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Executive Summary

In this deliverable we describe our 2nd-year efforts in further developing the cloud-of-clouds
model, in which a set of cloud providers are used to build services such as object storage (in the
same line as object-based cloud storage IaaS) and replicated execution (something similar to a
PaaS). We start by providing a consolidated description of the rationale and aims of the TClouds
reference architecture, and then we proceed to a discussion about the need for adaptation in
cloud-based services. The remaining of the document describes several contributions of the
project regarding how to replicate, coordinate and access computation and information located
in several independent and non-cooperating clouds. All these contributions are related to a
subset of components/ideas provided in the first year. In particular, we focus on three main
components: cloud-of-clouds object storage (theory and practice), Byzantine fault-tolerant state
machine replication and fault-tolerant BPEL and its efficient implementation.
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Chapter 1

Introduction

1.1 TClouds — Trustworthy Clouds

TClouds aims to develop trustworthy Internet-scale cloud services, providing computing, net-
work, and storage resources over the Internet. Existing cloud computing services are today
generally not trusted for running critical infrastructure, which may range from business-critical
tasks of large companies to mission-critical tasks for the society as a whole. The latter includes
water, electricity, fuel, and food supply chains. TClouds focuses on power grids and electricity
management and on patient-centric health-care systems as its main applications.

The TClouds project identifies and addresses legal implications and business opportunities
of using infrastructure clouds, assesses security, privacy, and resilience aspects of cloud comput-
ing and contributes to building a regulatory framework enabling resilient and privacy-enhanced
cloud infrastructure.

The main body of work in TClouds defines a reference architecture and prototype systems
for securing infrastructure clouds, by providing security enhancements that can be deployed on
top of commodity infrastructure clouds (as a cloud-of-clouds) and by assessing the resilience,
privacy, and security extensions of existing clouds.

Furthermore, TClouds provides resilient middleware for adaptive security using a cloud-
of-clouds, which is not dependent on any single cloud provider. This feature of the TClouds
platform will provide tolerance and adaptability to mitigate security incidents and unstable op-
erating conditions for a range of applications running on a clouds-of-clouds.

1.2 Activity 2 — Trustworthy Internet-scale Computing Plat-
form

Activity 2 carries out research and builds the actual TClouds platform, which delivers trust-
worthy resilient cloud-computing services. The TClouds platform contains trustworthy cloud
components that operate inside the infrastructure of a cloud provider; this goal is specifically ad-
dressed by WP2.1. The purpose of the components developed for the infrastructure is to achieve
higher security and better resilience than current cloud computing services may provide.

The TClouds platform also links cloud services from multiple providers together, specif-
ically in WP2.2, in order to realize a comprehensive service that is more resilient and gains
higher security than what can ever be achieved by consuming the service of an individual cloud
provider alone. The approach involves simultaneous access to resources of multiple commodity
clouds, introduction of resilient cloud service mediators that act as added-value cloud providers,
and client-side strategies to construct a resilient service from such a cloud-of-clouds.

WP2.3 introduces the definition of languages and models for the formalization of user- and
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application-level security requirements, involving the development of management operations
for security-critical components, such as “trust anchors” based on trusted computing technology
(e.g., TPM hardware), and it exploits automated analysis of deployed cloud infrastructures with
respect to high-level security requirements.

Furthermore, Activity 2 will provide an integrated prototype implementation of the trust-
worthy cloud architecture that forms the basis for the application scenarios of Activity 3. For-
mulation and development of an integrated platform is the subject of WP2.4.

These generic objectives of A2 can be broken down to technical requirements and designs
for trustworthy cloud-computing components (e.g., virtual machines, storage components, net-
work services) and to novel security and resilience mechanisms and protocols, which realize
trustworthy and privacy-aware cloud-of-clouds services. They are described in the deliverables
of WP2.1–WP2.3, and WP2.4 describes the implementation of an integrated platform.

1.3 Workpackage 2.2 — Cloud of Clouds Middleware for
Adaptive Resilience

The overall objective of WP2.2 is to investigate and define a resilient (i.e., secure and depend-
able) middleware that provides an adaptable suite of protocols appropriate for a range of ap-
plications running on clouds-of-clouds. The key idea of this work package is to exploit the
availability of several cloud offers from different providers for similar services to build re-
silient applications that make use of such cloud-of-clouds, avoiding the dependency of a single
provider and ruling out the existence of Internet-scale single point of failures for cloud-based
applications and services.

During the first year, a set of components and algorithms were identified together with a
reference architecture and described in D2.2.1. In this second year we focus on subset of these
components, that were selected among the ones firstly proposed to be further developed and
demonstrated at the end of year 2, and later exploited in the use cases defined in A3.

1.4 Deliverable 2.2.2 — Preliminary Specification of Services
and Protocols of Middleware for Adaptive Resilience

Overview. The increasing maturity of cloud computing technology is leading many organiza-
tions to migrate their IT solutions and/or infrastructures to operate completely or partially in the
cloud. Even governments and companies that maintain critical infrastructures are considering
the use of cloud offers to reduce their operational costs [Gre10]. Nevertheless, cloud computing
has limitations related to security and privacy, which should be accounted for, especially in the
context of critical applications.

These limitations are mostly related with the fact that currently cloud-based applications
heavily depend on the trustworthiness of the cloud provider which is offering the resources or
services. However, the trust put on the cloud providers may be unjustified due to a set of threats
that may affect the services:

• Loss of availability: When data is moved from the company’s network to an external
datacenter, it is inevitable that service availability is affected by problems in the Internet.
Unavailability can also be caused by cloud outages, from which there are many reports
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[Rap11], or by DDoS (Distributed Denial of Service) attacks [Met09]. Unavailability
may be a severe problems for critical applications such as smart lighting.

• Loss and corruption of data: There are several cases of cloud services losing or cor-
rupting customer data. Two elucidative examples are: in October 2009 a subsidiary of
Microsoft, Danger Inc., lost the contacts, notes, photos, etc. of a large number of users of
the Sidekick service [Sar09]; in February of the same year Ma.gnolia lost half a terabyte
of data that it never managed to recover [Nao09].

• Loss of privacy: The cloud provider has access to both the stored data and how it is
accessed. Usually it is reasonable to assume the provider as a company is trustworthy,
but malicious insiders are a wide-spread security problem [HDS+11]. This is an especial
concern in applications that involve keeping private data like health records.

• Vendor lock-in: There is currently some concern that a few cloud computing providers
may become dominant, the so called vendor lock-in issue [ALPW10]. This concern is
specially prevalent in Europe, as the most conspicuous providers are not in the region.
Even moving from one provider to another one may be expensive because the cost of
cloud usage has a component proportional to the amount of data that is transferred.

In this deliverable we further develop a model in which a set of cloud providers are used to
build services such as object storage (in the same line as object-based cloud storage IaaS) and
replicated execution (something similar to a PaaS). Since most contributions here presented re-
volve around the idea of replicating computation or information on several independent clouds,
the bulk of the contribution in this deliverable comes in the form of a set of practical replication
& coordination protocols, their evaluation, and the study of their theoretical limitations. All
these contributions are related to a subset of components/ideas provided in the first year. In par-
ticular, we focus on three main components: cloud-of-clouds object storage, BFT asynchronous
state machine replication and fault-tolerant BPEL and its efficient implementation. Moreover,
in this deliverable we start discussing how these services can be made adaptive, with particular
emphasis on adding and removing replicas for scale-up (how to exchange replicas by others
more powerful) and scale-out (how to add more replicas to a system).

Structure. This deliverable is organized in the following way. Chapter 2 offers a concise
description of the main architectural aspects of the revised TClouds reference architecture (ini-
tially described in D2.2.1, and latter published in [VBP12]). The next chapter (3) discusses the
need for cloud services adaptation and proposes a framework for building adaptable depend-
able cloud services. We expect to fully develop and support this model in the third year of the
project.

The next two chapters describe our contributions regarding the provision of a cloud-of-
clouds object store in two complementary ways. Chapter 4 presents DEPSKY, a new storage
protocol that integrates a set of techniques for Byzantine fault tolerance, cryptography and cod-
ing theory for providing reliable, secure and cost-effective storage using a set of storage cloud
providers (e.g., Amazon S3, Windows Azure Blob, Google Storage) as long as more than 2/3
of them are correct and available. A preliminary design of DEPSKY was described in D2.2.1,
but in this deliverable we present the consolidated protocols (updating also the published ver-
sion [BCQ+11]) and a complete evaluation of the system using a diverse set of real cloud
providers. The DEPSKY chapter is complemented by Chapter 5, where we discuss the theoret-
ical framework for these object storage systems (here called key-value stores) and investigate
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several issues and limitations related with their use and implementation. The material on this
chapter is based on two published works [CJS12, BCE+12]. These two chapters provide prac-
tical (including deployment experience) and theoretical underpinnings about cloud-of-clouds
object-based storage services, a concept introduced by TClouds.

In Chapter 6 we turn back to BFT state machine replication protocols and, in particular, the
BFT-SMART replication library [LaS10], which has its architecture and initial implementation
described in last year WP2.2 deliverable (D2.2.1). In this chapter we describe the theoretical
foundations of the protocol used in BFT-SMART to order messages and ensure strong con-
sistency for replicated services. The contributions presented in this chapter were published
in [SB12].

Finally, Chapter 7 returns to the dependable web services orchestration framework defined
in D2.2.1 (dubbed FT-BPEL). This chapter delves into the implementation of a component that
is fundamental for this service, an extensible coordination service that can also be interesting to
other services and applications.

At the end of the deliverable we provide an appendix containing proofs for several results
presented in Chapters 4, 5 and 6.

Deviation from Workplan. This deliverable conforms to the DoW/Annex I, Version 2.

Target Audience. This deliverable aims at researchers and developers of security and man-
agement systems for cloud-computing platforms. The deliverable assumes graduate-level back-
ground knowledge in computer science technology, specifically, in operating system concepts
and distributed systems models and technologies. Despite the effort of the authors to make the
their contributions accessible for a broad range of readers, there are chapters such as 5 and 6
that will be better appreciated by readers with some background on distributed systems theory.

Relation to Other Deliverables. Figure 1.1 illustrates WP2.2 and its relations to other work-
packages according to the DoW/Annex I (specifically, this figure reflects the structure after the
change of WP2.2 made for Annex I, Version 2).

The present deliverable, D2.2.2, presents a set of contributions related with the use of mul-
tiple clouds to implement trustworthy services and applications. This deliverable refines the
contributions described in last year deliverables (D2.2.1 and D2.1.1) and defines a subset of the
components initially proposed to be demonstrated in the TClouds 2nd-year demo (mainly cloud-
of-clouds object-based storage and BFT state machine replication), as described in D2.4.2. Nat-
urally, most of the ideas presented here will be used in the components used in both use cases
of A3.
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Chapter 2

Revised TClouds Architecture

Chapter Authors:
Paulo Verı́ssimo, Alysson Bessani and Marcelo Pasin (FFCUL).

2.1 Introduction

Cloud Computing (CC) has gained enormous momentum and is progressively reaching every
sector using IT. However, as more and more services migrate to CC, so increases the dependence
of the IT business on latter, perhaps not yet met by adequate levels of robustness. However,
short of promising adequate security management of the infrastructure and perhaps some form
of disaster recovery, little more has been offered by cloud providers so far. This can be testified
by the numerous failures of cloud provider services made public, having caused service and
data loss, as well as confidentiality compromises [BPN+11, Met09, Nao09, Sar09].

How is this being addressed today? Approaches confined to single cloud provision will
not address high-resilience objectives, since they are a single point of failure. Large cloud
providers attempt to achieve resilience by deploying several, differently located, cloud subsys-
tems, which definitely improves on the situation, but they still remain under a single manage-
ment and trust domain, with regard to common-mode and malicious faults. Federated cloud
environments [RBL+09] certainly introduce the next instance of a solution, but they require
alliance of the involved providers, and the general reality is that providers usually compete and
may be mutually distrusting or even hostile to each other.

For the above reasons, we believe that built-in, open, and diverse solutions to cloud depend-
ability and security are required. We propose the cloud-of-clouds paradigm as a path to achieve
cloud computing resilience. The cloud-of-clouds paradigm extends the cloud concept, by lever-
aging the availability of multiple or federated cloud environments to create diverse ecosystems,
and by letting users (besides providers) self-organize the way they use multiple cloud computing
offerings.

Our intuition is that a resilient cloud computing infrastructure should (1) be based on a
cloud-of-clouds setting; (2) achieve resilience against both attacks and accidents; (3) do so in
as automated as possible a way; and (4) be open but not replace commodity clouds, instead, act
in complement or in addition to them.

In this chapter we give a preliminary overview of the key points of the TClouds cloud-
of-clouds reference architecture, which is devoted to providing incrementally high levels of
security and dependability to cloud infrastructures, in an open, modular and versatile way. We
describe initial validation of the architecture through recently published proof-of-concept sys-
tems and prototypes developed in the context of the project, which give promising prospects
for this approach. This chapter is a consolidated and concise version of the initial architecture
specification presented in 1st year WP2.2 deliverable (Chapter 4 of D2.2.1).
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2.2 Motivation and Approach
In this section, we discuss the motivation and the approach to the model and architecture of
TClouds. The diagnosis of the security and dependability problems faced by current cloud
computing systems, which led to the design of TClouds, can be shortly described as follows:

• A cloud scenario has dependability and security needs that cannot be met by the applica-
tion layer alone, requiring security-specific solutions to be provided at lower layers of the
cloud architecture (infrastructure and platform).

• However, specific and proprietary IaaS or PaaS approaches to achieving resilience can
make migration or interoperation difficult and expensive, creating vendor lock-in and
competition exclusion [ALPW10], requiring instead open mechanisms.

• Finally, high-resilience objectives may be compromised, even for multiple or federated
clouds, in solutions that may possess, at organizational level, single points of failure (e.g.,
common or related management and trust domains), requiring a genuinely diverse cloud-
of-clouds approach.

Applications using Applications using Cloud Cloud ServicesServices

TCLOUDS TCLOUDS 
Resilient Cloud-of-clouds 

Infrastructure

B iB i M ltiM lti Cl dCl d U t t dU t t d S iS i

BareBare ResourcesResources

Basic Basic MultiMulti--CloudCloud UntrustedUntrusted ServicesServices
CLOUD ACLOUD A CLOUD NCLOUD N. . .. . .

TClouds No. 257243
Trustworthy Clouds  ‐
Privacy and Resilience for Internet‐scale Critical Infrastructure

20/03/2012 5

Figure 2.1: Achieving cloud resilience with the TClouds cloud-of-clouds infrastructure

Problems such as described above can be solved, and we propose to address them with
the TClouds architecture, pretty much in the way depicted in Figure 2.1. In short, the archi-
tecture foresees the introduction of an infrastructure providing resilience, between commodity
untrusted services, and the applications requiring security and dependability. This architecture
aims at providing automated computing resilience against attacks and accidents in complement
or in addition to classical commodity clouds protection schemes. It should do so whilst preserv-
ing the ability to freely choose from and use multiple cloud offerings without any pre-defined
coordination amongst the cloud providers. This is the main difference to current federated cloud
approaches. Furthermore, solutions should provide incremental levels of resilience, namely by
modularly offering Iaas and PaaS level mechanisms.

In the remainder of the section, we discuss the main points behind the definition of the
architecture.

Promote automatic protection and avoid single points of failure Clouds, being high-value,
complex, large-scale and distributed infrastructures, are currently enduring high levels of threat.
In order to achieve effective protection against such adverse conditions, solutions should involve
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automatic mechanisms, such as those provided by intrusion tolerance [VNC03]. Algorithms
and protocols based on this paradigm, such as Byzantine fault tolerance and proactive/reactive
recovery [ADD+10, CL02, VCBL10] are addressed in TClouds. These techniques have been
shown to successfully obtain high degrees of resilience in recent proof-of-concept prototypes for
equally complex and exposed systems such as critical information infrastructures [BSC+08].
These mechanisms complement (not substitute) classical security techniques.
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Figure 2.2: Diverse TClouds ecosystem

Intrusion-tolerant protocols, optimized to coordinate replicas, are fit to exploit the redun-
dancy and diversity that comes from relying on multiple cloud providers, thus obviating the
organizational syndrome of having single points of failure, mentioned earlier. The relevant
mechanisms should, however, be as transparent as possible, offering cloud-of-clouds abstrac-
tions to the higher-level users, whilst hiding the complexity of managing that redundancy and
diversity.

Preserve legacy needs whilst enabling a diverse ecosystem The architecture should accom-
modate multiple resilient cloud computing deployment alternatives, in order to be successful.
It should ease migration of commodity cloud providers to whatever cloud resilience solutions
to be advanced, by preserving legacy IaaS-level technology and components as much as pos-
sible. On the other hand, those solutions should be open, facilitating the emergence of new
players such as intermediate added-value (e.g., resilient) cloud service providers, between the
very-large-scale commodity cloud providers and the final end-users.

Avoiding an explosive growth of complexity, however, implies being modular and versatile
enough to allow different instantiations under the same generic structure. As an example, it
should support some key interaction modes: simultaneous use of commodity clouds from dif-
ferent providers (untrusted cloud-of-clouds); introduction of resilient cloud service mediators,
acting as added-value cloud providers; accommodation of devices for in-house clouding (allow-
ing an organisation to build its own resilient private cloud); support of lightweight end-users
directly over commodity clouds; support of smooth migration paths for commodity providers
toward TClouds-enabled resilient clouds.

Our vision for such a rich ecosystem is depicted in Figure 2.2. Technically, this vision
translates to having the architecture be able to supply systems architects with all the alternatives
above. We explain our approach to this key point later in the text.

