in all possible
malicious behaviors of faulty replicas.

The main contribution of this chapter is to fill a gap in the BFT literature by documenting
the implementation of this kind of protocol, and not the protocol itself.

The chapter is organized in the following way: Section 8.2 enumerates the design principles
of BFT-SMART. Section 8.3 briefly describes the replication protocol implemented by BFT-
SMART. The replica architecture and its modules are presented on Section 8.4. Sections 8.5
and 8.6 present a brief overview of how to use the library to implement dependable services
and what kind of performance numbers can be expected from this library. Finally, Sections
8.7 and 8.8 discuss some lessons learned on BFT-SMART implementation and our concluding
remarks.

8.2 BFT-SMART Design Principles
The development of BFT-SMART started at the beginning of 2007 aiming to build a BFT total
order multicast library for the replication layer of the DepSpace coordination service [BACF08].
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This first version was called JBP (Java Byzantine Paxos) and is still available on the DepSpace
web site [jit]. In the last year we revamped the design of this multicast library to make it
a complete BFT replication library, including features such as checkpoints and state transfer.
Since the beginning, BFT-SMART was developed with the following design principles in mind:

• Java: for security, portability, ease of programming and maintenance, we choose the Java
programming language and opted to meet the challenge of making a high performance
BFT implementation using a programming language believed to be much less performant
than C (which is used in other BFT implementations);

• Modularity: most high-performance BFT state machine replication algorithms (e.g., [CL02,
VCBL09]) are described as a monolithic software implementation in which a set of mech-
anisms such as Paxos consensus, total order multicast, checkpointing, state transfer, client
management, leader election plus possible optimizations were integrated on a protocol
that ensures the linearizability of the replicated service. BFT-SMART, on the other hand,
was designed taking into account several decoupled modules, being the most notable the
separation between Byzantine Paxos consensus, total order multicast, and checkpoint-
ing/state transfer;

• No optimizations that bring complexity: a recent paper [CWA+09a] showed that the use
of fragile optimizations can make a BFT protocol more susceptible to performance degra-
dation attacks. One principle of BFT-SMART is not to use many optimizations proposed
on past works in order to avoid the code complexity of using them under an asynchronous
system. Consequently, the current version of our library does not implement many opti-
mizations commonly advocated on BFT papers (e.g., agreement over hashes, speculation)
and still provides decent performance numbers.

These design principles are pragmatic and reflect our final objective with BFT-SMART:
providing a real-world complete implementation of a replication library that could be used and
evolved by the research community, and not to have a prototype for showing that a particular
protocol can be implemented.

8.3 The Replication Protocol

In this section we give a brief overview of how we used a Byzantine Paxos consensus pro-
tocol called Paxos at War (PaW) [Zie04] to implement state machine replication on BFT-
SMART. The message pattern is presented in Figure 8.1 and is very similar to the well known
PBFT [CL02].

Underlying assumptions Our protocol assumes a set of n≥ 3 f +1 replicas and an unknown
number of clients. Up to f replicas and an unbounded number of clients can fail arbitrarily. We
assume an eventually synchronous system model like other protocols for BFT SMR [CL02].
We assume also reliable authenticated point-to-point links between processes. These links are
implemented using message authentication codes (MACs) over TCP/IP, which requires a public-
key infrastructure to ensure that each process can receive and validate the public key of every
other process (which is a requirement in order to use Signed Diffie-Hellman to generate the
shared keys used for MACs).
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Figure 8.1: The message pattern of a BFT-SMART fault-free execution.

Paxos at War A consensus execution i begins with one of the replicas designated as the
leader (initially the replica with the lowest id) proposing some value for the consensus through
a PROPOSE message. All replicas that receive this message, verify if its sender is the current
leader, and if the value proposed is good1, they weakly accept the value being proposed, sending
a WEAK message to all other replicas. If some replica receives more than n+ f

2 WEAK accepts
for the same value, it strongly accepts this value and sends a STRONG message to all other
replicas. If some replica receives more than n+ f

2 STRONG accepts for the same value, this
value is used as the decision for consensus. If some replica stays on the same round of a
consensus execution for more than a pre-defined timeout it should freeze the round and send
a FREEZE message to all other replicas. When a round is frozen the replica does not accept
PROPOSE, WEAK or STRONG messages for this round. All replicas that receive more than
f FREEZE messages should freeze its round (if it is not already frozen) and send a signed
COLLECT message to the leader of the next round2. This message specifies the state of the
replica and allows the leader of the next round to choose a value to be proposed that does not
contradict previous decided values.

From consensus to total order multicast It appears to be reasonably simple to build a total
order multicast primitive using a Paxos consensus protocol: the decision value of the consensus
instance number i is the i-th set of messages to be delivered by the total order multicast [MA06].
However, there are some problems overlooked by this transformation. First, a leader can pro-
pose any value for consensus, and we have to develop some mechanism to ensure that forged
messages (i.e., not sent by clients) are not accepted as good values. Second, we have to deal
with the case in which a malicious leader always follows the consensus protocol but does not

1The proposal of the first consensus round is always good, in other rounds some proof of goodness should be
sent together with the value [Zie04].

2All replicas know what will be the leader of the next round given that it is calculated in a deterministic way.
See [Zie04] for more details.
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propose messages from certain clients. The first problem can be easily solved by making clients
sign their messages using public-key signatures or authenticators (MAC vectors) [CL02]. The
second problem can be addressed with timers associated to (pending) messages received from
clients. In this way, non-leader replicas monitor if the leader proposes the ordering of each
message within a certain time bound. The complexity of this solution is what to do when the
the timer expires. Our solution is to freeze the current round of the consensus being executed
and force a leader change in a similar way to what is defined by PaW.

Logging, checkpoints and state transfer To implement a practical state machine replication,
the replicas should be able to be repaired and reintegrated on the system, without restarting the
whole replicated service. This can only be done if we provide a state transfer protocol between
the replicas. The idea is similar to what is used on [CL02] (and many others): when a replica
discovers that it is too late in relation to other replicas (e.g., because it is using a slow network
link), it triggers a state transfer operation. This operation consists in the recovering replica
sending a STATE-REQUEST message to the other replicas asking for the state containing the
execution of the messages decided on consensus 0...u−1 (being u the first consensus decision
that the replica knows about after the recovery) and waiting for f + 1 STATE replies with the
same state, which is used to update the service state. For the replicas to be able to answer
the STATE-REQUEST, they should log the operations executed for each consensus (i.e., the
decision value) and collect checkpoints periodically (after each c consensus executions) to trunk
this log.

8.4 BFT-SMART Replica Architecture

8.4.1 Building blocks
To achieve the modularity goal, we defined a set of building blocks (or modules) that should
contain the core of the functionalities required by BFT-SMART. These blocks are divided
in two groups: communication system and state machine replication. The latter implements
the BFT-SMART replication protocol described in Section 8.3, while the former encapsulates
everything related to client-to-replica and replica-to-replica communication, including authenti-
cation, replay attacks detection, and reestablishment of communication channels after a network
failure.