The scenarios outlined in Figure 2.2 are a fairly complete combination of realistic re-
silient cloud computing deployment alternatives. For example, we foresee implementations of
TClouds functionality preserving the use of legacy commodity clouds IaaS, either by resorting
to TClouds-enabled client-side software deployed in-house, or to server-side software deployed
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at an added-value trusted-clouds provider offering managed resilient cloud services. The archi-
tecture also allows for more ambitious steps, those considering that commodity cloud providers
will eventually adhere to a model such as TClouds, directly providing resilient CC. In fact,
our architecture foresees two basic paths for commodity cloud migration: (i) TClouds-enabled
cloud, preserving data center machinery and software, and adding a wrapping resilience layer
on top; (ii) TClouds native data centers and cloud, built from scratch with TClouds mechanisms.

2.3 Architecture Overview

Several mechanisms (replication, Byzantine fault-tolerance, proactive recovery, randomisation,
trusted platform modules, etc.) are selectively used in the TClouds architecture, to build layers
of progressively more trusted components and middleware subsystems (trusted IaaS and PaaS),
from baseline untrusted components (basic multi-cloud untrusted services). This leads to an au-
tomation of the process of building trust: for example, at lower layers, basic intrusion tolerance
mechanisms are used to construct a trustworthy communication subsystem, which can then be
trusted by upper layers to securely communicate amongst participants, or to securely manage a
set of replicas, without bothering about network or host intrusion threats.

The TClouds architecture builds on previous secure and dependable architectures, such as
MAFTIA [VNC+06], for the lower level mechanisms, but extends them significantly to attend
to the specific challenges of cloud computing infrastructures. As mentioned before, TClouds
could be described, in short, as a resilient cloud-of-clouds infrastructure providing automated
resilience against attacks and accidents, in complement or in addition to commodity clouds.
This enhanced functionality is achieved through specialised TClouds middleware standing be-
tween low-level, basic multi-cloud untrusted services, and the applications requiring security
and dependability, as depicted in Figure 2.3. This middleware is essentially of two classes:
Trusted Infrastructure as a Service (T-IaaS) and Trusted Platform as a Service (T-PaaS).
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Figure 2.3: TClouds middleware

The characteristics of the architecture lead to the fulfillment of requirements outlined earlier.
The TClouds middleware will be an enabler of these objectives, by providing:

• Support for heterogeneity and openess.

• Transparent and incremental resilience with regard to failures of individual clouds.

• Modular functions and protocols.
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As suggested in Figure 2.3, the TClouds middleware lowest layer, Trusted Infrastructure
as a Service (T-IaaS) provides services which are built on the services provided by the com-
modity untrusted clouds ecosystem, at the Multi-Cloud IaaS Interface, the lower interface of
the TClouds middleware which, as the name says, provides the standard IaaS services, such as
storage, processing, etc. The T-IaaS services can either be used directly by application users at
the top TClouds middleware interface, the Cloud-of-Clouds Trusted Interface, or recursively by
the next layer up, the Trusted Platform as a Service (T-PaaS). The latter services can also use
basic cloud services, through the Multi-Cloud IaaS Interface.

Incremental resilience is achieved by selectively using the services provided at the Cloud-
of-Clouds Trusted Interface, with different degrees of resilience, as exemplified in Figure 2.3:
untrusted commodity cloud IaaS services; middleware T-PaaS, Trusted Platform Services; mid-
dleware T-IaaS, Trusted Infrastructure Services. All these services may also be provided by
advanced TClouds implementations, over bare resources, by cloud providers (to sell resilient
public clouds), or by other companies (to transform their IT into private clouds).

2.4 Main Building Blocks

The main building blocks of the architecture that implement the above-mentioned functionality,
presented in Figure 2.3, are introduced and explained in this section.

The minimal functionality is offered by basic multi-cloud untrusted services. These blocks
represent the currently standard functionality, at IaaS level, offered by commodity market play-
ers. Available services may evolve with the evolution of these systems, but are normally con-
fined to storage, processing power, networking, and several input/outputs.

Trusted Infrastructure and Platform Services The Trusted Infrastructure Services build-
ing block represents trusted-trustworthy versions of IaaS services. The idea is to offer storage
systems, and low-level virtual machines, resilient to attacks and faults, by combinations of fault-
/intrusion prevention and tolerance mechanisms and protocols which build a resilience layer on
top of the corresponding untrusted storage and processing systems.

The Trusted Platform Services building block represents trusted-trustworthy services at a
higher level of abstraction, built on top of either or both the IaaS and the T-IaaS. These services
normally support semantics useful to build complex reliable and distributed applications (for
example, MapReduce). Once more, these services are implemented by combinations of fault-
/intrusion prevention and tolerance mechanisms and protocols, for example, Byzantine fault-
tolerant (BFT) protocols [ADD+10, VCBL10].

TClouds Information Switches (TIS) Let us recall our initial objective of allowing multiple
TClouds deployments: final users, third-party added-value providers, or commodity providers
wishing to directly offer some form of cloud resilience. To allow seamless deployment of the
several alternatives, we need to materialize the middleware in a modular way that can morph
to each particular configuration of TClouds. In order to do so, the resilience mechanisms are
essentially based on a conceptual box, the TClouds Information Switch or TIS, a TClouds funda-
mental building block. The TIS runs the middleware protocols and mechanisms implementing
the resilience components already mentioned (T-IaaS, T-PaaS) as shown in Figure 2.4.

The TIS is configurable, and each TIS instantiation encapsulates the services in use by that
instance. As we see in the next section, these units constitute bricks which, with the adequate
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Figure 2.4: TIS - TClouds Information Switch

configuration and placement, materialize the several TClouds incarnations in a seamless and
modular way.

As well as its configuration, the TIS implementation may also assume different forms, de-
pending on the particular incarnation: dedicated machine; fault- and intrusion-tolerant appli-
ance box containing several TIS replicas implemented as virtual machines. The TIS itself can
be built with incremental levels of resilience against direct attacks, depending on its criticality
(e.g., replicated hardware; replicated and diverse VMs on single hardware [RK07]; self-healing
versions of the above [SBC+10]).

The TClouds Information Agent (TIA) is a software TIS, that allows configurable appliances
residing with end clients, running essentially the same algorithms, but with minimal investment.
On the other hand, the TIA option requires client modifications to achieve the desired TClouds
functionality. Running in the client space, they are also subject to a greater level of threat, which
can be mitigated by configurations where TIAs make use of trusted components.

2.5 Examples of TClouds distributed middleware

Byzantine-resilient protocols

The workhorses of the solutions for achieving resilient cloud services are the so-called Byzan-
tine fault-tolerant protocols, or BFT protocols. The baseline running environment for these
modular protocols takes the form of software modules located with end-clients, e.g., to address
the TClouds-enabled client-resident software alternative. As shown in Figure 2.5, these proto-
cols may or may not involve communication between modules, besides direct communication
with the several commodity clouds used.

In Chapter 4 we present a proof-of-concept prototype, concerned with resilient storage,
DEPSKY (initial version published in [BCQ+11]): a resilient storage system that leverages the
benefits of cloud-of-clouds architectures such as TClouds. DEPSKY relies on an efficient set
of Byzantine quorum system protocols, cryptography, secret sharing, erasure codes and the
diversity that comes from using several clouds.

Storage clouds are getting increasingly popular, but they have been affected by several prob-
lems, namely: loss of availability; loss and corruption of data; loss of privacy. The cloud-of-
clouds paradigm is the crux of the DEPSKY approach to address these limitations.

Loss of availability or data is handled by using Byzantine fault-tolerant replication. Byzan-
tine quorum systems protocols are actually used to store data on several clouds, overcoming
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Figure 2.5: Byzantine-resilient protocols

single cloud failures. There is a risk of loss of privacy, because, technically, the cloud provider
has access to data stored in the cloud, and as such so have malicious insiders or intruders.
Encrypting the data before storing it is cumbersome for distributed applications with multiple
users. DEPSKY employs a secret sharing scheme to avoid storing clear data in the clouds. Fi-
nally, erasure codes are used to improve the storage efficiency, amortizing the replication factor
on the cost of the solution.

DEPSKY provides an extremely resilient solution depending on a 4-way cloud-of-clouds,
however, at a price which is at most twice the cost of using a single cloud. This seems to
be a reasonable cost, given the benefits. A set of real-life experiments were made, using four
commercial cloud storage services (Amazon S3, Windows Azure, Nirvanix and Rackspace).
Cost-performance ratio looks extremely promising for this kind of approach, as will be seen in
Section 4.8.1.

DEPSKY is thus a virtual dependable and secure storage cloud, in reality developed across
diverse commercial clouds. A user invoking the T-IaaS interface of a TClouds-enabled client-
resident software module, such as depicted in Figure 2.5, would transparently obtain resilience
of its storage, whislt invoking a regular storage service interface. On the other hand, the very
same protocols might be easily adapted to run as a stand-alone storage service at a cloud services
mediator, running on one or more servers of a server-set configuration as depicted in Figure 2.6,
which in turn would interface with the required multiple commodity clouds. All details about
the design and evaluation of DEPSKY will be presented in Chapter 4.

Server-set implementation

A powerful alternative is given by considering the implementation of similar protocols, by an
actual set of distributed servers. The advantage is increased processing power and greater failure
independence. With this configuration, it is technically feasible for a mediator, an intermediate
provider, to establish the necessary IT to offer resilient cloud services to end-users, by buy-
ing untrusted commodity services and enhancing them with the TClouds middleware layer, as
Figure 2.6 illustrates.

The upside is that client-side installations are no longer necessary and resilient cloud provi-
sion becomes totally transparent. The downside of a mediator may be that this brings us back to
requiring trust in a single cloud provider, by the end users. This aspect can be mitigated by three
arguments: (a) given that most of the resources and processing power still lie with the raw IaaS
from the commodity providers, and not with the (relatively tiny) middleware in the mediator,
most of the failure risk still lies with the former providers, and that is mitigated by the diversity
of the untrusted multi-cloud ecosystem; (b) the resilience measures we foresee to implement the
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TIS further help mitigate the risk of a single point of failure on the mediator side and constitute
objective evidence of trustworthiness that can be used by an independent provider toward its
clients; (c) this mediator may in the end be organizationally trusted, such as a subsidiary of the
end users’ organization group providing resilient cloud solutions. At least in the early phases
of the creation of a trusted clouds ecosystem, we believe this to be an interesting technological
alternative.

Macro view: Arch  with OEM Cloud provider Macro view: Arch. with OEM Cloud provider 
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Figure 2.6: Server-set implementation

We have developed a second proof-of-concept prototype, around MapReduce. MapReduce
is a framework developed by Google for processing large data sets [DG04], and its open coun-
terpart, Apache Hadoop MapReduce, is largely used today, having become a typical PaaS-level
service, deployed and used by many cloud computing companies (e.g., Amazon, EBay, Face-
book, IBM, LinkedIn, RackSpace, Twitter, and Yahoo!). MapReduce runtimes like Hadoop
tolerate crash faults, but not Byzantine faults. However, evidence in the literature shows that
arbitrary faults do occur and can probably corrupt the results of MapReduce jobs [SG07].

In consequence, Hadoop seemed the perfect candidate to further experiment with the TClouds
concepts, by considering a server set implementation of the architecture, accessing untrusted
IaaS cloud services and implementing a trusted platform service, that is, a Byzantine fault-
tolerant version of Hadoop. In the 1st year WP2.2 deliverable (Chapter 10 of D2.2.1, also pub-
lished in [CPBC11]), we presented a MapReduce algorithm and prototype that tolerate these
faults. This BFT MapReduce algorithm executes a job using only twice as many resources as
the original Hadoop, instead of the 3 or 4 times more that would be required with the direct
application of the usual quorum for Byzantine fault-tolerance.

TIS-based TClouds-enabled cloud

In more advanced phases of the creation of a trusted clouds ecosystem, we believe that com-
modity cloud providers themselves will improve, even if selectively, their quality of service
with regard to security and dependability. Competition from added-value providers will create
a generic push for resilient solutions, of the kind offered by TClouds, which we discuss in this
section and the next.

The first and easiest way for a commodity provider to offer resilient services is to preserve
its investment in raw (non-resilient) cloud IaaS infrastructure, and implement the TClouds mid-
dleware on top of it. This will be implemented by several TIS topologically located in a way as
to completely wrap the relevant cloud’s data centers. Note that the TIS may be constructed to
be as resilient as desired, as mentioned earlier.
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Native TClouds installation

The most advanced and effective solution is based on the implementation of a native TClouds
system from scratch, over bare resources which can themselves already have local resilience
mechanisms. TClouds WP2.1 is investigating architectural solutions for this scenario.

A TClouds native cloud is achieved by re-implementing the data centers to be TClouds
compliant. This means at least two things: (a) the use of local fault/intrusion prevention and
tolerance mechanisms to enhance the basic machines and resources, for example at the level of
virtual machines and hypervisors, possibly relying on trusted components [CRS+11, KVB11];
(b) the re-design of the BFT protocols used to implement the TClouds middleware, to run
embedded in the bare resources, making the latter intrinsically secure and dependable. That is,
a native TClouds cloud will offer, from scratch, T-IaaS and T-PaaS, with the obvious gains in
the trustworthiness–performance product and, possibly, in functionality.

2.6 Conclusion
We have presented a preliminary overview of the TClouds architecture, explaining our approach
to provide incrementally high levels of security and dependability for cloud computing applica-
tions. We have shown that, through modularity and encapsulation around the TClouds Informa-
tion Switches, the architecture’s fundamental building block, it is straightforward to support a
diversity of resilient cloud computing deployment alternatives. We exemplified some concrete
instantiations of the architecture, which we believe validate the architecture’s effectiveness in
promoting open, modular and versatile resilient cloud computing.
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Chapter 3

Adaptation

Chapter Authors:
Vinı́cius Cogo, Marcelo Pasin and Alysson Bessani (FFCUL).

3.1 Introduction

Elasticity (the capacity of a service grow and shrink as it workloads demand) is one of the five
essential characteristics that define cloud computing [MG11]. The provision of this characteris-
tic is strictly related to the adaptability of a cloud-based service and to the amount of resources
allocated to it. Although elasticity is the most well-know adaptation property related to a cloud-
based service, it is not the only dynamic adaptation available in the cloud. This chapter goes
further and describes several possible solutions of dynamic adaptation in cloud environments,
considering also the cloud-of-clouds scenario.

The chapter is organized as follows. First (Section 3.2) we review the basic concepts of
adaptation, pointing reasons to adapt services and describe which type of services can be
adapted in cloud environments. Then we discuss the requirements that some critical compo-
nents, namely the resource manager and replication library, need to satisfy in order to imple-
ment adaptation (Section 3.3). After that, we propose an adaptation manager to perform dy-
namic adaptations in services running in a cloud-of-clouds scenario (Section 3.4). Finally, we
describe some related work and final remarks (Sections 3.5 and 3.6).

3.2 Adaptation

3.2.1 Basic Concepts

Adaptation is the process of modifying the structure or behaviour of a service [Inv07]. A static
adaptation means that possible changes are set before the service deployment or changes require
some level of redeployment to be performed [FC09]. Dynamic adaptations may occur after the
service deployment, meaning that the system does not need to be restarted [FC09].

Adaptations can be performed manually or automatically, where the latter consists in col-
lecting data, evaluating it, making a decision and performing the changes. Adaptations can
be either reactive or proactive [SBC+10]. The former is similar to an event-based approach,
where events are collected and analysed to make decisions. The latter resembles a time-based
approach, where changes are triggered independently, however the decisions still can be influ-
enced by collected events.

Adaptations can be divided also in parametric or compositional [MSKC04, FC09]. The
former consists in changing values of system parameters, which allows modifications only in
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foreseen properties. The latter consists in exchanging algorithms and structural parts of a sys-
tem, allowing initially unforeseen modifications.

3.2.2 Reasons to Adapt

Adaptation is employed to meet either functional or non-functional requirements in software en-
gineering [Inv07]. From a service provisioning perspective, it is employed to meet requirements
from service owners, users and environment. The former can be subdivided into inter-individual
- different individuals - and intra-individual differences - individual evolution or behavioural
changes. The latter consists mostly in environmental changes.

Performance, economy, security and legal reasons are the main causes to adapt services.
Most quality of service (QoS) metrics are taken into account in service adjustments based on
performance, for instance, an expected service throughput or latency. By contrast, most quality
of protection (QoP) factors are important for adaptations based on security terms, for instance,
the amount of faults that can be tolerated in a specific service. Budget reduction is the main
reason for adaptations based on economic constraints. Additionally, issues related to local
legislations, software licensing and copyright are the main reasons for adjustments based on
legal terms.

3.2.3 Types of Adaptive Services

All type of services can be adapted, from the non-replicated service to the Byzantine fault-
tolerant service based on state machine replication. This section describes the main types of
adaptive services considering a partially synchronous model [DLS88], which are presented in
Figure 3.1.

Figure 3.1: Types of adaptive services.

The types of adaptive services presented in Figure 3.1 are described bellow.

(a) Non-replicated service. A non-replicated service is the simplest type of adaptive services
addressed in this work. It is composed of only 1 service instance that is responsible to process
all client requests. It does not use any kind of replication to obtain fault tolerance or scalability.

Changing the amount of resources allocated to the service instance can adapt the service
capacity to the desired level of QoS. Live migration is the process of moving a service instance
from one physical host to another within the same cloud or even to a different cloud provider.
It is the main action performed to adapt this kind of service, but it can cause small disruptions
on service provisioning.
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(b) Stateless crash fault-tolerant services. This is the first type of service considering repli-
cation to obtain fault tolerance. It is composed of n service instances, where at least one of
them should process and answer client requests. Due to the stateless property, client requests
are processed independently from all other requests. This type of service has a local state but
it is not durable, which means that if a service replica crashes, the entire service state remains
intact in a shared storage system.

Clients can send their requests to only one instance per time or can request to all instances at
the same time. In the former case, crash faults are tolerated sending the same request to another
replica, while in the latter clients must wait only the fastest reply. To tolerate f crash faults, this
type of service must consider deploying at least f + 1 service instances.