Communication system

The communication system provides a queue abstraction for receiving both requests from clients
and messages from other replicas, as well as a simple send method that allows a replica to send a
byte array to some other replica or client identified by an integer. There are three main modules
here:

• Client Communication System: this module deals with the clients that connect, send re-
quests and receive responses from replicas. Given the open-nature of this communication
(since replicas can serve an unbounded number of clients) we choose the Netty communi-
cation framework [net] for implementing client/server communication. The most impor-
tant requirement of this module is that it should be able to accept and deal with hundreds
of connections efficiently. To do this, the Netty framework uses the java.nio.Selector
class and a configurable thread pool.
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• Client Manager: after receiving a request from a client, this request should be verified
and stored to be used by the replication protocol. For each known client, this module
stores the sequence number of the last request received from this client (to detect replay
attacks) and maintains a queue containing the requests received but not yet delivered to
the service being replicated (that we call service replica). The requests to be ordered in a
consensus are taken from these queues in a fair way.

• Server Communication System: while the replicas should accept connections from an
unlimited number of clients, as is supported by the client communication system de-
scribed above, the server communication system implements a closed-group communi-
cation model used by the replicas to send messages between themselves. The implemen-
tation of this layer was made through “usual” Java sockets, using one thread to send and
one thread to receive for each server. One of the key responsibilities of this module is to
reestablish the channels between every two replicas after a failure and a recovery.

State machine replication

Using the simple interface provided by the communication system to access reliable and au-
thenticated point-to-point links, we have implemented the state machine replication protocol.
BFT-SMART uses five main modules to achieve state machine replication.

• Proposer: this reasonable simple module (which contains a single class) implements the
role of a proposer, i.e., how it can propose a value to be accepted and what a replica
should do when it is elected as a new leader.

• Acceptor: this module implements the core of the PaW algorithm: messages of type
WEAK and STRONG are processed and generated here. For instance, when more than
n+ f

2 WEAK messages for the same (proposed) value are received, a corresponding STRONG
message is generated. Most of the complex code to deal with leader changes is also in
this module.

• Total Order Multicast (TOM): this module gets pending messages received by the client
communication system and calls the proposer module to start a consensus instance. Addi-
tionally, a class of this module is responsible for delivering requests to the service replica
and to create and destroy timers for the pending messages of each client.

• Execution Manager: this module is closely related to the TOM and is used to manage
the execution of consensus instances. It stores information about consensus instances
and their rounds as well as who was the leader replica on these rounds. Moreover, the
execution manager is responsible to stop and re-start a consensus being executed (to force
leader changes, as described in Section 8.3).

• State Manager: checkpointing and state transfer is implemented by this module, which
stores in a state log both the current checkpoint and the messages delivered since it was
taken. When a new checkpoint is done, the previous content of the state log is deleted.
This log is used to answer STATE-REQUEST messages received from other replicas.
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8.4.2 Staged Message Processing
A key point when implementing a high-throughput replication protocol is how to break the
several tasks of the protocol in a suitable architecture that can be robust and efficient. In the
case of BFT SMR there are two additional requirements: the system should deal with hundreds
of clients and resist malicious behaviours from both replicas and clients.

Figure 8.2 presents the main architecture with the threads used for staged message pro-
cessing of the protocol implementation. In this architecture, all threads communicate through
bounded queues and the figure shows which thread feeds and consumes data from which queues.
This architecture was heavily influenced by the SEDA framework [WCB01].





































































Figure 8.2: The staged message processing on BFT-SMART.

The client requests are received through a thread pool provided by the Netty communication
framework. We have implemented a request processor that is instantiated by the framework and
executed by different threads as the client load demands. The policy for thread allocation is at
most one per client (to ensure FIFO communication between clients and replicas), and we can
define the maximum number of threads allowed.

Once a client message is received and its MAC verified, we trigger the client manager that
verifies the request signature and (if validated) adds it to the client’s pending requests queue.
Notice that since the signatures are verified by the Netty threads, multi-core and multi-processor
machines would naturally exploit their power to achieve high throughput (verifying several
client signatures in parallel).

The proposer thread will wait for three conditions before starting a new instance of the
consensus: (i.) it is the leader of the first round of the next consensus; (ii.) the previous instance
of the consensus is already finished; and (iii.) at least one client (pending requests) queue has
messages to be ordered. In a leader replica, the first condition will always be true, and it will
propose new requests to be ordered as soon as a previous consensus is decided and there are
pending messages from clients. In non-leader replicas, this thread is always sleeping waiting
for condition (i.).

Every message m to be sent by one replica to another replica is put on the out queue from
which a sender thread will get m, serialize it, produce a MAC to be attached to the message
and send it through TCP sockets. At the receiver replica, a receiver thread for this sender will
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read m, authenticate it (i.e., validate its MAC), deserialize it and put it on the in queue, where
all messages received from other replicas are stored in order to be processed.

The message processor thread is responsible to process almost all messages of the state
machine replication protocol. This thread gets one message to be processed and verifies if this
message consensus is being executed or, in case there is no consensus currently being executed,
it belongs to the next one to be started. Otherwise, either the message consensus was already
finished and the message is discarded, or its consensus is yet to be executed (e.g., the replica
is executing a late consensus) and the message is stored on the out-of-context queue to be pro-
cessed when this future consensus is able to execute. If the message can be processed, its type
will be evaluated (PROPOSE, WEAK, STRONG, etc.), and the quorum of received messages
of this type is updated. If certain conditions are met (e.g., there are more than n+ f

2 WEAKs with
the same value for this round) new messages are produced and sent to other replicas (in the
same way as explained before). As a side note, it is worth to mention that although the PRO-
POSE message contains the whole batch of messages to be ordered, the WEAKs and STRONGs
messages only contain the hash of this batch.

When a consensus is finished on a replica (i.e., the replica received more than n+ f
2 STRONGs

for some value), the value of the decision is put on the decided queue. The delivery thread is
responsible for getting decided values (a batch of requests proposed by the leader) from this
queue, deserialize all messages from the batch, remove them from the corresponding client
pending requests queues and mark this consensus as finalized. After that, the delivery thread
invokes the service replica to make it execute and send replies to all request operations. The
last thing done when processing this batch of requests is to store it on the state log or, if the
checkpoint period was reached, to get the state from the service replica and clean the state log.

There are two other threads that sporadically can be activated to take actions on the protocol:
the request timer task and round timer task. The latter is the timer associated to each round of
the PaW protocol. When it is activated, it freezes the current round on the replica and tries
to force a leader change to start a new round of the consensus instance [Zie04]. The request
timer task by the other hand is activated periodically to verify if some request stayed more
than a pre-defined timeout on the pending requests queue. The first time this timer expires for
some request, causes this request to be forwarded to the current known leader. The second time
this timer expires for some request, the instance currently running of the consensus protocol
is stopped (if there is some running) and a RT-FREEZE message is sent to stop the consensus
execution on all replicas and force a leader change.

Although we do not claim that the architecture depicted in Figure 8.2 is the best architecture
for implementing state machine replication, it is the result of a three-year effort to make a high-
throughput protocol in Java. During this effort, we tried several variants of this architecture, but
in the end the one presented here represents the best approach we have found.

8.5 Using the BFT-SMART replication library

The basic use of the BFT-SMART replication library is quite simple. Figure 8.3 presents the
client and replica classes that should be instantiated and extended, respectively, to implement a
replicated service.

A BFT-SMART client just needs to instantiate the ServiceProxy class with a configuration
file containing the IP, port, and public key of each replica. Then, whenever it needs to send a
request to the replicas, it should call the invoke method and specify the request (serialized
in a byte array) and indicate if it is a read-only request. At the server side, each replica must
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//Client API

public class ServiceProxy ... {

...

public byte[] invoke(byte[] command, boolean readOnly){

...

}

//Server API

public abstract class ServiceReplica ... {

...

public abstract byte[] executeCommand(int clientId,

long timestamp, byte[] nonces, byte[] command);

public abstract byte[] getState();

public abstract void setState(byte[] state);

}

Figure 8.3: API for using the BFT-SMART library at client and replica sides.

extend the ServiceReplica class and implement the abstract operations that will be called
when there is a command to be executed or to get/set the state of the service. Notice that the
executeCommand method provides also the id of the calling client, a timestamp, and a set of
random nonces defined by the leader of the consensus that ordered this request. It is ensured
that all replicas get equal timestamps and nonces associated to each request, which allows them
to implement typical non-deterministic actions, such as reading the clock value and generating
random numbers, in a deterministic way. Notice that read-only requests do not need to be
ordered given that they should not change the service state (the Netty threads of Figure 8.2
deliver them directly to the service replica).

8.6 Performance

This section presents a preliminary performance evaluation of BFT-SMART version 0.4. Our
objective here is not to present a full experimental analysis of the system (which is out of the
scope of this practical experience report) but to present a basic assessment of the performance of
it in the same framework as used by recent works on the area [CWA+09a, VCBL09, CKL+09].

Our setup is composed by a set of twelve 2.8 GHz Pentium-4 machines with 2 GBs RAM
running Sun JDK 1.6 on top of Linux 2.6.18 connected by a Dell gigabit switch. In all exper-
iments we enabled the Java Just-In-Time (JIT) compiler and run a warm-up phase to load and
verify all classes, transforming the Java bytecodes into native code.

In the experiments we ran 4 and 7 machines as servers (for f = 1 and f = 2) and the
remaining machines with 0 to 120 logical clients. We measured the latency and throughput of
the system using a simple service with no state that executes null operations, using two request
sizes: 4 and 1K bytes.

Table 8.1 shows the end-to-end average latency and peak throughput of BFT-SMART,
PBFT3 [CL02] and Spinning [VCBL09] considering f = 1 and small messages of 4 bytes.

The table shows that although our system could not match the extremely low latency of the
C-based PBFT it was able to present a throughput 45% better. More surprisingly, our throughput
is better than the one obtained from the Spinning prototype, which was implemented in Java,

3Obtained from http://www.pmg.csail.mit.edu/bft/.
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Metric BFT-SMART PBFT Spinning
Latency 1.7 ms 0.4 ms 1.3 ms

Peak throughput 38 Kops/s 22 Kops/s 26 Kops/s

Table 8.1: Latency and peak throughput of SMaRt, PBFT and Spinning for requests with 4
bytes and f = 1.

runs several consensus in parallel, and uses a rotating leader, which distributes the load of
proposing message batches between all replicas [VCBL09]. This ilustrates the effect that a well-
designed implementation can have on the final values obtained from a protocol implementation.
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Figure 8.4: Latency vs throughput of BFT-SMART with messages of 4 bytes and 1 Kbyte when f = 1
and f = 2.

Figure 8.4 shows BFT-SMART behaviour in different setups when under heavy load. Figure
8.4 (a) depicts the latency and throughput of BFT-SMART when client signatures are MAC
vectors [CL02]. The figure reports average throughput values (measured in intervals of 100,000
requests) in which the protocol latency is under 100 ms, even when the system is highly loaded.
These values were obtained using batches varying between 1 and 2K requests. The maximum
average throughput reached was about 34 Kops/sec for small messages and 6 Kops/sec for larger
messages.

The latency and throughput of BFT-SMART when client signatures are generated using
1024-bit RSA are shown in Figure 8.4 (b). This figure shows that our average throughput never
surpasses 2.5 Kops/sec, which corresponds to the maximum number of signature verifications
per second that our machines can do (a verification takes about 0.4 ms). In this case, the average
throughput values were measured in intervals of 15,000 requests and we used batches varying
between 1 and 100 requests.

Figure 8.4 shows also that moving from f = 1 to f = 2 does not affect substantially the
average throughput achieved by the system with both types of signatures.

The machines used in the experiments described in this section are old and do not allow
to explore the full potential of our highly modular architecture. We believe that by using cur-
rent multi-core machines, the performance of BFT-SMART will improve, namely in terms of
throughput. Notice however that, if the hardware is took into account, the current results are
very good when compared with existing BFT replication libraries such as PBFT [CL02] or
UpRight [CKL+09].
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8.7 Lessons Learned

The three years of development of the two generations of BFT-SMART gave us important
insights about how to implement high-performance fault-tolerant protocols in Java. In this
section we discuss some of the lessons learned on this effort.

8.7.1 Making Java a BFT programming language
Despite the fact that the Java technology is used in most application servers and backend ser-
vices deployed in enterprises, it is a common belief that a high-throughput implementation of a
state machine replication protocol could not be possible in Java. We consider that the use of a
type-safe language with several nice features (large utility API, no direct memory access, secu-
rity manager, etc.) that makes the implementation of secure software more feasible is one of the
key aspects to be observed when designing a replication library. For this reason, and because
of its portability, we choose Java to implement BFT-SMART. However, our experience shows
that these nice features of the language when not used carefully can cripple the performance of
a protocol implementation. As an example, we will discuss how object serialization can be a
problem.

One of the key optimizations that made our implementation efficient was to avoid Java
default serialization in the critical path of the protocol. This was done in two ways: (1.) we
defined the client-issued commands as byte arrays instead of generic objects, this removed the
serialization and deserialization of this field of the client request from all message transmissions;
and (2.) we avoid using object serialization on client requests, implementing serialization by
hand (using data streams instead of object streams). This removed the serialization header from
the messages and is specially important for client requests that are put in large quantities on
batches to be decided by a consensus4.

8.7.2 How to test BFT systems?
Testing BFT systems against malicious behaviours is tricky. The first challenge is to identify the
critical malicious behaviours that should be injected on up to f replicas. The second challenge
is how to inject the code of the malicious behaviours on these replicas. The first challenge can
only be addressed with careful analysis of the protocol being implemented. Malicious code
can be injected to the code using patches, aspect-oriented programming (through crosscutting
concerns that can be activated on certain replicas) or simple commented code (which we are
currently using).