Adaptations in all replicated services can modify the number of service instances and their
capacity. Changing the number of replicas can modify the QoP of replicated services, since the
more instances you have, the more crash faults can be tolerated. Changing the amount of re-
sources allocated to a service instance can adapt the service capacity to the desired level of QoS,
in the same way, adding more replicas improve the capacity of service provisioning. Live mi-
gration, replica replacement and inserting/removing instances are the main actions performed
to adapt this type of service.

(c) Crash fault-tolerant services based on state machine replication. This type of service
is similar to the previous one, once it is also composed of n service instances, where at least
one of them should process and answer client requests. The main difference in this case is the
state machine approach, where processing each client request can both depend on the previous
requests and on the current service state.

Clients normally send their requests to a specific service instance that is considered the
primary replica. The primary replica receives the client request and forward it to all other sec-
ondary replicas, ensuring they process it in the same order. All service instances start processing
from the same service state and arrive to a new common state, but only the primary replica reply
the client requests. Crash faults on primary replica can be tolerated by sending the same request
to any other secondary replica, because all of them have the same service state. To tolerate f
crash faults, this type of service must consider deploying at least f + 1 service instances.

Changing the amount of resources allocated to a service instance can adapt the service
capacity to the desired level of QoS. Notice that adding more replicas does not improve the sys-
tem capacity since all replicas have to execute all requests. Live migration, replica replacement
and inserting/removing instances are the main actions performed to adapt this kind of service.
Transferring the service state is required when new replicas join the group.

(d) Stateless Byzantine fault-tolerant replicated services. This is the first type of service
considering intrusion tolerance [VNC03] in this work. It is composed of n service replicas,
where all of them must receive, process and reply client requests. Due to the stateless property,
client requests are processed independently from all other requests.

Clients send their requests to all service instances at the same time and wait their replies.
Clients have a voter component that decides the correct answer based on the majority of an-
swers. Replicas do not need to communicate with each other, but arbitrary faults need to be
detected and faulty replicas recovered. To tolerate f arbitrary faults, this type of service must
consider deploying at least 2f + 1 service instances, to allow majority voting on the replies.

Changing the number of replicas can modify the service QoP, but in this case, two new
replicas are needed to increment by one the number of faults to be tolerated. Changing the
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amount of resources allocated to a service instance can adapt the service capacity to the desired
level of QoS, in the same way, adding more replicas improve the client provisioning capacity of
the system. Live migration, replica replacement and inserting/removing instances are the main
actions performed to adapt this kind of service.

(e) Byzantine fault-tolerant services based on state machine replication. This is the last
and most complex type of adaptive service considered in this work. It is similar to (c), once all
replicas must also receive, process and reply client requests. The main difference in this case is
the state machine approach, where all replicas must agree in a Byzantine consensus regarding
the order of processing requests and each request can both depend on other previous requests
and on current service state.

Clients send their requests to all service instances at the same time and wait their replies.
Clients have a voter component that decides the correct answer based on the majority of an-
swers. Replicas communicate with each other to achieve the Byzantine consensus, and arbitrary
faults need to be detected and faulty replicas recovered. To tolerate f arbitrary faults, this type
of service must consider deploying at least 3f + 1 service instances.

Changing the number of replicas can modify the service QoP, but in this case, three new
replicas are needed to increment by one the number of faults to be tolerated. Changing the
amount of resources allocated to a service instance can adapt the service capacity to the desired
level of QoS, in the same way as (c), however adding replicas does not necessarily improve
the capacity in this type of system. Live migration, replica replacement and inserting/removing
instances are the main actions performed to adapt this kind of service. The main difference is
that transferring the service state is required when new replicas join the group.

Notice that if more than f faults happen in any type of replicated services (from (b) to (e)),
then the fault or intrusion tolerance foreseen by this type of service will be compromised. Thus,
the QoP provided by these services became the same as from the service (a), which means that
there is no protection from the replication mechanism.

There are other properties or factors that can be adapted in all foreseen types of adaptive
services, not only the amount of service instances or their capacity. One example of property
that can be adapted in all cases is the geographical location of service instances.

3.2.4 Adaptation Solutions
This section contains a discussion regarding the criteria and solutions to dynamically adapt
services running in a multiple cloud environment, as considered in WP2.2. Table 3.1 correlates
each solution with the correspondent criteria, which is described in the following.

Horizontal scalability is the ability of (a) increasing or (b) reducing the amount of com-
puting instances responsible for providing a service. Increasing the number of service instances
is a reactive action to deal with peaks of client requests. Additionally, the more service in-
stances providing the service, the more faults can be tolerated, which leads to an improvement
in the service’s QoP. From a fault tolerance perspective, the more service instances providing
the service, the more faults can be tolerated, which leads to an improvement in the service QoP.

Reducing the number of service instances can save resources and money. Economic con-
straints can lead to the necessity of reducing the number of service instances. Such reduction can
also be performed by a proactive housekeeping process that periodically verifies if the amount
of allocated resources is appropriate for the recent load.

Regarding the foreseen types of services, discussed in Section 3.2.3, scale out/in are em-
ployed more often to adapt stateless replicated services. Increasing the number of replicas of a
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Performance Economic Security Legal
(a) Increasing the number of service instances X X
(b) Reducing the number of service instances X

(c) Upgrading the resources of service instances X
(d) Downgrading the resources of service instances X

(e) Moving service instances to different cloud provider X X X X
(f) Moving service instances close to clients X

(g) Moving service instances away from attackers X X X
(h) Replacing faulty service instances X X X

(i) Replacing software X X X
(j) Software updates X X X

(k) Replacing old service instances X X

Table 3.1: Adaptation solutions related with requirements.

BFT service based on state machine replication typically reduces the cost of read-only opera-
tions [Rei11], but increases the cost of write operations. Dynamically adapting the number of
replicas may be used to increase service quality, but requires careful modifications to the BFT
protocols in use [DK11].

(c) Upgrade and (d) downgrade are procedures to respectively increase and reduce the
amount or capacity of resources allocated to service instances. Elasticity by means of vertical
scalability is achieved through scaling up/down services. Upgrades can improve the service
capacity, maintaining the amount of replicas. The more powerful the replicas are, the bigger
is the quantity of requests per second processed by the service. Downgrades can release over-
provisioned allocated resources, and consequently save money.

Parametric adaptation concerning CPU, memory and disk capacity are some examples of
this adaptation. Usually, cloud providers have predefined categories of instances, called tiers,
with predefined amount of resources. In this case, the parametric adaptation considers only
category changes, for example, between small, medium, large and extra large instance configu-
rations at Amazon Elastic Compute Cloud [ec2].

Considering the types of adaptive services discussed in Section 3.2.3, changing the capacity
of service instances appear to fit well with services based on state machine replication, since it
does not require modifying the BFT replication protocols. However, it can also be employed to
adapt stateless services and non-replicated services.

(e) Moving replicas to different cloud providers can result in performance improvements
due to different resource configurations, or financial gains due to different prices and policies
on billing services. It is also important to prevent vendor lock-in, i.e., use more than one cloud
provider to avoid an entire service or data set to be dependent on a specific provider, where
changing it requires substantial costs [BCQ+11]. There are some initiatives to avoid or reduce
costs in a vendor lock-in scenario, which encompasses a modular development of drivers for
different clouds, usage of open interfaces, or usage of more than one provider since the be-
ginning.1 The more distributed among cloud providers a service is, the more protected against
vendor lock-in it gets. Thus, a cloud-of-clouds adaptation manager must be able to allocate
resources in multiple cloud providers, where they are not necessarily reliable. Additionally, dif-
ferent cloud providers can have distinct service policies. Moving the service to another provider
can be favourable if the new service policy protects the service better than the old one.

Globally distributed services should take into account the logical or geographical location

1There are EU-funded projects addressing this problem, e.g., MOSAIC [mos]
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of clients, thus (f) moving service instances close to clients can bring huge benefits in terms
of performance. More specifically, achieving logical proximity to the clients can reduce the
network latency between the service and clients. Moving service instances closer to clients
may also place them within a different legislation, which can be favourable to the relationship
between the service and its clients.

(g) Moving replicas logically away from attackers can increase the network latency expe-
rienced by the attacker, reducing the impact of its attacks on the number of requests processed
(this is especially efficient for DoS attacks). Such intentional performance reduction can also
reduce attacks effectiveness, e.g., brute force attacks. Geographical migrations of service in-
stances can also place them somewhere with adequate laws against some types of attack.

(h) Replacing faulty replicas is a reactive process following a detection, which provides
new correct instances in the place of faulty ones. A faulty replica can degrade the overall service
performance, since there is one less instance providing it. The scenario can be even worse if the
faulty replica becomes malicious and starts issuing expensive operations, such as unnecessary
state transfers requests. The pay-as-you-go model bills service instances regardless if they are
correct or faulty. Thus, if a faulty replica is not recovered, the service owner keeps paying
for the resources allocated to that replica. Removing faulty replicas can also restore the fault
tolerance guarantees of the service.

(i) Software replacement is an operation where software is replaced in all service instances
at run-time. Operating systems, Web servers and database management systems are examples
of software that can be replaced in this scenario. Different implementations might differ on
performance aspects, licensing costs or security mechanisms.

The use of diverse operating systems in replicated services has good evidences of effec-
tiveness on independence of faults [GBG+11]. Such diversity can also be obtained on each
migration or replacement in order to make an attacker’s life harder.

The (j) software update is the process of replacing software in all replicas by up-to-date
versions. From a security perspective, vulnerable software must be replaced as soon as patches
are available. New software versions might introduce optimized algorithms, thus improving the
service performance.

The first steps to update a software consists in creating a new VM image with the new
software version, registering it in at least one cloud and removing the old VM image from all
cloud providers. The next steps come naturally from triggering adaptations in the cloud-of-
clouds adaptation manager, which will select the new VM image in all adaptations.

Systems running for long time can be subject to ageing issues, where systems performance
is degraded by long running effects. Software rejuvenation can be employed to (k) avoid ageing
problems. It can be triggered by proactive process, which periodically verifies if there are old
replicas running and replaces them if they exist.

Replacing old replicas can improve the system performance, because ageing issues can
cause performance degradation. This adaptation can also avoid servers that contain non-patched
vulnerabilities, or even recover replicas that are subject to ageing effects triggered by internal
errors which had not been detected.

3.3 How to Implement Adaptation

This section contains a review of the requirements that a cloud resource management system
and a replication middleware should provide in order to allow service adaptation in cloud com-
puting. The first part is dedicated to describe existent scheduling solutions on cloud resource
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managers, for instance, OpenStack and OpenNebula. The second part presents a context regard-
ing reconfiguration in state machine replication and describe the protocol implemented in the
BFT-SMaRt, a library for Byzantine fault-tolerant services based on state machine replication.

3.3.1 Cloud Resource Management System
Preparing the deployment of a new service instance is an important step for adapting services
in the cloud. It encompasses choosing the ideal set of resources, which directly depends on the
allocation features supported by cloud resource managers. Thus, the first requirement for cloud
managers is a resource allocator considering more than one scheduling policy. A scheduling
policy is an algorithm that selects resources from a snapshot of the current system state, consid-
ering some predefined criteria, as for example, the system load. OpenStack scheduler contains
three predefined policies:

• Chance (random): Considering all available nodes that has enough resources to allocate
the requested service instance, the scheduler choses one randomly.

• Simple: Select the least loaded host that has enough resources to allocate the requested
VM.

• Zone: Choose a random host from all available hosts in a specified zone.

OpenNebula scheduler has also three predefined policies:

• Packing: Choose the node with more VMs running and with enough available resources
to the requested service instance.

• Striping: Select the node with less VMs running and with enough available resources to
the requested service instance.

• Load-aware: Choose the least CPU loaded host that has enough resources to allocate the
requested VM.

Allowing users to create custom scheduling policies is the second requirement, since there
are more criteria to be considered in placement policies than only the system load. OpenStack
and OpenNebula schedulers allow users to create custom placement policies based on match-
making algorithms [RLS98, AMM05]. This type of algorithm is composed of three steps: (1)
filtering out the elements that are incapable of fulfilling the request, (2) ranking the remaining
elements and (3) selecting the highest ranked element. There are several properties that can be
used to compose a custom placement policy, e.g., the free, used or total amount of CPU, memory
and hard disk, the virtualization environment, the geographic location and others. OpenStack
and OpenNebula also allow users to create new custom properties to be considered in custom
placement policies.

The third and last requirement for cloud managers is the provisioning of public APIs that
allow clients to describe the resource requirements for new service instances. OpenStack pro-
vides a command line interface, a ReSTful HTTP service, called Compute API (compatible
with the Amazon EC2 API), and a web-based interface, called Dashboard. OpenNebula pro-
vides a command line interface, two ReSTful HTTP services (one compatible with the Amazon
EC2 API and other with OCCI [occ]), a XML-RPC interface and a web-based interface, called
Sunstone.
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3.3.2 State Machine Replication
In order to be used in adaptive systems a state machine replication (SMR) middleware must
have the capacity of runtime reconfiguration. This means that the system must be able to add
and remove replicas to a replica group implementing a service without stopping serving client
requests. In this section we discuss the rationale for reconfiguring a SMR, list some related
work and discuss the general approach we are implementing in the BFT-SMaRt replication
library [LaS10] (described in Chapter 8 of D2.2.1).

Context and related work. A fundamental requirement of the state machine replication ap-
proach for fault tolerance [Sch90, CL02] is the coordination among replicas (see Section 3.1.2
of D2.2.1). This requirement can be translated in the need of running a consensus protocol
among the group of service replicas to ensure that they process the same sequence of requests.
This protocol can only run under a static group of processes in which every process know all
other processes in the group2.

The aforementioned limitation defines the problem of SMR reconfiguration in such a way
that the reconfiguration commands, which change the replica group, must be processed between
two consecutive consensus executions. This idea was first introduced in the seminal Paxos
paper [Lam98], and more recently implemented in two crash fault-tolerant systems [LAB+06,
SRMJ12]. However, there is still no solution for the reconfiguration of Byzantine fault-tolerant
SMR.

Reconfiguration on BFT-SMaRt. We are currently working on a reconfiguration algorithm
for the BFT-SMaRt replication library [LaS10]. In a scenario in which processes can be subject
to Byzantine faults it is dangerous to let any party add or remove replicas, since malicious
parties can change the system to add malicious processes or remove correct replicas to the
replicas group. In both cases, these actions may cause the number of faulty replicas to be
greater than f < n/3 (being n the total number of replicas).

To avoid these problems, BFT-SMaRt assumes that only two kind of parties can invoke
reconfiguration commands:

• Each replica can ask for its own removal from the group. The rationale is that the worst
possible attack that can be made with this feature is a a faulty replica removing itself from
the group, which is equivalent (or even better) than having a faulty replica in the system.

• There is a trusted third party called reconfigurator that is authorized to add and remove
replicas from the group. The reconfiguration commands sent by this priviledged party
are signed with a special private key, allowing replicas to verify received reconfiguration
commands using the corresponding public key.

In our architecture there are just two reconfiguration commands to change the replica group
of a service: ADD and REMOVE. These commands are processed in the following way.

1. The reconfiguration client (either a leaving replica or a reconfigurator) invokes ADD or
REMOVE just as any other application-level service operation.

2There are theoretical solutions for the consensus problem with unknown participants (e.g., [ABFG08]), but
these algorithms are still not efficient enough to be used in practice.
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2. The service totally order the reconfiguration command using the Mod-SMaRt algorithm
implemented in the system (see Chapter 6), i.e., the reconfiguration command is ordered
through a consensus execution.

3. The replicas currently in the group process all requests in the batch3 containing the re-
configuration request and, after it, process the group change.

4. The last step of the protocol depends on what happened with the replica during the recon-
figuration:

(a) The replicas staying in the system after the reconfiguration need to update their val-
ues of n and f and open (resp. close) connections with the arriving (resp. departing)
replicas.

(b) Departing replicas need to stay in the system until it sees 2f + 1 replicas of the new
view are processing requests on next agreement.

(c) New replicas need to receive the state of the replication library (including n, f and
other configuration parameters) and the state of the service before starting process-
ing further requests. This step is simplified by the reuse of the state transfer protocol
implemented on BFT-SMaRt.

Currently, we are refining the implementation of this protocol and working on its formal
description and proof. We expect to present a full description and experimental results of this
work on year 3 WP2.2 deliverable (D2.2.3).

3.4 A Proposal for a CoC Adaptation Manager
This section presents an architecture for a cloud-of-clouds adaptation manager. We also describe
some internal aspects of the adaptation manager, the list of operations identified as important to
it and the foreseen guarantees and responsibilities.

3.4.1 Overview
Figure 3.2 contains the preliminary architecture of our CoC adaptation manager. From this
point on, we consider that the service is completely deployed and running in order to perform
the dynamic adaptations.

The monitoring system is the first component to be described, considering the top-down data
flow sequence. It is typically composed of probes and sensors that collect data regarding users,
components and environment of a service. Some examples of data that can be collected are:
the service load, the uptime of service components, and other metrics important to monitor the
system health. Such data can be stored in a persistent storage, processed by a decision engine,
by a security information event manager (SIEM), or even presented to the service administrator
through a dashboard.

Decision engines and security information event managers process and analyse the moni-
toring data, and trigger adaptation events. SIEMs are specifically responsible by events related
with security, from access to the vulnerability management. Decision engines are responsible

3For performance reasons, the agreement on SMR is usually executed on a batch of messages to be or-
dered [CL02].
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Figure 3.2: Cloud-of-clouds adaptation manager architecture.

by all events related with performance, economy and legal aspects of the service, including the
enforcement of service level agreements (SLAs). Both can automatically produce requests to
the adaptation manager, while the latter can also serve as a decision support engine to a service
administrator.