It is worth to notice that most malicious behaviours can cause bugs that affect the liveness of
the protocol, since basic mechanisms protect its safety (e.g., a leader proposing different values
to different replicas should cause a leader change, not a disagreement). Moreover, the fact
that the system tolerates arbitrary faults makes it mask some non-deterministic bugs, turning
the whole test process even more difficult. For example, an older version of the BFT-SMART

server communication system loosed some messages sporadically when under heavy load. The
effect of this was that in certain conditions there was a leader change. We attributed that to
asynchrony and request timeouts, however, after adopting a more disciplined test process, we
found and corrected the bug.

4A serialized 0-byte operation client request requires 130 bytes with Java default serialization and 18 bytes in
our serialization by hand.
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8.7.3 Dealing with heavy loads
When testing BFT-SMART under heavy loads, we found several interesting behaviours that
appear when a replication protocol is put under stress. The first one is that there are always f
replicas that stay late in message processing. The reason is that only n− f replicas are needed
for the protocol to make progress and naturally f replicas will stay behind. A possible solution
for this problem is to make the late replicas stay silent (and not load the faster replicas with late
messages that will be discarded) and when they are needed (e.g., when one of the faster replicas
fails) they synchronize themselves with the fast replicas using the state transfer protocol.

Another interesting point is that, in a switched network under heavy-load in which clients
communicate with replicas using TCP, spontaneous total order (i.e., client requests reaching
all replicas in the same order with high probability) almost never happens. This means that
the synchronized communication pattern described in Figure 8.1 does not happen in practice.
This same behaviour is expected to happen in wide-area networks. The main point here is that
developers should not assume that client request queues on different replicas will be similar.

The third behaviour that commonly happens in several distributed systems is that their
throughput tends to drop after some time under heavy-load. This behaviour is called trash-
ing and can be avoided through a careful selection of the data structures5 used on the protocol
implementation and bounding the queues used for threads communication.

8.7.4 Signatures vs. MAC vectors
Castro and Liskov most important performance optimization to make BFT practical was the use
of MAC vectors instead of public-key signatures. They solved a technological limitation of that
time. In 2006, when we started developing BFT-SMART we avoided signatures at all costs due
to the fact that the machines we had access at that time created and verified signatures much
slowly than the machines we used in the experiments described in Section 8.6 (an RSA 1024-bit
signature creation went from 15 ms to less than 5 ms while its verification went from 1 ms to
less than 0.4 ms), and the high-end servers being packed today can do even better. We did some
experiments in a 64-bit 2.3GHz quadcore Xeon machine and the signature verification takes
less than 0.12 ms. In this same machine, the verification of a MAC takes about 0.01 ms. This
means that with the machines available today, the problem of avoiding public-key signatures is
not so important as it was a decade ago, specially if signature verification can be parallelized
(as in our architecture). Moreover, there are two other already known advantages of using
signatures [CWA+09a]: (1.) public key signatures on client requests makes it impossible for
clients to forge MAC vectors and force leader changes; and (2.) if the service being replicated
spends some non-negligible time answering a request, the throughput of a protocol that uses
signatures becomes very similar to the throughput of some signature-free protocol since the
crypto processing costs are diluted.

8.8 Concluding Remarks

This chapter reported our effort in building the BFT-SMART BFT state machine replication
library. Our main objective here is to fill a gap in BFT literature describing how this kind of
protocol can be implemented in a safe and performant way. The BFT-SMART system described

5For example, data structures that tend to grow with the number of requests being received should process
searches in logn (e.g., using AVL trees) to avoid losing too much performance under heavy-load.
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here is available as open source software in the project homepage [sma]. The road map found
on this homepage describes a set of features and optimizations that we want to implement on
the system. However, as our experiments show, the current implementation already provides a
very good throughput for both small- and medium-size messages.
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Chapter 9

Fault-tolerant workflow execution

Chapter Authors:
Johannes Behl (FAU), Klaus Stengel (FAU) and Rüdiger Kapitza (FAU)

9.1 Introduction

With the variety of cloud offerings increasing, ranging from very basic infrastructure services,
such as storage, to more complex platform services (e.g., providing database-like functionality),
to end-user directed solutions such as web-based office tools, there is a growing demand for
a common way to manage their interaction. As most of these services can be accessed by
standard web-service technology, business process management support such as provided by
the Business Process Execution Language (BPEL) are an excellent match. Generic as well
as domain-tailored offerings (e.g., Visual Process Manager1 and runMyProcess2) are already
available, and are becoming increasingly popular.

While most of them offer sophisticated interfaces, a multitude of connectors to subsystems,
and support for non-functional properties such as scalability and security, are emerging, fault
tolerance has so far received limited attention. However, recent studies on cloud offerings
[SSR+10] and hardware in general [NDO11] show that clouds are less reliable than traditional
data centers, and hardware faults are more common than previously assumed. In combination,
this basically inhibits the outsourcing of critical processes (e.g., financial or medical services)
to the cloud.

An effort to explicitly close this gap by supporting critical applications in the context of
cloud computing is the EU IP project TClouds which targets the provision of a secure and re-
silient cloud infrastructure. As a part of this project, we present a flexible, lightweight, and cost-
efficient approach to offer fault-tolerant execution of critical business processes at the platform-
as-a-service (PaaS) level.

So far, common BPEL engines log their execution progress to stable storage in order to
enable the recovery of long-running processes after a reboot or crash. However, this slows
down the execution speed during operation and does not prevent the unavailability of services
in case of a failure. Furthermore, fault tolerance must also be provided for the services called by
a business process. This problem was initially addressed by Dobson, who analyzed how fault
handling and replication can be integrated into a process description [Dob06]. Recently, Juhnke
discussed how cloud resources can be exploited to tolerate infrastructure failures that affect the
services of a process [JDF09]. Finally, Lau et al. [LLSFV08] proposed an initial approach

1
http://www.salesforce.com/platform/process/

2
http://www.runmyprocess.com/
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to replicate a process engine by combining active and passive replication. This third solution
requires a service engine to be executed at the client side, which complicates deployment and
is costly in terms of resource demand and latency.

In contrast to these works, our approach provides fault tolerance by means of active repli-
cation at both the process level and at the service level. This is achieved by transforming a
process definition dedicated for plain execution into a replication-aware version. This includes,
that the handling of web-service calls is intercepted by custom proxy components that are co-
located with the engine executing a replicated process instance. In this way, off-the-shelf en-
gines can be used without modifications. To further simplify the task of replication, we use
ZooKeeper [HKJR10b], a service to coordinate distributed applications. In addition to ex-
ternalizing the coordination amongst the engine and service instances, we use ZooKeeper for
configuration.

Our initial evaluation results show that our approach outperforms a BPEL engine that per-
forms logging for recovery purpose by a factor of 2.0 to 3.4 while providing high availability.
Furthermore, the overhead of externalizing the coordination is about 13% compared to a tra-
ditional design that utilizes a group communication as an integrated part co-located with the
engines.

In the remainder of this paper, we give an overview on BPEL (Section 9.2). Section 9.3
outlines the proposed architecture and its realization. Section 9.4 details our evaluation results,
and Section 9.5 concludes.

9.2 Basics About BPEL

The Business Process Execution Language (BPEL) is an XML-based language designed to
describe and specify the behavior of business processes. In the context of BPEL, a business
process is a set of activities that makes use of a composition of different web services (possibly
from different providers) to provide a new, more complex web service.

Figure 9.1 shows a standard (unreplicated) BPEL infrastructure. Its main component is the
BPEL engine, which is responsible for executing a business process specified in a BPEL process
definition. Whenever a client sends a request to a BPEL service, the BPEL engine handles this
request according to the corresponding process definition. In particular, it calls all web services
necessary to fulfill the request.

Besides comprising the means to invoke web services, BPEL also provides mechanisms
for holding intermediate data, handling exceptions, and expressing control flows which allow
BPEL to be used to describe more complex business processes. Furthermore, most BPEL im-
plementations rely on a recovery mechanism that logs intermediate state on a persistent storage
to provide reliable process execution.

9.3 Reliable BPEL Infrastructure

Executing long-running critical tasks requires high availability. However, the standard BPEL
mechanisms for fault tolerance support only the recovery from a machine crash but not continu-
ous service provision despite faults. Additionally, BPEL processes depend on the web services
they use, but fault tolerance of web services is not considered by standard BPEL infrastructures
at all.
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Figure 9.1: Standard unreplicated BPEL infrastructure.
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output and input proxies (OP and IP). An automatic transformation of process definitions allows
them to intercept the communication chain transparently. The proxies make use of a ZooKeeper
service for coordination and dynamic configuration.
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9.3.1 Overall Architecture

We address this problem by actively replicating not only the BPEL engines but (optionally)
also the web services in a combined architecture. This architecture (see Figure 9.2) is designed
according to three main objectives: First, all measures taken for fault tolerance are to be trans-
parent for the workflows described in BPEL; that is, it should not make a difference whether a
process definition is executed on a standard or a replicated infrastructure. Second, all measures
are to be as little invasive as possible for existing implementations in order to be able to reuse
them. Third, for further minimizing the effort needed to provide a fault-tolerant solution, cloud
services are to be used where possible.

In our architecture, these design objectives are met by means of proxies that intercept web-
service calls to implement replication. In particular, the proxies distribute requests across repli-
cas and collect results. Because web-service formats and protocols are used between clients
and BPEL engines as well as between BPEL engines and web services, the replication of BPEL
engines and web services can be achieved by almost the same mechanisms.

Moreover, the proxies use an external ZooKeeper service for coordination, dynamic retrieval
of system information and configuration, crash detection and request ordering. Using an exter-
nal service simplifies all these tasks, saves resources and permits a global coordination within
clouds infrastructures.

Transparent interception of web-service calls at the client can be implemented by inserting
the proxy into the web-service library. However, this is not possible on the side of the repli-
cated BPEL engine, at least if existing BPEL systems should not be modified. Therefore, we
establish a transformation of process definitions, which reroutes the web-service calls. This
transformation is done automatically before the process definition is loaded by a BPEL engine.

9.3.2 Implementation Details

In the following, we present the steps necessary to process a client request in our architecture.

Client/BPEL Stage When a client sends a request using a web-service library, the request
is passed to a local output proxy ( 1 , see Figure 9.2). The proxy is responsible for assigning
unique ids to the requests, sending the request data to all BPEL engine replicas 2 , registering
the request at ZooKeeper 3 and for collecting the results 4 . ZooKeeper is used at this stage
to obtain the active replicas and to enforce a total order on all requests. The former allows an
easy propagation of configuration changes within the system, for example, if replicas fail or are
replaced. The latter guarantees that all BPEL engine replicas process the same sequence of input
data. Sending the request data in a separate step prior to the registration is done for performance
reasons, as ZooKeeper is designed for use with small chunks of data. After distributing and
registering the request, the output proxy waits until a reply becomes available.

In our architecture, output proxies do not communicate directly with BPEL engines. Instead,
each replica runs an input proxy in front its BPEL engine. Input proxies maintain a steady
connection to ZooKeeper, which allows the detection of crashed replicas. Moreover, they are
informed by ZooKeeper when a new request has been registered 5 . In that case, they deliver
the corresponding request data to the local BPEL engine 6 and wait for the reply. After the
engine has processed the request, an input proxy stores the reply in a local cache where it can
be retrieved by the output proxy of the client.
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Table 9.1: Architecture comparison: Unreplicated with and without logging-based fault toler-
ance vs. transparent active replication via ZooKeeper and JGroups (times are in ms).

BPEL/Web-Service Stage As on the client side, each outgoing call of a BPEL engine replica
is intercepted by an output proxy. Here, the transformation of process definitions (see Sec-
tion 9.3.1) ensures that outgoing calls are rerouted suitably 7 . Furthermore, the transformation
process tags each call with an id. In doing so, special situations, such as loops and the parallel
execution of the same workflow, have to be considered. Uniquely identifying the invocation of
a web service is mandatory, since that enables output proxies to distinguish different calls and
to prevent multiple executions of a single web-service call.

After the output proxies have been called by the local BPEL engines, they determine by
means of ZooKeeper and the tagged call id, whether the specific invocation is already being
conducted by another output proxy 8 . If this is not the case, the corresponding output proxy
performs the actual call. Otherwise, the output proxy randomly chooses a web-service replica
for retrieving the cached reply. Thus, steps 9 to 13 are similar to steps 2 to 6 .

Relying on ZooKeeper allows the output proxies of BPEL engine replicas to detect if the
replica that performs the actual web-service call has crashed. In this case, the remaining BPEL
engine replicas use ZooKeeper’s support for leader election to select a replica to complete the
invocation.

9.4 Evaluation

In the course of the evaluation, we pursue two basic questions: How does the proposed trans-
parent active replication perform compared to a standard BPEL infrastructure that uses logging,
and what are the costs of externalizing coordination among replicas. To answer theses ques-
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tions, we compare our approach with a standard unreplicated BPEL engine and with a version
featuring a traditional fault-tolerant architecture using a group communication framework.

Test Cases In the case of the traditional fault-tolerant architecture, output proxies send request
data to only one of the input proxies and not to all of them (cf. steps 2 and 9 ). The reliable
delivery and ordering of request data is subsequently carried out using a group communication
framework, in our case JGroups. Additional steps (see 3 and 10 ) as needed in the ZooKeeper
variant can be omitted.