The administrator role is important in cases where the automatic tools are not capable to
measure all advantages, disadvantages and risk involving each service adaptation. There are
cases where human intervention is imperative, mainly regarding the know-how of senior ad-
ministrators, which can decide differently from adaptation algorithms based in business rules
that are not completely implemented in automatic decision engines.

The last adaptation manager client is the proactive controller, which triggers dynamic adap-
tations based only on scheduling time. Proactive requests can be sent to the adaptation manager
in the same way as in previous cases. Software rejuvenation is an example of proactive action
regarding dynamic adaptation, where the oldest service instance is periodically replaced by a
new and fresh one.

The cloud-of-clouds adaptation manager is responsible to perform dynamic adaptations in
services following instructions and requests from proactive and reactive components. It must
provide public interfaces that could be used by human administrators, automatic reactive deci-
sion engines, SIEMs and proactive processes. It must also be able to at least insert, remove,
replace, grow or shrink service instances, considering multiple cloud providers and service pro-
tocols to join and leave replicas.

The gateway is the component responsible to maintain the group membership of each ser-
vice and to provide this information to service clients. The adaptation manager has the respon-
sibility to inform the service gateway about modifications in the service membership each time
a change occurs. The gateway is a very simple component that works just like a lookup service,
where new clients and instances request the most up-to-date group of replicas of a given service.
It can also support pluggable functionalities, for instance, proxy and load balancing.

The service is composed of many service instances distributed in multiple cloud providers,
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independently of being public, private or hybrid clouds. It can contain a protocol to join and
leave service instances, as well as, it can use a gateway component as location service.

3.4.2 Manager Internals
Internally to the adaptation manager, it can be decomposed into many software layers that per-
form the dynamic adaptations, as show in Figure 3.3. The first one is an API layer that receives

Figure 3.3: Software layers of the CoC adaptation manager.

the adaptation requests from the users of the CoC adaptation manager. A parser component
can be responsible to parse the requests and forward correctly the internal requests to a service
manager component.

The adaptation manager layer maintains information about the service in question and con-
trols the gateway component, sending updates through the gateway driver. The meta-scheduler
layer deals resources as a cloud broker, using multiple cloud providers in order to obtain the best
resource combination to the adaptation requests. It can use the adaptation manager database or
can locally maintain information regarding current and historical usage of cloud providers and
their resources. The meta-scheduler can use a diversity component to request the most diverse
resource combination considering the previously selected requirements. This can improve the
independence of faults as discussed in Section 3.2.4.

The last layer encompasses the drivers, which are connectors between the manager and
cloud providers or service gateways. These drivers are responsible to translate from an internal
grammar to the grammar of the selected cloud provider.

3.4.3 Operations Required
In this section we describe the operations that a CoC adaptation manager should support.

Migrating a service instance. This operation moves a service instance to a new physical
host, with minimal service downtime as possible. In most cases, this physical host belongs to
the same cloud provider. Migrating a service instance to a physical host in a different cloud
provider requires more time to conclude the process.

In stateless services, the migration could be done as a replacement, since replicas do not
have a consistent or durable service state. In services that have a service state the migration
must consider transferring the entire current state or image, like a snapshot.
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There are security problems in migrating VMs that still need to be addressed. For exam-
ple, the entire VM state is exposed during transmission, which means that OS/kernel memory,
application state, sensitive data, passwords and keys will pass through the network. An unau-
thenticated and insecure migration plane is a concern, thus management capabilities should
include authentication, confidentiality and isolation concerns [OCJ08].

The man-in-the-middle attack have to be avoided during a migration. This attack consists in
placing a malicious component in the middle of the migration, between the two involved hosts.
This component can act passively, sniffing sensitive data, passwords, keys in memory or ac-
tively, manipulating authentication services or kernel structures [OCJ08]. The solutions to this
case encompasses using a separated and secure network for migration, using hardware-based
cards like Trusted Platform Modules, maintaing the Virtual Machine Monitor or Hypervisor
always up-to-date/patched, and encrypting the VM image before starting the migration (even it
being really costly) [SRG12].

Adding or removing a service instance. These operations consist respectively, in deploying
a new VM and inserting it to the group of service replicas, or removing an existent service
instance from this group. It can use exactly the same VM image as other service instances have,
or it can use a completely different VM image. In most diversities cases, a different VM image
will be required.

New instances for stateless services only need to be registered in the gateway to make it
able to start processing client requests. In stateful services, the service state must be transferred
to the new replica, beyond the deployment and registration steps. Thus, after the state transfer
finishes, the new service replica can start processing the client requests and achieve the same
agreements as other replicas.

Replacing a service instance. A replacement encompasses inserting a new replica and re-
moving and old one. The adaptation manager must deploy a new VM, insert it to the service
group, remove the old replica and destroy the corresponding VM.

Growing or shrinking a service instance. These operations consist in modifying properties
or the amount of resources allocated to a specific service instance. Nowadays, hypervisors
provide only migration processes, which prohibit from growing or shrinking replicas that are
active. Hypervisors should provide interfaces to increase or reduce the amount of resources al-
located to a VM without causing a service disruption. This action could be performed similarly
to a realloc for memory, also being possible for CPU and disk resources. Since there is this
impossibility the adaptation manager must perform a migration operation in this case.

3.4.4 Manager Guarantees
Intrusion detection. The adaptation manager should guarantee that the new replica will not
contain the same intrusion or fault as the removed instance. For that, the adaptation manager
has to deploy a new instance based in a clean VM image.

Load changes. The adaptation manager cannot guarantee that an adaptation will solve the
service requirements if the requested adaptation is not enough. If an adaptation is not enough to
solve the load issues, service owners must follow monitoring and verifying that the adaptations
done were not enough.
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Periodic triggers. Triggering adaptations periodically is not an issue for the adaptation man-
ager, because proactive controller must triggers the adaptations correctly on schedule. This
proactive controller is the component that must guarantee that a new adaptation request is trig-
gered on each T time units.

Replacement with deadlines. Proactive recovery protocols consider strong time guarantees.
The adaptation manager should be able to guarantee that a new VM will be ready to join the
group before a specified deadline, or the replacement may fail. The same is considered for
replicas removals, where the adaptation manager must guarantee that an instance is removed
between a minimal and maximum timestamps.

3.5 Related Work

Several commercial providers support elastic adaptation in their clouds [amaa, raca, goG, ibm,
win]. Most of their users take into account only performance aspects, adapting to load peaks.
Some researches focus on employing elasticity based on the relation cost benefit of each adapta-
tion [JHJ+10,SSSS11]. In this chapter we discussed about other solutions for service adaptation
beyond the elasticity, for instance: service migration, replacement, recovery and rejuvenation.

We also presented other criteria to adapt further than performance and cost. We considered
security as one important criteria to adapt, mainly related to the quality of protection (QoP) of
a service.

A work that is related with ours is the one of a group of researchers from National ICT Aus-
tralia [nic], which created a company called Yuruware [yur] for providing commercial adapta-
tion solutions that goes further than pure elasticity. They provide globally distributed service
replication, synchronization, monitoring, failure detection and recovery. They also provide a
housekeeping process that periodically release idle resources, saving money for their clients.
There are two important differences between the TClouds work and what they are providing.
First, we support a more broad failure model (Byzantine) while they, in principle, are only
concerned with crashes and unavailability. Second, they only use Amazon EC2 resources,
which even having data centres distributed around the globe, is still a single point of failure
in terms of administration. Our architecture, by the other hand, supports the use of multiple
cloud providers.

3.6 Conclusions

This chapter focused in discussing service adaptation in cloud environments. We first reviewed
the basic concepts of service adaptation and analysed the main reasons to adapt. Beyond estab-
lishing performance, economy, security and legal requirements as the main reasons for service
adaptation, we presented a set of service types considered as adaptive. Such classification en-
compasses non-replicated services, crash or Byzantine replicated services, stateless or services
based on state machine replication. Each adaptation criteria was correlated with service adap-
tation solutions, describing in which cases they can be employed.

We proposed a system component responsible for adapting services running in cloud en-
vironments, which we called the cloud-of-clouds adaptation manager. Such component is in-
tegrated with monitoring tools and decision engines that send adaptation requests accordingly
to the service status, and with cloud resource managers that will receive requests from it to
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allocate, deploy and release resources for the service in question. We also presented several re-
quirements focusing cloud resource managers and state machine replication middleware. Four
adaptation operations were identified as important for an adaptation manager implementation,
including: migrate, add/remove, replace, grow/shrink service instances.

Our future works encompasses implementing the proposed CoC adaptation manager, in-
cluding support for multiple drivers to deal with different cloud providers and integrate it with
reactive and proactive controllers.
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Chapter 4

Object Storage: Revised DEPSKY Proto-
cols and Evaluation

Chapter Authors:
Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André and Paulo Sousa (FFCUL).

4.1 Introduction

The increasing maturity of cloud computing technology is leading many organizations to mi-
grate their IT infrastructure and/or adapting their IT solutions to operate completely or par-
tially in the cloud. Even governments and companies that maintain critical infrastructures (e.g.,
healthcare, telcos) are adopting cloud computing as a way of reducing costs [Gre10]. Neverthe-
less, cloud computing has limitations related to security and privacy, which should be accounted
for, especially in the context of critical applications.

In this chapter we present the TClouds’ first contribution towards the development of re-
silient cloud-based storage solutions. More specifically, we present DEPSKY, a dependable and
secure storage system that leverages the benefits of cloud computing by using a combination
of diverse commercial clouds to build a cloud-of-clouds. In other words, DEPSKY is a virtual
storage cloud, which is accessed by its users to manage updatable data items through the in-
vocation of operation in several individual clouds. More specifically, DEPSKY addresses four
important limitations of cloud computing for data storage in the following way:

• Loss of availability: When data is moved from the company’s network to an external
datacenter, it is inevitable that service availability is affected by problems in the Internet.
Unavailability can also be caused by cloud outages, from which there are many reports
[Rap11], or by denial-of-service attacks like the one that allegedly affected a service
hosted in Amazon EC2 in 2009 [Met09]. DEPSKY deals with this problem by exploiting
replication and diversity to store the data on several clouds, thus allowing access to the
data as long as a subset of them is reachable.

• Loss and corruption of data: there are several cases of cloud services losing or cor-
rupting customer data. For example, in October 2009 a subsidiary of Microsoft, Danger
Inc., lost the contacts, notes, photos, etc. of a large number of users of the Sidekick ser-
vice [Sar09]. The data was recovered several days later, but the users of Ma.gnolia were
not so lucky in February of the same year, when the company lost half a terabyte of data
that it never managed to recover [Nao09]. DEPSKY deals with this problem using Byzan-
tine fault-tolerant replication to store data on several cloud services, allowing data to be
retrieved correctly even if some of the clouds corrupt or lose it.
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• Loss of privacy: the cloud provider has access to both the stored data and how it is ac-
cessed. The provider may be trustworthy, but malicious insiders are a wide-spread secu-
rity problem [HDS+11]. This is an especial concern in applications that involve keeping
private data like health records. An obvious solution is the customer encrypting the data
before storing it, but if the data is accessed by distributed applications this involves run-
ning protocols for key distribution (processes in different machines need access to the
cryptographic keys). DEPSKY employs a secret sharing scheme and erasure codes to
avoid storing clear data in the clouds and to improve the storage efficiency, amortizing
the replication factor on the cost of the solution.

• Vendor lock-in: there is currently some concern that a few cloud computing providers
may become dominant, the so called vendor lock-in issue [ALPW10]. This concern is
specially prevalent in Europe, as the most conspicuous providers are not in the region.
Even moving from one provider to another one may be expensive because the cost of
cloud usage has a component proportional to the amount of data that is read and written.
DEPSKY addresses this issue in two ways. First, it does not depend on a single cloud
provider, but on a few, so data access can be balanced among the providers considering
their practices (e.g., what they charge). Second, DEPSKY uses erasure codes to store only
a fraction (typically half) of the total amount of data in each cloud. In case the need of
exchanging one provider by another arises, the cost of migrating the data will be at most
a fraction of what it would be otherwise.

The way in which DEPSKY solves these limitations does not come for free. At first sight,
using, say, four clouds instead of one involves costs roughly four times higher. One of the key
objectives of DEPSKY is to reduce this cost, which in fact it does to about 1.2 to 2 times the
cost of using a single cloud. This seems to be a reasonable cost, given the benefits.

The key insight of this work is that these limitations of individual clouds can be overcome
by using a cloud-of-clouds in which the operations (read, write, etc.) are implemented using a
set of Byzantine quorum systems protocols. The protocols require diversity of location, admin-
istration, design and implementation, which in this case comes directly from the use of different
commercial clouds [Vuk10]. There are protocols of this kind in the literature, but they either
require that the servers execute some protocol-specific code [CT06, GWGR04, MR97, MR98,
MAD02], not possible in storage clouds, or are sensible to contention (e.g., [ACKM06]), which
makes them difficult to use for geographically dispersed systems with high and variable access
latencies. DEPSKY overcomes these limitations by not requiring specific code execution in
the servers (i.e., storage clouds), but still being efficient by requiring only two communication
round-trips for each operation. Furthermore, it leverages the above mentioned mechanisms to
deal with data confidentiality and reduce the amount of data stored in each cloud.

Although DEPSKY is designed for data replication on cloud storage systems, the weak
assumptions required by its protocols make it usable to replicate data on arbitrary storage sys-
tems such as FTP servers and key-value databases. This extended applicability is only possible
because, as already mentioned, DEPSKY protocols have no server-side specific code to be exe-
cuted, requiring only basic storage operations to write, read and list objects.

In summary, the main contributions of work presented in this chapter are:

1. The DEPSKY system, a storage cloud-of-clouds that overcomes the limitations of individ-
ual clouds by using an efficient set of Byzantine quorum system protocols, cryptography,
secret sharing, erasure codes and the diversity that comes from using several clouds. The
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DEPSKY protocols require at most two communication round-trips for each operation
and store only approximately half of the data in each cloud for the typical case.

2. The notion of consistency proportional storage, in which the replicated storage system
provides the same consistency semantics as its base objects (i.e., the nodes where the
data is stored). DEPSKY satisfies this property for a large spectrum of consistency mod-
els, encompassing most of the semantics provided by storage clouds and popular storage
systems.

3. A set of experiments showing the costs and benefits (both monetary and in terms of per-
formance) of storing updatable data blocks in more than one cloud. The experiments
were made during one month, using four commercial cloud storage services (Amazon
S3, Windows Azure Blob Service, Nirvanix CDN and Rackspace Files) and PlanetLab to
run clients that access the service from several places worldwide.

The chapter is organized as follows. Section 4.2 describe some applications that can make
use of DEPSKY. Section 4.3 presents the core protocols employed in our system and Section
4.4 presents additional protocols for locking and management operations. Sections 4.5 and
4.6 show how storage clouds access control can be employed to setup a DEPSKY cloud-of-
clouds storage and how the system works with weakly consistent clouds, respectively. The
description of the DEPSKY implementation and its experimental evaluation are presented in
Sections 4.7 and 4.8. Finally, Section 4.9 discusses related work and Section 4.10 presents some
final remarks. Additional related material appear on Appendix A. This material describes some
auxiliary functions used in our algorithms (Section A.1), the correctness proofs for the storage
(Section A.2) and locking protocols (Section A.3) and a proof of the DEPSKY consistency
proportionality (SectionA.4).

4.2 Cloud Storage Applications
Examples of applications that can benefit from DEPSKY are the following:

Critical data storage. Given the overall advantages of using clouds for running large scale
systems, many governments around the globe are considering the use of this model. Recently,
the US government announced its interest in moving some of its computational infrastruc-
ture to the cloud and started some efforts in understanding the risks involved in doing these
changes [Gre10]. The European Commission is also investing in the area through FP7 projects
like TClouds.

In the same line of these efforts, there are many critical applications managed by companies
that have no interest in maintaining a computational infrastructure (i.e., a datacenter). For these
companies, the cloud computing pay-per-use model is specially appealing. An example would
be power system operators. Considering only the case of storage, power systems have data
historian databases that store events collected from the power grid and other subsystems. In
such a system, the data should be always available for queries (although the workload is mostly
write-dominated) and access control is mandatory.

Another critical application that could benefit from moving to the cloud is a unified medical
records database, also known as electronic health record (EHR). In such an application, several
hospitals, clinics, laboratories and public offices share patient records in order to offer a better
service without the complexities of transferring patient information between them. A system
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like this has been being deployed in the UK for some years [Ehs10]. Similarly to our previous
example, availability of data is a fundamental requirement of a cloud-based EHR system, and
privacy concerns are even more important.

A somewhat related example comes from the observation that some biomedical companies
that generate high-value data would not put it on a third party cloud without ensuring confiden-
tiality. In fact, some of these companies are actively stripping biomedical data stored on several
clouds to avoid complete confidentiality loss in case of cloud compromise [May10].

All these applications can benefit from a system like DEPSKY. First, the fact that the
information is replicated on several clouds would improve the data availability and integrity.
Moreover, the DEPSKY-CA protocol (Section 4.3) ensures the confidentiality of stored data
and therefore addresses some of the privacy issues so important for these applications. Finally,
these applications are prime examples of cases in which the extra costs due to replication are
affordable for the added quality of service since the amount of data stored is not large when
compared with Internet-scale services.

Notice that the application domains described above are represented in TClouds projects
through WP3.1 and 3.2.

Content distribution. One of the most surprising uses of Amazon S3 is content distribu-
tion [Hen09]. In this scenario, users use the storage system as distribution points for their
data in such a way that one or more producers store the content on their account and a set of
consumers read this content. A system like DEPSKY that supports dependable updatable infor-
mation storage can help this kind of application when the content being distributed is dynamic
and there are security concerns associated. For example, a company can use the system to
give detailed information about its business (price, available stock, etc.) to its affiliates with
improved availability and security.