As a single request from a client to a BPEL engine typically leads to interaction with mul-
tiple web services, we examine these two stages independently. In the first scenario, we imple-
ment an echo service purely in BPEL. After the corresponding BPEL process has been started,
a client sends a message, which is then immediately answered by the process. In the second
scenario, we implement a similar echo service as a web service. Here, we use a BPEL process
for measuring the elapsed time while calling this web service from the BPEL engine.

Hard- and Software Setting All measurement results are obtained on the basis of a test
installation comprising 16 hosts equipped with 2.4 GHz quad-core CPU, 8 GB RAM, and con-
nected over Gigabit switched Ethernet. As platform for BPEL engines and web services, we
use an Apache software stack containing Tomcat, Axis2 and ODE. The replication groups of
BPEL engines, web services, and ZooKeeper comprise five servers3 each and are therefore able
to tolerate two faults per replica group. The values presented are the average of several test
runs; each test run includes 250 requests.

Results Figure 9.1 illustrates the performance advantages of a replication-based solution com-
pared to the standard approach using logging, which enables a BPEL process to survive a reboot
due to a crash or maintenance. Using ZooKeeper-aided active replication to provide a fault-
tolerant BPEL implementation, response times in our approach are 3.4 times (Client/BPEL
stage) and 2.0 times (BPEL/web services stage) lower compared to a standard BPEL infras-
tructure. Here, the slightly less performance gain at the stage between BPEL process and web
service is mainly owed to the support of transparent replication in our architecture and to the
additional web-service call it leads to (see Figure 9.2, step 7 ).

Besides achieving higher performance than a standard unreplicated BPEL implementation,
our fault-tolerant BPEL infrastructure presented here also provides improved fault tolerance:
The services offered by a replicated business process remain available even in the presence of a
limited number of crashes.

Disabling the logging mechanism for the unreplicated BPEL engine (i.e., deactivating fault
tolerance entirely) exposes the high costs of this technique. Without logging state to persistent
storage, response times of the unreplicated BPEL engine drop to about 10 milliseconds for both
stages. However, improving performance this way is not acceptable for critical services, as it
prevents a service from being recovered after a crash.

Considering the second question guiding this evaluation, it can be stated that the overhead
of using external coordination is moderate (about 13%). Despite the increased number of ex-
changed messages, the extra costs in terms of latency are at least partially hidden due to concur-
rent execution. Even if the underlying network exhibited higher latencies the overhead should

3Five machines are a common configuration for ZooKeeper.
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be negligible in most cases. In sum, this makes using coordination as an external service attrac-
tive, as it is often already available in cloud infrastructures and data centers, thereby saving on
deployment and maintenance costs.

9.5 Conclusion
We presented a flexible, lightweight and cost-efficient approach to support the fault-tolerant
execution of critical business processes in a cloud setting. This is achieved by off-line transfor-
mation of processes, thereby making them replication-aware and the rigorous use of ZooKeeper
to handle coordination and configuration. Our approach incurs only moderate overhead com-
pared with a traditional fault-tolerant architecture in which a group communication facility is
directly integrated with the middleware and it outperforms an unreplicated BPEL execution
supporting only the recovery from crashes.
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Chapter 10

BFT MapReduce

Chapter Authors:
Alysson Bessani (FFCUL), Marcelo Pasin (FFCUL), Miguel Correia (FFCUL) and Pedro
Costa (FFCUL)

10.1 Introduction

MapReduce is a programming model and a runtime environment designed by Google for pro-
cessing large data sets in its warehouse-scale machines (WSM) with hundreds to thousands of
servers [DG04, HB09]. MapReduce is becoming increasingly popular with the appearance of
many WSMs to provide cloud computing services, and many applications based on this model.
This popularity is also shown by the appearance of open-source implementations of the model,
like Hadoop that appeared in the Apache project and is now extensively used by Yahoo and
many other companies [Whi09].

At scales of thousands of computers and hundreds of other devices like network switches,
routers and power units, component failures become frequent, so fault tolerance is central in
the design of the original MapReduce as also in Hadoop. The modes of failure tolerated are
reasonably benign, like component crashes, and communication or file corruption. Although
the availability of services based on these mechanisms is high, there is anecdotal evidence that
more pernicious faults do happen and that they can cause service unavailabilities. Examples are
the Google App Engine outage of June 17, 2008 and the Amazon S3 availability event of July
20, 2008.

This combination of the increasing popularity of MapReduce applications with the possibil-
ity of fault modes not tolerated by current mechanisms suggests the need to use fault tolerance
mechanisms that cover a wider range of faults. A natural choice is Byzantine fault-tolerant repli-
cation, which is a current hot topic of research but that has already been shown to be efficient
[KAD+07, VCBL09]. Furthermore, there are critical applications that are being implemented
using MapReduce, as financial forecasting or power system dynamics analysis. The results pro-
duced by these applications are used to take critical decisions, so it may be important to increase
the certainty that they produce correct outputs. Byzantine fault-tolerant replication would allow
MapReduce to produce correct outputs even if some of the nodes were arbitrarily corrupted.
The main challenge is doing it at an affordable cost, as BFT replication typically requires more
than triplicating the execution of the computation [KAD+07].
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10.2 Hadoop MapReduce

MapReduce is used for processing large data sets by parallelizing the processing in a large num-
ber of computers. Data is broken in splits that are processed in different machines. Processing is
done in two phases: map and reduce. A MapReduce application is implemented in terms of two
functions that correspond to these two phases. A map function processes input data expressed
in terms of key-value pairs and produces an output also in the form of key-value pairs. A reduce
function picks the outputs of the map functions and produces outputs. Both the initial input and
the final output of a Hadoop MapReduce application are normally stored in HDFS [Whi09],
which is similar to the Google File System [GGL03]. Dean and Ghemawat show that many
applications can be implemented in a natural way using this programming model [DG04].

A MapReduce job is a unit of work that a user wants to be executed. It consists of the
input data, a map function, a reduce function, and configuration information. Hadoop breaks
the input data in splits. Each split is processed by a map task, which Hadoop prefers to run in
one of the machines where the split is stored (HDFS replicates the splits automatically for fault
tolerance). Map tasks write their output to local disk, which is not fault-tolerant. However, if
the output is lost, as when the machine crashes, the map task is simply executed again in another
computer. The outputs of all map tasks are then merged and sorted, an operation called shuffle.
After getting inputs from the shuffle, the reduce tasks process them and produce the output of
the job.

The four basic components of Hadoop are: the client, which submits the MapReduce job;
the job tracker, which coordinates the execution of jobs; the task trackers, which control the
execution of map and reduce tasks in the machines that do the processing; HDFS, which stores
files.

10.3 BFT Hadoop MapReduce

We assume that clients are always correct. The rationale is that if the client is faulty there is no
point in worrying about the correctness of the job’s output. Currently we also assume that the
job tracker is never faulty, which is the same assumption done by Hadoop [Whi09]. However,
we are considering removing this restriction in the future by replicating also the job tracker
using BFT replication. In relation to HDFS, we do not discuss here the problems due to faults
that may happen in some of its components. We assume that there is a BFT HDFS, which in fact
has already been presented elsewhere [CWA+09b]. Task trackers are present in all computers
that process data, so there are hundreds or thousands of them and we assume that they can be
Byzantine, which means that they can fail in a non-fail-silent way.