Future applications. Many applications are moving to the cloud, so, it is possible to think
of new applications that would use the storage cloud as a back-end storage layer. Relational
databases [BFG+08], file systems [VSV12], objects stores and key-value databases are example
of systems that can use the cloud as storage layer as long as caching and weak consistency
models [TDP+94,Vog09] are used to avoid paying the price of cloud access on every operation.

4.3 The DEPSKY System

This section describes the DEPSKY system. It presents the system architecture, the data and
system models, the protocol design rational, the two main protocols (DEPSKY-A and DEPSKY-
CA), and some optimizations.

4.3.1 DEPSKY Architecture
Figure 4.3.1 presents the architecture of DEPSKY. As mentioned before, the clouds are storage
clouds without the capacity of executing users’ code, so they are accessed using their standard
interface without modifications. The DEPSKY algorithms are implemented as a software library
in the clients. This library offers an object store interface [GNA+98], similar to what is used by
parallel file systems (e.g., [GGL03, WBM+06]), allowing reads and writes in the back-end (in
this case, the untrusted clouds).
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Figure 4.1: Architecture of DEPSKY (with 4 clouds and 2 clients).

4.3.2 Data Model

The use of diverse clouds requires the DEPSKY library to deal with the heterogeneity of the
interfaces of each cloud provider. An aspect that is specially important is the format of the data
accepted by each cloud. The data model allow us to ignore these details when presenting the
algorithms.

Figure 4.3.2 presents the DEPSKY data model with its three abstraction levels. In the first
(left), there is the conceptual data unit, which corresponds to the basic storage object with
which the algorithms work (a register in distributed computing parlance [Lam86, MR97]). A
data unit has a unique name (X in the figure), a version number (to support updates on the
object), verification data (usually a cryptographic hash of the data) and the data stored on the
data unit object. In the second level (middle), the conceptual data unit is implemented as a
generic data unit in an abstract storage cloud. Each generic data unit, or container, contains
two types of files: a signed metadata file and the files that store the data. Metadata files contain
the version number and the verification data, together with other information that applications
may demand. Notice that a data unit (conceptual or generic) can store several versions of the
data, i.e., the container can contain several data files. The name of the metadata file is simply
metadata, while the data files are called value<Version>, where <Version> is the version
number of the data (e.g., value1, value2, etc.). Finally, in the third level (right) there is the data
unit implementation, i.e., the container translated into the specific constructions supported by
each cloud provider (Bucket, Folder, etc.). Notice that the one-container-per-data-unit policy
may be difficult to implement in some clouds (e.g., Amazon S3 has a limit of 100 buckets per
account, limiting the system to 100 data units). However, it is possible to store several data units
on the same container as long as the data unit name is used as a prefix of their files names.

The data stored on a data unit can have arbitrary size, and this size can be different for
different versions. Each data unit object supports the usual object store operations: creation
(create the container and the metadata file with version 0), destruction (delete or remove access
to the data unit), write and read.
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Figure 4.2: DEPSKY data unit and the 3 abstraction levels.

4.3.3 System Model
We consider an asynchronous distributed system composed by three types of parties: writers,
readers and cloud storage providers. The latter are the clouds 1-4 in Figure 4.3.1, while writers
and readers are roles of the clients, not necessarily different processes.

Readers and writers. Readers can fail arbitrarily, i.e., they can crash, fail intermittently and
present any behavior. Writers, on the other hand, are assumed to fail only by crashing. We do
not consider that writers can fail arbitrarily because, even if the protocol tolerated inconsistent
writes in the replicas, faulty writers would still be able to write wrong values in data units,
effectively corrupting the state of the application that uses DEPSKY. Moreover, the protocols
that tolerate malicious writers are much more complex (e.g., [CT06,LR06]), with active servers
verifying the consistency of writer messages, which cannot be implemented on general storage
clouds (Section 4.3.4).

All writers of a data unit du share a common private key Kdu
rw used to sign some of the

data written on the data unit (function sign(DATA, Kdu
rw )), while readers of du have access to

the corresponding public key Kdu
uw to verify these signatures (function verify(DATA, Kdu

uw)).
This public key can be made available to the readers through the storage clouds themselves.
Moreover, we assume also the existence of a collision-resistant cryptographic hash function H.

Cloud storage providers. Each cloud is modeled as a passive storage entity that supports
five operations: list (lists the files of a container in the cloud), get (reads a file), create (creates
a container), put (writes or modifies a file in a container) and remove (deletes a file). By
passive storage entity, we mean that no protocol code other than what is needed to support the
aforementioned operations is executed. We assume that access control is provided by the clouds
in order to ensure that readers are only allowed to invoke the list and get operations (more about
it in Section 4.5).

Since we do not trust clouds individually, we assume they can fail in a Byzantine way [LSP82]:
data stored can be deleted, corrupted, created or leaked to unauthorized parties. This is the most
general fault model and encompasses both malicious attacks/intrusions on a cloud provider and
arbitrary data corruption (e.g., due to accidental events like the Ma.gnolia case). The protocols
require a set of n = 3f + 1 storage clouds, at most f of which can be faulty. Additionally,
the quorums used in the protocols are composed by any subset of n − f storage clouds. It is
worth to notice that this is the minimum number of replicas to tolerate Byzantine servers in
asynchronous storage systems [MAD02].

Readers, writers and clouds are said to be correct if they do not fail.
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The register abstraction provided by DEPSKY satisfies a semantics that depends on the se-
mantics provided by the underlying clouds. For instance, if the n clouds provide regular seman-
tics, then DEPSKY also satisfies regular semantics: a read operation that happens concurrently
with a write can return the value being written or the object’s value before the write [Lam86].
We discuss the semantics of DEPSKY in detail in Section 4.6.

Notice that our model hides most of the complexity of the distributed storage system em-
ployed by the cloud provider: it just assumes that this system is an object storage prone to
Byzantine failures that supports very simple operations. These operations are accessed through
RPCs (Remote Procedure Calls) with the following failure semantics: the operation keeps being
invoked until a reply is received or the operation is canceled (possibly by another thread, using
a cancel pending special operation to stop resending a request). This means that we have at
most once semantics for the operations being invoked. Repeating the operation is not a problem
because all storage cloud operations are idempotent, i.e., the state of the cloud becomes the
same irrespectively of the operation being executed only once or more times.

4.3.4 Protocol Design Rationale

Quorum protocols can serve as the backbone of highly available storage systems [CGKV09].
There are many quorum protocols for implementing Byzantine fault-tolerant (BFT) storage
[CT06, GWGR04, HGR07, LR06, MR97, MR98, MAD02], but most of them require that the
servers execute protocol-specific code, a functionality not available on storage clouds. In con-
sequence, cloud-specific protocols need to assume passive storage replicas, supporting only
(blind) reads and writes. This leads to a key difference between the DEPSKY protocols and
these classical BFT quorum protocols: metadata and data are written and read in separate
quorum accesses. Moreover, these two accesses occur in different orders on read and write
protocols, as depicted in Figure 4.3.4. This feature is crucial for the protocol correctness and
efficiency.

(a) Write (b) Read

Figure 4.3: DEPSKY read and write protocols.

Supporting multiple writers for a register (a data unit in DEPSKY parlance) can be problem-
atic due to the lack of server code able to verify the version number of the data being written.
To overcome this limitation we implement a single-writer multi-reader register, which is suffi-
cient for many applications, and we provide a lock/lease protocol to support several concurrent
writers for the data unit. However, the next chapter (Chapter 5) study the costs of supporting
multi-writer storage in the cloud-of-clouds model (with non-Byzantine storage providers). As
can be seen there, this feature is possible, but it incurs some added performance penalties that
are, in principle, unavoidable.
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There are also some quorum protocols that consider individual storage nodes as passive
shared memory objects (or disks) instead of servers [ACKM06, AL03, CM02, GL03, JCT98].
Unfortunately, most of these protocols require many steps to access the shared memory, or are
heavily influenced by contention, which makes them impractical for geographically dispersed
distributed systems such as DEPSKY due to the highly variable latencies involved. As show
in Figure 4.3.4, DEPSKY protocols require two communication round-trips to read or write the
metadata and the data files that are part of the data unit, independently of the existence of faults
and contention.

Furthermore, as will be discussed latter, many clouds do not provide the expected consis-
tency guarantees of a disk, something that can affect the correctness of these protocols. The
DEPSKY protocols provide consistency-proportional semantics, i.e., the semantics of a data
unit is as strong as the underling clouds allow, from eventual to regular consistency semantics.
We do not try to provide atomic (linearizable) semantics [Lam86, HW90] due to the fact that
all known techniques require server-to-server communication [CT06], servers sending update
notifications to clients [MAD02] or write-backs [GWGR04,MR98]. None of these mechanisms
is implementable using general-purpose storage clouds.

To ensure the confidentiality of the data stored in the clouds we encrypt it using symmetric
cryptography. To avoid the need of a key distribution service, which would have to be imple-
ment outside of the clouds, we employ a secret sharing scheme [Sha79]. In this scheme, a
dealer (the writer in the case of DEPSKY) distributes a secret (the encryption key) to n players
(clouds in our case), but each player gets only a share of this secret. The main properties of
the scheme is that at least f + 1 ≤ n − f different shares of the secret are needed to recover
it and that no information about the secret is disclosed with f or less shares. The scheme is
integrated on the basic replication protocol in such way that each cloud stores just a share of
the key used to encrypt the data being written. This ensures that no individual cloud will have
access to the encryption key. On the contrary, clients that have authorization to access the data
will be granted access to the key shares of (at least) f + 1 different clouds, so they will be able
to rebuild the encryption key and decrypt the data.

The use of a secret sharing scheme allows us to integrate confidentiality guarantees to the
stored data without using a key distribution mechanism to make writers and readers of a data
unit share a secret key. In fact, our mechanism reuses the access control of the cloud provider
to control which readers are able to access the data stored on a data unit.

Although it may seem questionable if avoiding key distribution methods is useful for a
large spectrum of applications, our previous experience with secret sharing schemes [BACF08]
suggests that the overhead of using them is not deterrent, specially if one considers the com-
munication latency of accessing a cloud storage provider. However, the protocol can be easily
modified to use a shared key for confidentiality if such key distribution method is available.

If we simply replicate the data on n clouds, the monetary costs of storing data using DEP-
SKY would increase by a factor of n. In order to avoid this, we compose the secret sharing
scheme used on the protocol with an information-optimal erasure code algorithm, reducing the
size of each share by a factor of n

f+1
of the original data [Rab89]. This composition follows

the original proposal of [Kra93], where the data is encrypted with a random secret key, the en-
crypted data is encoded, the key is divided using secret sharing and each server receives a block
of the encrypted data and a share of the key.

Common sense says that for critical data it is always a good practice not erasing all old
versions of the data, unless we can be certain that we will not need them anymore [Ham07]. An
additional feature of our protocols is that old versions of the data are kept in the clouds unless
they are explicitly deleted.
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4.3.5 DEPSKY-A– Available DepSky

The first DEPSKY protocol is called DEPSKY-A. It improves the availability and integrity of
cloud-stored data by replicating it on several clouds using quorum techniques. Algorithm 1
presents this protocol. We encapsulate some of the protocol steps in the functions described in
Table 4.1. We use the ‘.’ operator to denote access to metadata fields, e.g., given a metadata
file m, m.ver and m.digest denote the version number and digest(s) stored in m. We use the
‘+’ operator to concatenate two items into a string, e.g., “value-”+new ver produces a string
that starts with the string “value-” and ends with the value of variable new ver in string format.
Finally, the max function returns the maximum among a set of numbers.

Table 4.1: Functions used in the DEPSKY-A protocols (implementation in Appendix A.1).
Function Description

queryMetadata(du)
obtains the correctly signed file metadata stored in the
container du of n−f clouds used to store the data unit
and returns it in an array

writeQuorum(du, name, value)
for every cloud i ∈ {0, ..., n− 1}, writes the value[i]
on a file named name on the container du in that
cloud and waits for write confirmations from n − f
clouds

The key idea of the write algorithm (lines 1-13) is to first write the value in a quorum of
clouds (line 8), then write the corresponding metadata (line 12), as ilustrated in Figure 4.3(a).
This order of operations ensures that a reader will only be able to read metadata for a value
already stored in the clouds. Additionally, when a writer first writes a data unit du (lines 3-5,
max verdu initialized with 0), it first contacts the clouds to obtain the metadata with the greatest
version number, then updates the max verdu variable with the current version of the data unit.

The read algorithm starts by fetching the metadata files from a quorum of clouds (line 16)
and choosing the one with greatest version number (line 17). After that, the algorithm enters
in a loop where it keeps looking at the clouds until it finds the data unit version corresponding
to this version number and the cryptographic hash found in the chosen metadata (lines 18-26).
Inside of this loop, the process fetches the file from the clouds until either it finds one value file
containing the value matching the digest on the metadata or the value is not found on at least
n− f clouds1 (lines 20-24). Finally, when a valid value is read, the reader cancels the pending
RPCs, exits the loop and returns the value (lines 25-27). The normal case execution (with some
optimizations discussed in Section 4.3.7) is illustrated in Figure 4.3(b).

The rationale of why this protocol provides the desired properties is the following (proofs
in the Appendix A.2). Availability is guaranteed because the data is stored in a quorum of at
least n− f clouds and it is assumed that at most f clouds can be faulty. The read operation has
to retrieve the value from only one of the clouds (line 22), which is always available because
(n − f) − f > 1 . Together with the data, signed metadata containing its cryptographic hash
is also stored. Therefore, if a cloud is faulty and corrupts the data, this is detected when the
metadata is retrieved. Moreover, the fact that metadata files are self-verifiable (i.e., signed) and
quorums overlap in at least f + 1 clouds (one correct) ensures the last written metadata file will
be read. Finally, the outer loop of the read ensures that the read of a value described on a read

1This is required to avoid the process to block forever waiting replies from f faulty clouds.
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Algorithm 1: DEPSKY-A read and write protocols.
1 procedure DepSkyAWrite(du,value)
2 begin
3 if max verdu = 0 then
4 m←− queryMetadata(du)
5 max verdu ←− max({m[i].ver : 0 ≤ i ≤ n− 1})
6 new ver ←− max verdu + 1
7 v[0 .. n− 1]←− value
8 writeQuorum(du,“value-”+new ver, v)
9 new meta←− 〈new ver,H(value)〉

10 sign(new meta,Kdu
rw )

11 v[0 .. n− 1]←− new meta
12 writeQuorum(du,“metadata”, v)
13 max verdu ←− new ver

14 function DepSkyARead(du)
15 begin
16 m←− queryMetadata(du)
17 max id←− i : m[i].ver = max({m[i].ver : 0 ≤ i ≤ n− 1})
18 repeat
19 v[0 .. n− 1]←−⊥
20 parallel for 0 ≤ i < n− 1 do
21 tmpi ←− cloudi.get(du,“value-” +m[max id].ver)
22 if H(tmpi) = m[max id].digest then v[i]←− tmpi
23 else v[i]←− ERROR

24 wait until (∃i : v[i] 6=⊥ ∧v[i] 6= ERROR) ∨ (|{i : v[i] 6=⊥}| ≥ n− f)
25 for 0 ≤ i ≤ n− 1 do cloudi.cancel pending()

26 until ∃i : v[i] 6=⊥ ∧v[i] 6= ERROR
27 return v[i]

metadata will be repeated until it is available, which will eventually holds since a metadata file
is written only after the data file is written.

4.3.6 DEPSKY-CA– Confidential & Available DepSky
The DEPSKY-A protocol has two main limitations. First, a data unit of size S consumes n× S
storage capacity of the system and costs on average n times more than if it was stored in a single
cloud. Second, it stores the data in cleartext, so it does not give confidentiality guarantees. To
cope with these limitations we employ an information-efficient secret sharing scheme [Kra93]
that combines symmetric encryption with a classical secret sharing scheme and an optimal
erasure code to partition the data in a set of blocks in such a way that (i.) f + 1 blocks are
necessary to recover the original data and (ii.) f or less blocks do not give any information
about the stored data2. The overall process is illustrated in Figure 4.3.6.

The DEPSKY-CA protocol integrates these techniques with the DEPSKY-A protocol (Al-
gorithm 2). The additional cryptographic and coding functions needed are in Table 4.2. The
differences of DEPSKY-CA protocol in relation to DEPSKY-A are the following: (1.) the en-

2Erasure codes alone cannot satisfy this confidentiality guarantee.
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Figure 4.4: The combination of symmetric encryption, secret sharing and erasure codes in
DEPSKY-CA.

cryption of the data, the generation of the key shares and the encoding of the encrypted data on
DepSkyCAWrite (lines 7-10) and the reverse process on DepSkyCARead (lines 33-35), as show
in Figure 4.3.6; (2.) the data stored in cloudi is composed by the share of the key s[i] and the
encoded block v[i] (line 12); and (3.) f + 1 replies are necessary to read the data unit’s current
value instead of one on DEPSKY-A (lines 30 and 32). Additionally, instead of storing a single
digest on the metadata file, the writer generates and stores n digests, one for each cloud. These
digests are accessed as different positions of the digest field of a metadata. If a key distribution
infrastructure is available, or if readers and writer share a common key k, the secret sharing
scheme can be removed (lines 7, 9 and 34 are not necessary).

The rationale of the correctness of the protocol is similar to the one for DEPSKY-A (proofs
also in the Appendix A.2). The main differences are those already pointed out: encryption
prevents individual clouds from disclosing the data; secret sharing allows storing the encryption
key in the cloud without f faulty clouds being able to reconstruct it; the erasure code scheme
reduces the size of the data stored in each cloud.

4.3.7 Optimizations
This section introduces two optimizations that can make the protocols more efficient and cost-
effective. In Section 4.8 we evaluate the impact of these optimizations on the protocols.