The key idea of BFT Hadoop’s task processing algorithm is to do majority voting for each
map and reduce task. Considering that f is a high bound on the number of faulty task trackers,
the basic scheme is the following:

1. start 2 f +1 replicas of each map task; write the output of these tasks to HDFS;

2. start 2 f +1 replicas of each reduce task; processing in a reduce starts when it reads f +1
copies of the same data produced by different map replicas for each of map task; the
output of these tasks is written to HDFS.

This basic scheme is straightforward but is also inefficient because it multiplies the process-
ing done by the system. Therefore, we use a set of improvements:
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Reduction to f + 1 replicas. The job tracker starts only f + 1 replicas of the same task and
the reduce tasks check if all of them return the same result. If a timeout elapses or some of
the returned results do not match, more replicas (at most f ) are started, until there are f + 1
matching replies.
Tentative execution. Waiting for f +1 matching map results before starting a reduce task can put
a burden on end-to-end latency for the job completion. A better way to deal with the problem
is to start executing the reduce tasks just after receiving the first copies of the required map
outputs, and then, while the reduce is still running, validate the input used as the map replicas
outputs are produced. If at some point it is detected that the input used is not correct, the reduce
task can be restarted with the correct input.
Digest replies. We need to receive at least f +1 matching outputs of maps or reduces to consider
them correct. These outputs tend to be large, so it is useful to fetch the first output from some
task replica and get just a digest (hash) from the others. This way, it is still possible to validate
the output without generating much additional network traffic.
Reducing storage overhead. We can write the output of both map and reduce tasks to HDFS with
a replication factor of 1, instead of 3 (the default value). We are already replicating the tasks,
and their outputs will be written on different locations, so we do not need to replicate these
outputs even more. In the normal case Byzantine faults do not occur, so these mechanisms
greatly reduce the overhead introduced by the basic scheme. Specifically, without Byzantine
faults, only f + 1 replicas are executed in task trackers, the latency is similar to the one with-
out replication, the overhead in terms of communication is small, and the storage overhead is
minimal.

10.4 Conclusion and Future Work
This abstract briefly presents a solution to make Hadoop MapReduce tolerant to Byzantine
faults. Although most BFT algorithms in the literature require 3 f +1 replicas of the processing,
our solution needs only f +1 in the normal case, in which there are no Byzantine faults.

Currently we are implementing a prototype of the system, which we will evaluate it in a
realistic system to see if the actual costs match our expectations.
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Chapter 11

Logging

Chapter Authors:
Davide Vernizzi (POL), Emanuele Cesena (POL), Gianluca Ramunno (POL) and Paolo Smi-
raglia (POL)

11.1 Introduction

In our vision of cloud, the presence of a efficient logging system is necessary. In this context we
define the Log Service, a service which has as objective to track and to log events that happen
in the cloud at different levels. In this chapter we analyse how the Log Service can be put in a
multi-cloud context.

The structure of the chapter includes two sections. The former provides a background about
Log Service and the latter provides a discussion about three applications of Log Service in a
multi-cloud context.

11.2 Log Service for a single cloud

The main focus of Log Service is to log and track events originating at the infrastructure layer.
This service is mainly based on the scheme for secure logging proposed by Schneier and Kelsey
in [SK99]. To ensure the code-integrity and hence to enhance the trustworthiness, in Log Ser-
vice the Trusted Computing technology is used. For a more detailed description of Log Service,
see D2.1.1, Chapter 6.

Log entries are usually small pieces of data, created at high rate and rarely deleted. For
these reasons, the Log Service must be capable of recording many log entries and of providing
a view on a subset of the log entries that satisfy a particular query. Moreover, in order to ensure
the security of the log entries, the Log Service must be capable to guarantee their integrity
and confidentiality. Since the log entries may contain sensitive information about the usage of a
certain system, Log Service must be capable to mediate every access in order to prevent leakage
of information. Therefore the presence of an access control system is required.

Log Service may be considered as the ensemble of three components. The Log Core which
is the main component and acts as service controller, the Log Storage which manages the stor-
age of the log entries and the Log Console which acts as public access interface to the Log
Service. Moreover, in Log Service four actors may be identified. Cloud Component is a generic
component of the cloud infrastructure, User is the end-user of the cloud services, Cloud Admin
is the administrator of the cloud infrastructure and Log Reviewer is an external entity which is
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Figure 11.1: High level architecture of the Log Service.

able to read the logs. The relationships between components and actors are depicted in figure
11.1.

11.3 Multi-cloud scenarios for the Log Service
For the Log Service we foresee different multi-cloud scenarios that represent possible steps
along evolutionary paths from a service entirely confined within a single cloud (described in
D2.1.1 and briefly recalled in Section 11.2) – the TClouds cloud – to a completely distributed
one. In particular, we see two different and, possibly, orthogonal directions for enhancements:
moving the clients of the Log Service to remote clouds and logging Cloud-of-Cloud events
(i.e. originated by BFT protocols). In the first direction we identify one generic scenario called
Log as a Service (Section 11.3.1). In the other direction we identify three Log Service scenar-
ios: Cloud-of-Cloud-enabled (Section 11.3.2), Cloud-of-Cloud-optimized (Section 11.3.3) and
Cloud-of-Cloud-distributed (Section 11.3.4).

11.3.1 Log as a Service (LaaS)
The starting point for the Log as a Service (LaaS) scenario is a Log Service (LS) designed for
single cloud, a trustworthy service whose clients are internal (i.e. in the same cloud). They
are (physical and virtual) infrastructural components and applications, therefore the LS can be
considered as part of the Infrastructure as a Service (IaaS) and also of the Platform as a Service
(PaaS). The LS can be extended to the Log as a Service by moving the location of the clients
originating the log events: in LaaS they are external to the cloud running the LS, i.e. they are
from remote clouds. However, with respect to the client types, the LaaS keeps serving both
infrastructure and application clients.

A first example of client in this scenario could be a remote private cloud that wants to
outsource the management and the storage of the log events originated at the infrastructure
layer to an external cloud entirely dedicated to this purpose (Figure 11.2). Such a service
(LaaS) is already available on the market (e.g. Loggly1) which is particularly focused on the
analysis of logs collected from multiple sources. The aim of TClouds LaaS is to provide similar
functional capabilities – although the focus will not be the log analysis and the related tools –

1Loggly - http://loggly.com
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Figure 11.2: Log as a Service scenario.

and, at the same time, to guarantee that a number of security requirements like forward integrity,
confidentiality, access control and privacy by design.