Write. In the DEPSKY-A and DEPSKY-CA write algorithms, a value file is written using the
function writeQuorum (see Table 4.1). This function tries to write the file on all clouds and
waits for confirmation from a quorum. A more cost-effective solution would be to try to store
the value only on a preferred quorum, resorting on extra clouds only if the reception of write
confirmations from the quorum of clouds is not received until a timeout. This optimization can
be applied both to DEPSKY-A and DEPSKY-CA to make the data be stored only in n−f out-of
n clouds, which can decrease the DEPSKY storage cost by a factor of n−f

n
, possibly with some

loss in terms of availability and durability of the data.

Read. The DEPSKY-A algorithm described in Section 4.3.5 tries to read the most recent ver-
sion of the data unit from all clouds and waits for the first valid reply to return it. In the
pay-per-use model this is far from ideal because the user will pay for n data accesses. A lower-
cost solution is to use some criteria to sort the clouds and try to access them sequentially, one
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Algorithm 2: DEPSKY-CA read and write protocols.
1 procedure DepSkyCAWrite(du,value)
2 begin
3 if max verdu = 0 then
4 m←− queryMetadata(du)
5 max verdu ←− max({m[i].version : 0 ≤ i ≤ n− 1})
6 new ver ←− max verdu + 1
7 k ←− generateSecretKey()
8 e←− E(value, k)
9 s[0 .. n− 1]←− share(k, n, f + 1)

10 v[0 .. n− 1]←− encode(e, n, f + 1)
11 for 0 ≤ i < n− 1 do
12 d[i]←− 〈s[i], v[i]〉
13 h[i]←− H(d[i])

14 writeQuorum(du,“value-”+new ver, d)
15 new meta←− 〈new ver, h〉
16 sign(new meta,Kdu

rw )
17 v[0 .. n− 1]←− new meta
18 writeQuorum(du,“metadata”, v)
19 max verdu ←− new ver

20 function DepSkyCARead(du)
21 begin
22 m←− queryMetadata(du)
23 max id←− i : m[i].ver = max({m[i].ver : 0 ≤ i ≤ n− 1})
24 repeat
25 d[0 .. n− 1]←−⊥
26 parallel for 0 ≤ i ≤ n− 1 do
27 tmpi ←− cloudi.get(du, “value-” +m[max id].ver)
28 if H(tmpi) = m[max id].digest[i] then d[i]←− tmpi
29 else d[i]←− ERROR

30 wait until (|{i : d[i] 6=⊥ ∧d[i] 6= ERROR}| > f) ∨ (|{i : d[i] 6=⊥}| > n− f)
31 for 0 ≤ i ≤ n− 1 do cloudi.cancel pending()

32 until |{i : d[i] 6=⊥ ∧d[i] 6= ERROR}| > f
33 e←− decode(d.e, n, f + 1)
34 k ←− combine(d.s, n, f + 1)
35 return D(e, k)

at time, until the value is obtained. The sorting criteria can be based on access monetary cost
(cost-optimal), the latency of queryMetadata on the protocol (latency-optimal), a mix of the
two or any other more complex criteria (e.g., an history of the latency and faults of the clouds).

This optimization can also be used to decrease the monetary cost of the DEPSKY-CA read
operation. The main difference is that instead of choosing one of the clouds at a time to read
the data, f + 1 of them are chosen.
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Table 4.2: Functions used in the DEPSKY-CA protocols.
Function Description
generateSecretKey() generates a random secret key
E(v, k)/D(e, k) encrypts v and decrypts e with key k
encode(d, n, t) encodes d on n blocks in such a way that t are

required to recover it
decode(db, n, t) decodes array db of n blocks, with at least t

valid, to recover d

share(s, n, t)
generates n shares of s in such a way that at
least t of them are required to obtain any infor-
mation about s

combine(ss, n, t)
combines shares on array ss of size n contain-
ing at least t correct shares to obtain the secret
s

4.4 DEPSKY Extensions

In this section we present a set of additional protocols that may be useful for implementing real
systems using DEPSKY.

4.4.1 Supporting Multiple Writers – Locking with Storage Clouds

The DEPSKY protocols presented do not support concurrent writes, which is sufficient for many
applications where each process writes on its own data units. However, there are applications in
which this is not the case. An example is a fault-tolerant storage system that uses DEPSKY as its
back-end object store. This system could have more than one node with the writer role writing
in the same data unit(s) for fault tolerance reasons. If the writers are in the same network,
coordination services like ZooKeeper [HKJR10] or DepSpace [BACF08] can be used to elect a
leader and coordinate the writes. However, if the writers are scattered through the Internet this
solution is not practical without trusting the site in which the coordination service is deployed
(and even in this case, the coordination service may be unavailable due to network issues). Open
coordination services such as WSDS [ABF08] can still be used, but they require an Internet
deployment.

The solution we advocate is a low contention lock mechanism that uses the cloud-of-clouds
itself to maintain lock files on a data unit. These files specify which is the writer and for how
much time it has write access to the data unit. However, for this solution to work, two additional
assumptions must hold. The first one is related with the use of leases. The algorithm requires
every contending writer to have synchronized clocks with a precision of ∆. This can be ensured
in practice by making all writers that want to lock a data unit synchronize their clocks with a
common NTP (Network Time Protocol [Mil92]) server with a precision of ∆

2
. The second as-

sumption is related with the consistency of the clouds. We assume regular semantics [Lam86]
for the creation and listing of files on a container (which are equivalent to write and read opera-
tions, respectively). Although this assumption appears to be too strong, object storage services
like Amazon S3 already ensure this kind of consistency for object creation, sometimes called
read-after-write [f W11]. Anyway, in Section 4.6 we discuss the effects of weakly consistent
clouds on this protocol.
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The lock protocol is described in Algorithm 3, and it works as follows. A process c that
wants to be a writer (and has permission to be), first lists files on the data unit container on a
quorum of clouds and tries to find a valid file called lock-c’-T’ with c′ 6= c and local time on
the process smaller than T ′ + ∆ (lines 5-10). If such file is found in some cloud, it means that
some other process c′ holds the lock for this data unit and c will sleep for a random amount of
time before trying to acquire the lock again (line 21). If the file is not found, c can write a lock
file named lock-c-T containing a cryptographic signature of the file name on all clouds (lines
11 and 12), being T = local clock + LEASE TIME . In the last step, c lists again all files in
the data unit container searching for valid and not expired lock files from other processes (lines
13-17). If a file like that is found, c removes the lock file it wrote from the clouds and sleeps for
a small random amount of time before trying to run the protocol again (lines 18-21). Otherwise,
c becomes the single-writer for the data unit until T .

The protocol also uses a predicate valid that verifies if the lock file was not created by a
faulty cloud. The predicate is true if the lock file is returned by either f + 1 clouds or its
contents is correctly signed by its owner (line 28).

Several remarks can be made about this protocol. First, the backoff strategy is necessary
to ensure that two processes trying to become writers at the same time never succeed. Second,
locks can be renewed periodically to ensure existence of a single writer at every moment of the
execution. Unlocking can be easily done through the removal of the lock files (lines 24-27).
Third, this lock protocol is only obstruction-free [HLM03]: if several process try to become
writers at the same time, it is possible that none of them are successful. However, due to the
backoff strategy used, this situation should be very rare on the envisioned deployments. Finally,
it is important to notice that the unlock procedure is not fault-tolerant: in order to release a lock,
the lock file has to be deleted from all clouds; a malicious cloud can still show the removed lock
file disallowing lock acquisition by other writers. However, given the finite validity of a lock,
this problem can only affect the system for a limited period of time, after which the problematic
lock expires.

The proof that this protocol satisfies mutual exclusion and obstruction-freedom is presented
in Appendix A.3.

4.4.2 Management Operations
Besides read, write and lock, DEPSKY provides other operations to manage data units. These
operations and underlying protocols are briefly described in this section.

Creation and destruction. The creation of a data unit can be easily done through the invo-
cation of the create operation in each individual cloud. In contention-prone applications, the
creator should execute the locking protocol of the previous section before executing the first
write to ensure it is the single writer of the data unit.

The destruction of a data unit is done in a similar way: the writer simply removes all files
and the container that stores the data unit by calling remove in each individual cloud.

Garbage collection. As already discussed in Section 4.3.4, we choose to keep old versions
of the value of the data unit on the clouds to improve the dependability of the storage system.
However, after many writes the amount of storage used by a data unit can become very high and
thus some garbage collection is necessary. The protocol for doing that is very simple: a writer
just lists all files named “value-version” in the data unit container and removes all those with
version smaller than the oldest version it wants to keep in the system.
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Algorithm 3: DEPSKY data unit locking by writer c.
1 function DepSkyLock(du)
2 begin
3 lock id ←⊥
4 repeat

// list lock files on all clouds to see if the du is locked
5 L[0 .. n− 1]←−⊥
6 parallel for 0 ≤ i ≤ n− 1 do
7 L[i]←− cloudi.list(du)

8 wait until (|{i : L[i] 6=⊥}| > n− f)
9 for 0 ≤ i ≤ n− 1 do cloudi.cancel pending()

10 if 6 ∃i : ∃lock-c’-T’∈ L[i] : c′ 6= c ∧ valid(L,lock-c’-T’, du) ∧ (T ′ + ∆ > local clock)
then

// create a lock file for the du and write it in the clouds
11 lock id ←“lock-”+c+“-”+(local clock + LEASE TIME )

12 writeQuorum(du, lock id, sign(lock id,Kdu
rc ))

// list the lock files again to detect contention
13 L[0 .. n− 1]←−⊥
14 parallel for 0 ≤ i ≤ n− 1 do
15 L[i]←− cloudi.list(du)

16 wait until (|{i : L[i] 6=⊥}| > n− f)
17 parallel for 0 ≤ i ≤ n− 1 do cloudi.cancel pending()
18 if ∃i : ∃lock-c’-T’∈ L[i] : c′ 6= c∧ valid(L,lock-c’-T’, du)∧ (T ′ + ∆ > local clock)

then
19 DepSkyUnlock(lock id)
20 lock id ←⊥

21 if lock id =⊥ then sleep for some time
22 until lock id 6=⊥
23 return lock id

24 procedure DepSkyUnlock(lock id)
25 begin
26 parallel for 0 ≤ i < n− 1 do
27 cloudi.delete(du,lock id)

28 predicate valid(L,lock-c’-T’, du) ≡ (|{i : lock-c’-T’∈ L[i]}| > f ∨ verify(lock-c’-T’,Kdu
uc ))

Cloud reconfiguration. Sometimes one cloud can become too expensive or too unreliable to
be used for storing DEPSKY data units. For such cases DEPSKY provides a reconfiguration
protocol that moves blocks from one cloud to another. The protocol is the following: (1.) the
writer reads the data (probably from the other clouds and not from the one being removed); (2.)
creates the data unit container on the new cloud; (3.) executes the write protocol on the clouds
not removed and the new cloud; (4.) deletes the data unit from the cloud being removed. After
that, the writer needs to inform the readers that the data unit location was changed. This can be
done writing a special file on the data unit container of the remaining clouds informing the new
configuration of the system. A process will read this file and accept the reconfiguration if this
file is read from at least f + 1 clouds.
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4.5 Cloud-of-Clouds Access Control

In this section we briefly discuss how cloud storage access control can be used to set up the
access control for management, writers and readers of DEPSKY data units.

Management. All management operations described in Section 4.4.2 can only be executed
by writers of a data unit, with the exception of the creation and destruction of a data unit, that
needs to be carried on by the data unit’ owner, that has write rights on the data unit container
parent directory.

Writers. If a data unit has more than one possible writer, all of them should have the write
rights on the data unit container. Moreover, all writers first write their public keys on the DU
container before trying to acquire the lock for writing on the data unit. Notice that it is possible
to have a single writer account, with a single shared writer private and public key pair, being
used by several writer processes for fault tolerance reasons. Finally, when a writer does not
need to write in a data unit anymore, it removes its public key from the data unit container on
all clouds.

Readers. The readers of a data unit are defined by the set of accounts that have read access
to the data unit container. It is worth to mention that some clouds such as Rackspace Files and
Nirvanix CDN do not provide this kind of rich access control. These clouds only allow a file
to be confidential (accessed only by its writer) or public (accessed by everyone that knows its
URL). However, other popular storage clouds like Amazon S3, Windows Azure Blob Service
and Google Docs support ACLs for giving read (and write) access to the files stored in a single
account. We expect this kind of functionality to be available in most storage clouds in the near
future.

Finally, all readers of a data unit consider that a metadata or lock file is correctly signed if
the signature was produced with any of the writer keys available on the data unit container of
f + 1 clouds.

4.6 Consistency Proportionality

Both DEPSKY-A and DEPSKY-CA protocols implement single-writer multi-reader regular
registers if the clouds being accessed provide regular semantics [Lam86]. However, several
clouds do not guarantee this semantics, but instead provide read-after-write (which is similar to
the safe semantics [Lam86]) or eventual consistency [Vog09] for the data stored (e.g., Amazon
S3 [Ama10]).

In fact, the DEPSKY read and write protocols are consistency-proportional in the following
sense: if the underlying clouds support a consistency model C, the DEPSKY protocols provide
consistency model C. This holds for any C among the following: eventual [Vog09], read-your-
writes, monotonic reads, writes-follow-reads, monotonic writes [TDP+94] and read-after-write
[Lam86]. A proof that DEPSKY provides consistency proportionality can be found in Appendix
A.4.

Notice that if the underlying clouds are heterogeneous in terms of consistency guarantees,
DEPSKY provides the weakest consistency among those provided. This comes from the fact
that the consistency of a read directly depends of the reading of the last written metadata file.
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Since we use read and write quorums with at least f + 1 clouds in their intersections, and since
at most f clouds may be faulty, the read of the most recently written metadata file may happen
in the single correct cloud in such intersection. If this cloud does not provide strong consistency,
the whole operation will be weakly consistent, following the consistency model of this cloud.

A problem with not having regular consistent clouds is that the lock protocol may not work
correctly. After listing the contents of a container and not seeing a file, a process cannot con-
clude that it is the only writer. This problem can be minimized if the process waits a while
between steps 2 and 3 of the protocol. However, the mutual exclusion guarantee will only be
satisfied if the wait time is greater than the time for a data written to be seen by every other
reader. Unfortunately, no eventually consistent cloud of our knowledge provides this kind of
timeliness guarantee, but we can experimentally discover the amount of time needed for a read
to propagate on a cloud with the desired coverage and use this value in the aforementioned
wait. Moreover, to ensure some safety even when two writes happen in parallel, we can in-
clude a unique id of the writer (e.g., the hash of part of its private key) as the decimal part of its
timestamps, just like it is done in most Byzantine quorum protocols (e.g., [MR97]). This simple
measure allows the durability of data written by concurrent writers (the name of the data files
will be different), even if the metadata file may point to different versions on different clouds.

4.7 DEPSKY Implementation

We have implemented a DEPSKY prototype in Java as an application library that supports the
read and write operations. The code is divided in three main parts: (1) data unit manager, that
stores the definition and information of the data units that can be accessed; (2) system core, that
implements the DEPSKY-A and DEPSKY-CA read and write protocols; and (3) cloud drivers,
which implements the logic for accessing the different clouds. The current implementation has
5 drivers available (the four clouds used in the evaluation - see next section - and one for storing
data locally), but new drivers can be easily added. The overall implementation is about 2900
lines of code, being 1100 lines for the drivers.

The DEPSKY code follows a model of one thread per cloud per data unit in such a way that
the cloud accesses can be executed in parallel (as described in the algorithms). All communica-
tions between clients and cloud providers are made over HTTPS (secure and private channels)
using the REST APIs supplied by the storage cloud providers. Some of the clouds are accessed
using the libraries available from the providers, called access drivers. To avoid problems due to
the differences in implementation, in particular with different retransmission timeouts and retry
policies, we disabled this feature from the drivers and implemented it on our code. The result is
that all clouds are accessed using the same timeout and number of retries in case of failure.

The prototype employs speculation to execute the two phases of the read protocols in paral-
lel. More precisely, as soon as a metadata file is read from a cloud i, the system starts fetching
the data file from i, without waiting for n − f metadata to find the one with greatest version
number. The idea is to minimize access latency (which varies significantly in the different
clouds) under the assumption that contention between reads and writes is rare and Byzantine
faults seldom happen.

Our implementation makes use of several building blocks: RSA with 1024 bit keys for
signatures, SHA-1 for cryptographic hashes, AES for symmetric cryptography, Shoenmakers’
PVSS scheme [Sch99] for secret sharing with 192 bits secrets and the classic Reed-Solomon
for erasure codes [Pla07]. Most of the implementations used come from the Java 6 API, while
Java Secret Sharing [BACF08] and Jerasure [Pla07] were used for secret sharing and erasure
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codes, respectively.

4.8 Evaluation
In this section we present an evaluation of DEPSKY which tries to answer three main questions:
What is the additional cost in using replication on storage clouds? What is the advantage in
terms of performance and availability of using replicated clouds to store data? What are the
relative costs and benefits of the two DEPSKY protocols?

The evaluation focus on the case of n = 4 and f = 1, which we expect to be the common
deployment setup of our system for two reasons: (1.) f is the maximum number of faulty cloud
storage providers, which are very resilient and so faults should be rare; (2.) there are currently
not many more than four cloud storage providers that are adequate for storing critical data. Our
evaluation uses the following cloud storage providers with their default configurations: Amazon
S3, Windows Azure, Nirvanix and Rackspace.

4.8.1 Monetary cost evaluation
Storage cloud providers usually charge their users based on the amount of data uploaded, down-
loaded and stored on them. Table 4.3 presents the cost in US Dollars of executing 10,000 reads
and writes using the DEPSKY data model (with metadata and supporting many versions of a
data unit) considering three data unit sizes: 100kb, 1Mb and 10Mb. This table includes only the
costs of the operations being executed (invocations, upload and download), not the data storage,
which will be discussed latter. All estimations presented in this section were calculated based
on the values charged by the four clouds at September 25th, 2010.

In the table, the columns “DS-A”, “DS-A opt”, “DS-CA” e “DS-CA opt” present the costs
of using the DEPSKY protocols with the optimizations discussed in Section 4.3.7 disabled and
enabled, respectively. The other columns present the costs for storing the data unit (DU) in a
single cloud.

Table 4.3: Estimated costs per 10000 operations (in US Dollars). DEPSKY-A (DS-A)and
DEPSKY-CA (DS-CA) costs are computed for the realistic case of 4 clouds (f = 1). The
“DS-A opt” and “DS-CA opt” setups consider the cost-optimal version of the protocols with no
failures.

Operation DU DS-A DS-A opt DS-CA DS-CA opt Amazon Rackspace Azure Nirvanix
100kb 0.64 0.14 0.32 0.14 0.14 0.21 0.14 0.14

10K Reads 1Mb 6.55 1.47 3.26 1.47 1.46 2.15 1.46 1.46
10Mb 65.5 14.6 32.0 14.6 14.6 21.5 14.6 14.6
100kb 0.60 0.32 0.30 0.17 0.14 0.08 0.09 0.29

10K Writes 1Mb 6.16 3.22 3.08 1.66 1.46 0.78 0.98 2.93
10Mb 61.5 32.2 30.8 16.6 14.6 7.81 9.77 29.3

The table shows that the cost of DEPSKY-A with n = 4 and without optimizations is roughly
the sum of the costs of using the four clouds, as expected. However, if the read optimization is
employed, the less expensive cloud cost dominates the cost of executing reads (only one out-of
four clouds is accessed in fault-free executions). If the optimized write is employed, the data file
will be written only on a preferred quorum excluding the most expensive cloud (Nirvanix), and
thus the costs will be substantially smaller. For DEPSKY-CA, the cost of reading and writing
without optimizations is approximately 50% of DEPSKY-A’s due to the use of information-
optimal erasure codes that make the data stored on each cloud roughly 50% of the size of the
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original data. The optimized version of DEPSKY-CA also reduces the read cost to half of the
sum of the two less costly clouds due to its access to only f+1 clouds in the best case, while the
write cost is reduced since Nirvanix is not used. Recall that the costs for the optimized versions
of the protocol account only for the best case in terms of monetary costs: reads and writes are
executed on the required less expensive clouds. In the worst case, the more expensive clouds
will also be used.

The storage costs of a 1Mb data unit for different numbers of stored versions is presented
in Figure 4.8.1. We present the curves only for one data unit size because other size costs are
directly proportional.
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Figure 4.5: Storage costs of a 1Mb data unit for different numbers of stored versions in different
DEPSKY setups and clouds.

The results depicted in the Figure 4.5(a) show that the cost of DEPSKY-CA storage without
employing preferred quorums is roughly half the cost of using DEPSKY-A and twice the cost
of using a single cloud. This is no surprise since the storage costs are directly proportional
to the amount of data stored on the cloud, and DEPSKY-A stores 4 times the data size, while
DEPSKY-CA stores 2 times the data size and an individual cloud just stores a single copy of the
data.

Figure 4.5(b) shows some results considering the case in which the data stored using DEPSKY-
CA is stored only on a preferred quorum of clouds (see Section 4.3.7). The figure contains val-
ues for the less expensive preferred quorum (Amazon S3, Windows Azure and Rackspace) and
the most expensive preferred quorum (Nirvanix, Windows Azure and Rackspace) together with
Amazon S3 and DEPSKY-CA writing on all clouds for comparison. The results show that the
use of preferred quorums decreases the storage costs between 15% (most expensive quorum)
to 38% (less expensive quorum) when compared to the full replicated DEPSKY-CA. Moreover,
in the best case, DEPSKY-CA can store data with an additional cost of only 23% more than
the average cost to store data on a single cloud and twice the cost of the less expensive cloud
(Amazon S3).

Notice that the metadata costs are almost irrelevant when compared with the data size since
its size is less than 500 bytes.
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4.8.2 Performance evaluation
In order to understand the performance of DEPSKY in a real deployment, we used PlanetLab
to run clients accessing a cloud-of-clouds composed of popular storage cloud providers. This
section explains our methodology and then presents the obtained results in terms of read and
write latency, throughput and availability.

Methodology. The latency measurements were obtained using a logger application that tries
to read a data unit from six different clouds: the four storage clouds individually and the two
clouds-of-clouds implemented with DEPSKY-A and DEPSKY-CA.

The logger application executes periodically a measurement epoch, which comprises: read
the data unit (DU) from each of the clouds individually, one after another; read the DU using
DEPSKY-A; read the DU using DEPSKY-CA; sleep until the next epoch. The goal is to read
the data through different setups within a time period as small as possible in order to minimize
Internet performance variations.

We deployed the logger on eight PlanetLab machines across the Internet, on four continents.
In each of these machines three instances of the logger were started for different DU sizes:
100kb (a measurement every 5 minutes), 1Mb (a measurement every 10 minutes) and 10Mb
(a measurement every 30 minutes). These experiments took place during two months, but the
values reported correspond to measurements done between September 10, 2010 and October 7,
2010.

In the experiments, the local costs, in which the protocols incur due to the use of cryptog-
raphy and erasure codes, are negligible for DEPSKY-A and account for at most 5% of the read
and 10% of the write latencies on DEPSKY-CA.

Reads. Figure 4.8.2 presents the 50% and 90% percentile of all observed latencies of the
reads executed (i.e., the values below which 50% and 90% of the observations fell). These
experiments were executed without the (monetary) read optimization described in Section 4.3.7.
The number of reads executed on each site is presented on the second column of Table 4.6.

Based on the results presented in the figure, several points can be highlighted. First, DEPSKY-
A presents the best latency in all but one cases. This is explained by the fact that it waits for 3
out-of 4 copies of the metadata but only one of the data, and it usually obtains it from the best
cloud available during the execution. Second, DEPSKY-CA’s latency is closely related with the
second best cloud storage provider, since it waits for at least 2 out-of 4 data blocks. Finally,
there is a huge variance between the performance of the cloud providers when accessed from
different parts of the world. This means that no provider covers all areas in the same way, and
highlights another advantage of the cloud-of-clouds: we can adapt our accesses to use the best
cloud for a certain location.

The effect of optimizations. An interesting observation of our DEPSKY-A (resp. DEPSKY-
CA) read experiments is that in a significant percentage of the reads the cloud that replied meta-
data faster (resp. the two faster in replying metadata) is not the first to reply the data (resp. the
two first in replying the data). More precisely, in 17% of the 60768 DEPSKY-A reads and
32% of the 60444 DEPSKY-CA reads we observed this behavior. A possible explanation for
that could be that some clouds are better serving small files (DEPSKY metadata is around 500
bytes) and not so good on serving large files (like the 10Mb data unit of some experiments).
This means that the read optimizations of Section 4.3.7 will make the protocol latency worse
in these cases. Nonetheless we think this optimization is valuable since the rationale behind it
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Figure 4.6: 50th/90th-percentile latency (in seconds) for 100kb, 1Mb and 10Mb DU read oper-
ations with PlanetLab clients located on different parts of the globe. The bar names are S3 for
Amazon S3, WA for Windows Azure, NX for Nirvanix, RS for Rackspace, A for DEPSKY-A
and CA for DEPSKY-CA. DEPSKY-CA and DEPSKY-A are configured with n = 4 and f = 1.

worked for more than 4/5 (DEPSKY-A) and 2/3 (DEPSKY-CA) of the reads in our experiments,
and its use can decrease the monetary costs of executing a read by a quarter and half of the cost
of the non-optimized protocol, respectively.

Table 4.4 shows, for each cloud (DEPSKY-A) or pair of clouds (DEPSKY-CA), the percent-
age of read operations that fetched data files from these clouds (i.e., these clouds answered first)
for different client locations.

The first four lines of the table show that Rackspace was the cloud that provided the data
file faster for most DEPSKY-A clients, while Amazon S3 provided the data more frequently
for European clients. Interestingly, although these two clouds are consistently among the most
used in operations coming from different parts of the world, it is difficult to decide between
Windows Azure and Nirvanix to compose the preferred quorum to be used. Nirvanix showed to
be fast for Asian clients (e.g., 45% of reads in Japan), while Windows Azure provided excellent
performance in UK (e.g., 40% of reads fetched data from it). This tie can be broken considering
the expected client location, the performance of writes and economical costs.

Considering DEPSKY-CA, where two data files are required to rebuild the original data,
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Table 4.4: Percentage of reads in which the required data blocks were fetched from a specific
cloud (or pair of clouds) for different locations. The clouds names are S3 for Amazon S3,
WA for Windows Azure, NX for Nirvanix and RS for Rackspace. Results for single clouds
stand for DEPSKY-A reads while results for a pair of clouds correspond to the 2 blocks read in
DEPSKY-CA to rebuild the data.

Cloud(s) Brazil US-PA US-CA New Z. Japan China Spain UK
S3 4 3 0 1 0 1 65 59
NX 0 2 0 14 45 2 2 0
RS 94 94 99 84 55 97 31 0
WA 1 1 0 0 - 0 2 40

S3-RS 53 61 2 3 1 3 67 2
S3-NX 0 1 0 0 0 1 3 0
S3-WA 0 1 - 0 - 0 2 81
NX-WA 0 1 0 0 0 1 1 6
NX-RS 30 20 87 97 99 81 15 0
RS-WA 17 16 11 0 0 14 12 10

one can see that there are three possible preferred quorums for different locations: S3-RS-NX
(Brazil, US-PA, New Zealand, Japan and Spain), NX-RS-WA (US-CA and China) and S3-WA-
RS (UK). Again, the choice of the quorum used initially needs to be based on the other factors
already mentioned. If one considers only the cost factor, the choice would be S3-RS-WA for
both DEPSKY-A and DEPSKY-CA, since Windows Azure is much less expensive than Nirvanix
(see Figure 4.5(b) in Section 4.8.1). By the other hand, as will be seen in the following, the
perceived availability of Windows Azure was worse than Nirvanix in our experiments.

Writes. We modified our logger application to execute writes instead of reads and deployed
it on the same machines we executed the reads. We run it for two days in October and collected
the logs, with at least 500 measurements for each location and data size. These experiments
were executed without the (monetary) read optimization described in Section 4.3.7. For the
sake of brevity, we do not present all these results, but illustrate the costs of write operations
for different data sizes and locations discussing only the observed results for UK and US-CA
clients. The other locations present similar trends. These experiments were executed without
the preferred quorum optimization described in Section 4.3.7. The 50% and 90% percentile of
the latencies observed are presented in Figure 4.8.2.
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Figure 4.7: 50th/90th-percentile latency (in seconds) for 100kb, 1Mb and 10Mb DU write
operation for a PlanetLab client at the UK (a) and US-CA (b). The bar names are the same as
in Figure 4.8.2. DEPSKY-A and DEPSKY-CA are configured with n = 4 and f = 1.

The latencies in the figure consider the time of writing the data on all four clouds (file sent
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to 4 clouds, wait for only 3 confirmations) and the time of writing the new metadata. As can be
observed in the figure, the latency of a write is of the same order of magnitude of a read of a
DU of the same size (this was observed on all locations). It is interesting to observe that, while
DEPSKY’s read latency is close to the cloud with best latency, the write latency is close to the
worst cloud. This comes from the fact that in a write DEPSKY needs to upload data blocks on
all clouds, which consumes more bandwidth at the client side and requires replies from at least
three clouds.

The figure also illustrates the big differences between the performance of the system de-
pending on the client location. This difference is specially relevant when looking to the 90%
values reported.

Secret sharing overhead. As discussed in Section 4.3.6, if a key distribution mechanism
is available, secret sharing could be removed from DEPSKY-CA. However, the effect of this
on read and write latencies would be negligible since share and combine (lines 9 and 34 of
Algorithm 2) account for less than 3 and 0.5 ms, respectively. It means that secret sharing is
responsible for less than 0.1% of the protocols latency in the worst case3.

Throughput. Table 4.5 shows the throughput in the experiments for two locations: UK and
US-CA. The values are of the throughput observed by a single client, not by multiple clients
as done in some throughput experiments. The table shows read and write throughput for both
DEPSKY-A and DEPSKY-CA, together with the values observed from Amazon S3, just to give
a baseline. The results from other locations and clouds follow the same trends discussed here.

Table 4.5: Throughput observed in kb/s on all reads and writes executed for the case of 4 clouds
(f = 1).

Operation DU Size
UK US-CA

DEPSKY-A DEPSKY-CA Amazon S3 DEPSKY-A DEPSKY-CA Amazon S3
100kb 189 135 59.3 129 64.9 31.5

Read 1Mb 808 568 321 544 306 104
10Mb 1479 756 559 780 320 147
100kb 3.53 4.26 5.43 2.91 3.55 5.06

Write 1Mb 14.9 26.2 53.1 13.6 19.9 25.5
10Mb 64.9 107 84.1 96.6 108 34.4

By the table it is possible to observe that the read throughput decreases from DEPSKY-A to
DEPSKY-CA and then to Amazon S3, at the same time that write throughput increases for this
same sequence. The higher read throughput of DEPSKY when compared with Amazon S3 is
due to the fact that it fetches the data from all clouds on the same time, trying to obtain the data
from the fastest cloud available. The price to pay for this benefit is the lower write throughput
since data should be written at least on a quorum of clouds in order to complete a write. This
trade off appears to be a good compromise since reads tend to dominate most workloads of
storage systems.

The table also shows that increasing the size of the data unit improves throughput. Increas-
ing the data unit size from 100kb to 1Mb improves the throughput by an average factor of 5 in
both reads and writes. By the other hand, increasing the size from 1Mb to 10Mb shows less
benefits: read throughput is increased only by an average factor of 1.5 while write throughput
increases by an average factor of 3.3. These results show that cloud storage services should be

3For a more compreensive discussion about the overhead imposed by Java secret sharing see [BACF08].
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used for storing large chunks of data. However, increasing the size of these chunks brings less
benefit after a certain size (1Mb).

Notice that the observed throughputs are at least an order of magnitude lower than the
throughput of disk access or replicated storage in a LAN [HGR07], but the elasticity of the
cloud allows the throughput to grow indefinitely with the number of clients accessing the sys-
tem (according to the cloud providers). This is actually the main reason that lead us to not trying
to measure the peak throughput of services built on top of clouds. Another reason is that the
Internet bandwidth would probably be the bottleneck of the throughput, not the clouds.

Faults and availability. During our experiments we observed a significant number of read op-
erations on individual clouds that could not be completed due to some error. Table 4.6 presents
the perceived availability of all setups calculated as reads completed

reads tried
from different locations.

Table 4.6: The perceived availability of all setups evaluated from different points of the Internet.
The values were calculated as reads completed

reads tried
.

Location Reads Tried DEPSKY-A DEPSKY-CA Amazon S3 Rackspace Azure Nirvanix
Brazil 8428 1.0000 0.9998 1.0000 0.9997 0.9793 0.9986
US-PA 5113 1.0000 1.0000 0.9998 1.0000 1.0000 0.9880
US-CA 8084 1.0000 1.0000 0.9998 1.0000 1.0000 0.9996

New Zealand 8545 1.0000 1.0000 0.9998 1.0000 0.9542 0.9996
Japan 8392 1.0000 1.0000 0.9997 0.9998 0.9996 0.9997
China 8594 1.0000 1.0000 0.9997 1.0000 0.9994 1.0000
Spain 6550 1.0000 1.0000 1.0000 1.0000 0.9796 0.9995
UK 7069 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000

The first thing that can be observed from the table is that the number of measurements taken
from each location is not the same. This happens due to the natural unreliability of PlanetLab
nodes, that crash and restart with some regularity.

There are two key observations that can be taken from Table 4.6. First, DEPSKY-A and
DEPSKY-CA are the two single setups that presented an availability of 1.0000 in almost all
locations4. Second, despite the fact that most cloud providers advertise providing 5 or 6 nines
of availability, the perceived availability in our experiments was lower. The main problem is
that outsourcing storage makes a company not only dependent on the provider’s availability, but
also on the network availability, which some studies show to have no more than two nines of
availability [DCGN03]. This is a fact that companies moving critical applications to the cloud
have to be fully aware.

4.9 Related Work

Byzantine quorum systems. DEPSKY provides a single-writer multi-reader read/write reg-
ister abstraction built on a set of untrusted storage clouds that can fail in an arbitrary way.
This type of abstraction supports an updatable data model, requiring protocols that can han-
dle multiple versions of stored data. This is substantially different from providing write-once,
read-maybe archival storages such as the one described in [SGMV07].

There are many protocols for Byzantine quorums systems for register implementation (e.g.,
[GWGR04,HGR07,MR97,MAD02]), however, few of them address the model in which servers

4This is somewhat surprising since we were expecting to have at least some faults on the client network that
would disallow it to access any cloud.
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are passive entities that do not run protocol code [ACKM06,AL03,JCT98]. DEPSKY differenti-
ates from them in the following aspects: (1.) it decouples the write of timestamp and verification
data from the write of the new value; (2.) it has optimal resiliency (3f + 1 servers [MAD02])
and employs read and write protocols requiring two communication round-trips independently
of the existence of contention, faults and weakly consistent clouds; finally, (3.) it is the first
single-writer multi-reader register implementation supporting efficient encoding and confiden-
tiality. Regarding (2.), our protocols are similar to others for fail-prone shared memory (or “disk
quorums”), where servers are passive disks that may crash or corrupt stored data. In particular,
Byzantine disk Paxos [ACKM06] also presents a single-writer multi-reader regular register con-
struction that requires two communication round-trips both for reading and writing in absence
of contention. However, there is a fundamental difference between this construction and DEP-
SKY: it provides a weak liveness condition for the read protocol (termination only when there is
a finite number of contending writes) while our protocol satisfies wait-freedom. An important
consequence of this limitation is that reads may require several communication steps when con-
tending writes are being executed. This same limitation appears on [AL03] that, additionally,
does not tolerate writer faults. Regarding point (3.), it is worth to notice that several Byzantine
storage protocols support efficient storage using erasure codes [CT06, GWGR04, HGR07], but
none of them mention the use of secret sharing or the provision of confidentiality. However, it is
not clear if information-efficient secret sharing [Kra93] or some variant of this technique could
substitute the erasure codes employed on these protocols.