In this example the remote cloud is supposed to be mainly private because a commercial
provider would not expose the internals of the cloud it operates by outsourcing the storage
of log events or allowing a customer to do so. Moreover, given the high frequency of the
infrastructural log events and the large size of the infrastructure of a public cloud, a massive
amount of log data would be transferred to the external Log Service cloud, requiring large
bandwidth only dedicated to this purpose. This would also imply relevant economic costs, if
the outsourcing can be decided by the customer, due to the communication cost models common
to the commercial providers. However also a public cloud might be a customer of the LaaS.
For instance when the latter acts as Platform as a Service to log application events. In this case
the customer of the public cloud can autonomously decide to outsource the collection of the log
events originated from its application(s).

Specific requirements

In the following some important aspects of the Log as a Service are presented by highlighting,
for each of them, the differences from the Log Service designed in D2.1.1 for a single cloud.

Functional model. The Log as a Service builds on a functional model similar to the one
underlying the Log Service. Only one role differs: the Cloud Nodes originating the log events
– both infrastructural and applicative – may be not running in the same cloud as the Log as a
Service: these physical nodes can be local or remote.

Trust model. The Log as a Service builds on the same trust model as the Log Service. The
remote cloud accesses the service exported by a cloud which is considered trustworthy.

Authentication. The authentication mechanism provided by the Log Service should be ex-
tended to support the identification of the cloud originating the log events in addition to the
originator node and the user account. For instance, inter-domain authentication mechanisms
like OAuth2 may be applied.

2OAuth - http://oauth.net/
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Figure 11.3: Cloud-of-Cloud-enabled Log Service scenario.

Access control. Analogously, the access control mechanism embedded in the Log Service
should be extended to encode the identification of the cloud originating the log events in addition
to the originator node and the user account.

Storage. For the storage, there is no difference between Log Service and Log as a Service:
the storage of the log events is completely confined within a single cloud, the one where either
log service types runs.

11.3.2 Cloud-of-Cloud-enabled Log Service
The Cloud-of-Cloud-enabled Log Service is the first example of a multi-cloud application of
Log Service. In this context the objective is to track and log Cloud-of-Cloud events, for instance
events generated by BFT protocols (see, D2.2.1 Section 3.3). In this scenario we consider a
Cloud-of-Cloud which is composed by one trustworthy cloud (TCloud) and less trusted clouds
(Figure 11.3). In addiction, we also assume that in this architecture, a fault tolerance system
(e.g. built upon BFT protocols) is enabled. Considering the scenario, an analysis of the most
important aspects of Cloud-of-Cloud-enabled Log Service is now presented.

Access Control. In a Cloud-of-Cloud architecture, each cloud may be considered as an access
domain which is characterized by a certain access level to the information. Moreover, we con-
sider that such a level may vary depending on the location of the cloud (e.g., logs about medical
data must only be accessed in the same country where the corresponding data are generated).
Therefore, in order to ensure the privacy, Cloud-of-Cloud-enabled Log Service must be able to
regulate the access to the stored data and to manage correctly the variation of the access level.

Event-driven logging. In a Cloud-of-Cloud where BFT protocols are enabled, each event
implies the exchange of a large amount of messages between nodes which may be part of
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Figure 11.4: Cloud-of-Cloud-optimized Log Service scenario.

different clouds. These messages may be used as trigger for the identification of a certain event.
This way, by defining a proper communication protocol among Cloud-of-Cloud nodes, it is
possible to realize an event-driven logging system.

Forward Integrity. A key point for Log Service is to ensure the Forward Integrity property.
While in a single-cloud scenario the mechanisms to ensure this property are well defined (see
D2.1.1, Section 6.3), in a multi-cloud scenario some issues may arise. The first one is how to
guarantee the Forward Integrity between multiple log files which come from different sources.
In order to mitigate this issue a proper schema based on the usage of hash-chains must be
defined. These schemes usually makes use of cryptographic keys to provide confidentiality and
integrity. The generation and the distribution of such keys may bring security issues, especially
in distributed environments. To address this, specific techniques (such as key-splitting) will be
applied.

11.3.3 Cloud-of-Cloud-optimized Log Service
Cloud-of-Cloud-optimized Log Service may be considered the first optimization step of the
Cloud-of-Cloud-enabled Log Service scenario. In this context the Log Service not only runs
on the trustworthy cloud, but it can be also distributed on different clouds. The “distributed”
aspect of Log Service means that some components like Log Core (or Log Storage) can be
replicated on a different cloud nodes (which may be part of untrusted clouds) in order to build,
for instance, a fault tolerance system (see Figure 11.4).

Cooperation between multiple components. The first aspect that requires a discussion is the
cooperation between multiple replicas of the components. Replicas of the log components may
be used to realize a fail-over system or to create a remote architecture of a system with a local
replica of the components. The cooperation between multiple components brings to an issue
related to the location where the component replicas may be positioned. In detail, some security
risks may appear if the replicas are located in “hostile” environments, for instance if a replica
of Log Core is running in a portion of a public cloud.

Management Optimization. Another aspect of the Cloud-of-Cloud-optimized Log Service
is the optimization of the replicas management. In detail, in order to enhance the cloud perfor-
mance it may be useful to identify algorithms and policy to determine when the usage of the
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Figure 11.5: Cloud-of-Cloud-distributed Log Service scenario.

replicas is necessary and where they have to be located into the Cloud-of-Cloud. Concerning
the location of the replicas, some issues may be related to the legislation of the region where
the cloud is located (see D1.2.2 for more details).

11.3.4 Cloud-of-Cloud-distributed Log Service
Cloud-of-Cloud-distributed Log Service can be viewed as a fully multi-cloud version of LaaS.
In this scenario the Log Service is running on a Cloud-of-Cloud architecture and it is exported
as service (see Figure 11.5).

In this case all the components of the log service take benefits from the underlying dis-
tributed infrastructure. Here, differently from the solution presented in the previous sections,
the LaaS is seen as a service which is self-managed and self-coordinated and which completely
relies on the underlying highly distributed infrastructure (e.g. it does not require the presence
of a trusted cloud to run the Log Core). Since this scenario does not rely a trustworthy cloud, it
is necessary to guarantee security of cryptographic keys and sensitive data.

11.4 Concluding Remarks
This chapter described how the Log Service presented in D2.1 can take advantage of the archi-
tecture of the cloud of clouds. The Log service is enhanced along three main lines.

First, it is offered as Log as a Service (LaaS) to physical nodes or applications running in
other clouds which want to outsource the management and the storage of the logs. Second, the
LaaS can be used to track events generated by the BFT protocols that are executed in the cloud
of clouds. Finaly, the LaaS can exploit the distributed nature of the cloud of clouds in order to
achieve higher availability and confidentiality.

In all the cases, special attention to the security issues must be paid. When accessing the
LaaS from many different domains, it is important to guarantee that a proper access control
mechanism is in place. On the other hand, when the LaaS exploits remote clouds (e.g., for
creating a BFT service), it is necessary to protect the cryptographic keys used to guarantee
integrity and confidentiality of the log entries.
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