Cloud storage availability. Cloud storage is a hot topic with several papers appearing re-
cently. However, most of these papers deal with the intricacies of implementing a storage in-
frastructure inside a cloud provider (e.g., [MJWS10]). Our work is closer to others that explore
the use of existing cloud storage services to implement enriched storage applications. There are
papers showing how to efficiently use storage clouds for file system backup [VSV09], imple-
ment a database [BFG+08], implement log-based file system [VSV12] or add provenance to the
stored data [MRMS10]. However none of these works provide guarantees like confidentiality
and availability and do not consider a cloud-of-clouds.

Some works on this trend deal with the high-availability of stored data through the repli-
cation of this data on several cloud providers, and thus are closely related with DEPSKY. The
SafeStore system [KAD07a] provides an accountability layer for using a set of untrusted third-
party storage systems in an efficient way. There are at least two features that make SafeStore
very different from DEPSKY. First, it requires specific server-code on storage cloud provider
(both in the service interface and in the internal storage nodes). Second, SafeStore does not
support data sharing among clients (called SafeStore local servers) accessing the same storage
services. The HAIL (High-Availability Integrity Layer) protocol set [BJO09] combines cryp-
tographic protocols for proof of recoveries with erasure codes to provide a software layer to
protect the integrity and availability of the stored data, even if the individual clouds are compro-
mised by a malicious and mobile adversary. HAIL has at least three limitations when compared
with DEPSKY: it only deals with static data (i.e., it is not possible to manage multiple ver-
sions of data), it requires that the servers run some code (opposite to DEPSKY, that uses the
storage clouds as they are), and does not provide confidentiality guarantees for the stored data.
The RACS (Redundant Array of Cloud Storage) system [ALPW10] employs RAID5-like tech-
niques (mainly erasure codes) [PGK88] to implement high-available and storage-efficient data
replication on diverse clouds. Differently from DEPSKY, RACS does not try to solve security
problems of cloud storage, but instead deals with “economic failures” and vendor lock-in. In
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consequence, the system does not provide any mechanism to detect and recover from data cor-
ruption or confidentiality violations. Moreover, it does not provide updates of the stored data.
Finally, it is worth to mention that none of these cloud replication works present an experimental
evaluation with diverse clouds as it is presented in this work.

Cloud security. There are several works about obtaining trustworthiness from untrusted clouds.
Depot improves the resilience of cloud storage making similar assumptions to DEPSKY, that
storage clouds are fault-prone black boxes [MSL+10]. However, it uses a single cloud, so it
provides a solution that is cheaper but does not tolerate total data losses and the availability
is constrained by the availability of the cloud on top of which it is implemented. Works like
SPORC [FZFF10] and Venus [SCC+10] make similar assumptions to implement services on
top of untrusted clouds. All these works consider a single cloud (not a cloud-of-clouds), require
a cloud with the ability to run code, and have limited support for cloud unavailability, which
makes them different from DEPSKY.

4.10 Conclusion
This chapter presents the design and evaluation of DEPSKY, a storage service that improves
the availability and confidentiality provided by commercial storage cloud services. The system
achieves these objectives by building a cloud-of-clouds on top of a set of storage clouds, com-
bining Byzantine quorum system protocols, cryptographic secret sharing, erasure codes and the
diversity provided by the use of several cloud providers. Beside of that, the notion of consis-
tency proportionality introduced by DEPSKY allows the system to provide the same level of
consistency of the underlying clouds it uses for storage.

We believe DEPSKY protocols are in an unexplored region of the quorum systems design
space and can enable applications sharing critical data (e.g., financial, medical) to benefit from
storage clouds. Moreover, the few and weak assumptions required by the protocols allow them
to be used to replicate data efficiently not only on cloud storage services, but with any storage
service available (e.g., NAS disks, NFS servers, FTP servers, key-value databases).

The chapter also presents an extensive evaluation of the system. The key conclusion is that
it provides confidentiality and improved availability with an added cost as low as 23% more of
the cost of storing data on a single cloud for a practical scenario, which seems to be a good
compromise for critical applications.

In the next chapter we present a study of several properties of cloud-of-clouds object storage
systems using distributed system theory tools.
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Chapter 5

Object Storage: Theory

Chapter Authors:
Cristina Băsescu, Christian Cachin, Ittay Eyal, Robert Haas, Birgit Junker, Nikola Knežević,
Alessandro Sorniotti and Marko Vukolić (IBM).

5.1 Overview
This chapter examines the theoretical foundations of distributed cloud storage services, such as
DEPSKY (described in previous chapter). Such services often provide a key-value store (KVS)
functionality, an object-based interface for accessing a collection of unstructured data items or
blobs. Every blob is associated with a key that serves as identifier to access the blob.

In the first part, we present an efficient wait-free algorithm that emulates multi-reader multi-
writer storage from a set of potentially faulty KVS replicas in an asynchronous environment.
Our implementation serves an unbounded number of clients that use the storage concurrently. It
tolerates crashes of a minority of the KVSs and crashes of any number of clients. Our algorithm
minimizes the space overhead at the KVSs and comes in two variants providing regular and
atomic semantics, respectively. Compared with prior solutions, it is inherently scalable and
allows clients to write concurrently. Because of the limited interface of a KVS, textbook-style
solutions for reliable storage either do not work or incur a prohibitively large storage overhead.
Our algorithm maintains two copies of the stored value per KVS in the common case, and we
show that this is indeed necessary. If there are concurrent write operations, the maximum space
complexity of the algorithm grows in proportion to the point contention.

In the second part, we examine fundamental properties of the KVS abstraction. In the sim-
plest form, a KVS provides only methods for writing and reading an entire blob, for removing
blobs, and for listing all defined keys. On the other hand, many existing schemes for replicating
data with the goal of enhancing resilience (e.g., based on quorum systems) associate logical
timestamps with the stored values, in order to distinguish multiple versions of the same data
item. This work uses the consensus number of a shared storage abstraction as a measure for
its power to facilitate the implementation of data replication. It is demonstrated that a KVS is
a very simple primitive, not different from read/write registers in this sense, and that a replica
capable of the typical operations on timestamped data is fundamentally more powerful than a
KVS. Hence, data replication schemes over storage providers with a KVS interface appear in-
herently more difficult to realize than replication schemes over providers with richer interfaces.

5.1.1 Motivation
In the recent years, the key-value store (KVS) abstraction has become the most popular way
to access Internet-scale “cloud” storage systems. Such systems provide storage and coordina-
tion services for online platforms [DHJ+07, MTJ+08, ALM+10, LM10, Vol], ranging from web
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search to social networks, but they are also available to consumers directly [Amad, CWO+11,
racb, Mez].

A KVS offers a range of simple functions for manipulation of unstructured data objects,
called values, each one identified by a unique key. While different services and systems offer
various extensions to the KVS interface, the common denominator of existing KVS services
implements an associative array: A client may store a value by associating the value with a key,
retrieve a value associated with a key, list the keys that are currently associated, and remove a
value associated with a key.

Although existing KVS services provide high availability and reliability using replication
internally, a KVS service is managed by one provider; many common components (and thus
failure modes) affect its operation. A problem with any such component may lead to service
outage or even to data being lost, as witnessed during an Amazon S3 incident [Amab], Google’s
temporary loss of email data [Gma], and Amazon’s recent service disruption [Amac]. As a
remedy, a client may increase data reliability by replicating it among several storage providers
(all offering a KVS interface), using the guarantees offered by robust distributed storage al-
gorithms [Gif79, ABND95]. Data replication across different clouds is a topic of active re-
search [ALPW10, CHV10, RP11, BCQ+11].

Replication over a multiple storage providers is not an easy task. KVS services provide an
object-based interface for accessing a collection of unstructured blobs. Every blob is associated
with a key that serves as identifier to access the blob. The common denominator of all current
KVS services contains only methods for writing and reading an entire blob, for removing blobs,
and for listing all defined keys. Exactly this simplistic interface poses a major problem for
replication schemes that maintain versioned data on multiple KVS replicas. In particular, the
first part of this chapter address this problem in detail and present a replication algorithm that
maintains two copies of the stored value per KVS in the common case. There, we also show
that storing two copies is necessary, in order to achieve wait-free client operations.

Data replication in the intercloud has recently received a lot of attention [BJO09,ALPW10,
RP11, BCQ+11]. One class of such systems assume specialized interfaces on the storage repli-
cas, which are capable of limited processing and command execution (like active disks [CM05]
or the storage servers of HAIL [BJO09] and Cleversafe [RP11]). Replicas can therefore carry
out limited computation, such as comparing timestamps and conditionally storing data. This
feature is required by many replicated storage algorithms based on quorum systems, starting
with some of the first schemes [CBPS10,ABND95,CGR11]. A second class of cloud-data repli-
cation schemes, in particular RACS [ALPW10] and DepSky [BCQ+11], uses a KVS provider;
they compensate for the relative simplicity of the KVS interface by adding extra components
for synchronization among multiple clients.

In the second part of this chapter, we identify an inherent difference between the storage
abstractions used by the two classes of replication systems mentioned before. We examine
the power of the popular KVS model from the perspective of the designer of a failure- and
intrusion-tolerant replication scheme. A replication method enables multiple clients to operate
on a storage abstraction emulated from a pool of potentially faulty storage providers, such
as cloud-based KVSs; implicitly, the richness, complexity, and performance of the emulated
service depends on the power of the underlying primitives. We analyze the consensus number
storage abstraction as a measure for its capability to provide wait-free synchronization among
the set of clients according to Herlihy’s fundamental notion [Her91, HS08].
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5.1.2 Contribution

First, we provide the theoretical formalism for building robust data sharing over replicated sets
of key-value stores (KVS). Toward that end, we present a robust, asynchronous, and space-
efficient emulation of a register over a set of KVSs, which may fail by crashing. Our formaliza-
tion of a key-value store object represents the common denominator among existing commercial
KVSs, which renders our approach feasible in practice. Inspired by Internet-scale systems, the
emulation is designed for an unbounded number of clients and supports multiple readers and
writers (MRMW). The algorithm is wait-free [HW90] in the sense that all operations invoked
by a correct client eventually complete. It is also optimally resilient, i.e., tolerates the failure of
any minority of the KVSs and of any number of clients.

Next, we present two variations of the emulation. A basic algorithm emulates a register
with regular semantics in the multi-writer model [SPW03]. It does not require read operations
to write to the KVSs. Precluding readers from writing is practically appealing, since the clients
may belong to different domains and not all readers may have write privileges for the shared
memory. But it also poses a challenge because of the garbage-collection (GC) racing problem.
Our solution stores the same value twice in every KVS: (1) under an eternal key, which is never
removed by a garbage collector, and therefore is vulnerable to an old-new overwrite and (2)
under a temporary key, named according to the version; obsolete temporary keys are garbage-
collected by write operations, which makes these keys vulnerable to the GC racing problem.
The algorithm for reading accesses the values in the KVSs according to a specific order, which
guarantees that every read terminates eventually despite concurrent write operations. In a sense,
the eternal and temporary copies complement each other and, together, guarantee the desirable
properties of this emulation.

We then present an extension to the basic algorithm, that enables the emulation of an
atomic register [Lam86]. It uses the standard approach of having the readers write back the
returned value [ABND95]. This algorithm requires read operations to write, but this is neces-
sary [Lam86, AW04].

These two emulations emulations maintain only two copies of the stored value per KVS in
the common case (i.e., failure-free executions without concurrent operations). We show that
this is also necessary. In the worst case, a stored value exists in every KVS once for every
concurrent write operation, in addition to the one stored under the eternal key. Hence, these
emulations have optimal space complexity.

Even though it is well-known how to implement a shared, robust multi-writer register from
simpler storage primitives such as unreliable single-writer registers [AW04], the presented al-
gorithm is the first to achieve an emulation from KVSs with the minimum necessary space
overhead.

Furthermore, we note that some of the available KVSs export proprietary versioning infor-
mation [Amad,Vol]. However, one cannot exploit this for a data replication algorithm before the
format and semantics of those versions has been harmonized. Another KVS prototype allows
to execute client operations [GLK+10], but this technique is far from commercial deployment.
We believe that some KVSs may also support atomic “read-modify-write” operations at some
future time, thereby eliminating the problem addressed here. But until these extensions are de-
ployed widely and have been standardized, our algorithm represents the best possible solution
for minimizing space overhead of data replication on KVSs.

Lastly, in the second part of this chapter, we focus on the workings of a basic building block
of our replication algorithm — a single KVS. There, we show that the typical processing steps
expected from a replica in traditional replicated storage schemes give it universal power —
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these replicas have infinite consensus number and are as powerful as the consensus abstraction
for implementing other concurrent data structures. A key-value store, on the other hand, has the
least amount of synchronization power available in any shared object that has been studied —
the consensus number of a KVS is one and falls into the same class as a simple read/write
register. These results illustrate why data replication for typical cloud storage systems requires
additional mechanisms for letting multiple clients access the system concurrently.

5.2 Model

Here we introduce the formal model underlying the description of algorithms in this chapter.
Next, we define linearizability and wait-freedom, followed by specifications of registers with
regular and atomic semantics. Then, we introduce the consensus number as a measure for the
synchronization power of a shared object. Finally, we introduce a key-value store object and
state the system model.

5.2.1 Executions
The system is comprised of unbounded number of clients and (base) objects. We model them as
I/O automata [Lyn96], which contain state and potential transitions that are triggered by actions.
The interface of an I/O automaton is determined by external (input and output) actions. A client
may invoke an operation1 on an object (with an output action of the client automaton that is
also an input action of the object automaton). The object reacts to this invocation, possibly
involving state transitions and internal actions, and returns a response (an output action of the
object that is also an input action of the client). This completes the operation. In other words,
each operation consists of two events, the invocation and the response.

We consider an asynchronous system, i.e., there are no timing assumptions that relate invo-
cations and responses. (Consult [Lyn96, AW04] for details.)

Clients and objects may fail by stopping, i.e., crashing, which we model by a special action
stop. When stop occurs at automaton A, all actions of A become disabled indefinitely and A no
longer modifies its state. A client or base object that does not fail is called correct.

5.2.2 Linearizability
The sequence of invocations and responses ofO occurring in an execution σ are called a history.
An invocation and a response match if they are both events occurring at the same client, concern
the same object, and the response occurs after the invocation and before any other invocation
concerning the same object. An operation whose invocation appears in a history is complete
if the history also contains a matching response. The subsequence of σ containing only the
complete operations of σ is denoted by complete(σ). If an operation is not complete in a history
it is called pending. An extension of σ is any history that can be obtained from σ by appending
responses for any subset of the pending requests in σ.

In a sequence of events σ an operation o precedes another operation o′ if o completes before
o′ is invoked. This is denoted by o <σ o′. If neither of two operations precedes the other,
they are concurrent. A sequence of events that does not contain any concurrent events is called
sequential. We assume that every client invokes operations on one object in a well-formed way,

1For simplicity, we refer to an operation when we should be referring to operation execution.
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that is, the client never invokes an operation on an object when an operation by that client on
the same object is pending.

A history π consisting only of events in a history σ is said to preserve the real-time order of
σ if for any two operations o and o′ in π, the condition o <σ o

′ implies that o <π o
′.

A client subhistory of σ for a client c is the subsequence of σ that contains only those events
that occur at c; it is denoted by σ|c. For an object O, the object subhistory σ|O is defined
analogously. Two histories σ and σ′ are equivalent if for every client c it holds that σ|c = σ′|c.

The sequential specification defines a shared object by describing its behavior in sequential
executions. A history σ is legal if each of its object subhistories is legal with respect to the
sequential specification.

An important class of objects appear to execute operations “atomically,” as captured by the
notion of linearizability formalized by Herlihy and Wing [HW90]. We consider only lineariz-
able semantics in this work.

Definition 1 (Linearizability). A history of events σ is linearizable if it has an extension σ′ and
there exists a legal sequential history π such that:

1. complete(σ′) is equivalent to π; and

2. π preserves the real-time order of σ.

5.2.3 Wait-freedom
In a system where several clients execute operations on shared object(s), none of the clients
should be prevented from making progress due to operations of other clients. A system achiev-
ing this property is called wait-free. This is an important aspect of resilient Internet services.
The notion was made formal by Herlihy [Her91] but probably appears first in the work of Lam-
port [Lam74]. We consider only wait-free systems in the remainder of this work.

Definition 2 (Wait-Freedom). Consider a system where several clients access a shared object.
The system is wait-free if in all executions, every client gets a response to an operation invoca-
tion within a finite number of steps, that is, independent of failures and of actions of the other
clients.

5.2.4 Register Specifications
Sequential Register. A register [Lam86] is an object that supports two operations: one for
writing a value v ∈ V , denoted by write(v), which returns ACK, and one for reading a value,
denoted by read(), which returns a value in V . The sequential specification of a register requires
that every read operation returns the value written by the last preceding write operation in the
execution, or the special value ⊥ if no such operation exists. For simplicity, our description
assumes that every distinct value is written only once.

Registers may exhibit different semantics under concurrent access, as described next.

Multi-Reader Multi-Writer Regular Register. The following semantics describe a multi-
reader multi-writer regular register (MRMW-regular), adapted from [SPW03]. A MRMW-
regular register only guarantees that different read operations agree on the order of preceding
write operations.
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Definition 3 (MRMW-regular register). A well-formed execution σ of a register is MRMW-
regular if there exists a sequential permutation π of the operations in σ as follows: for each
read operation r in σ, let πr be a subsequence of π containing r and those write operations that
do not follow r in σ; furthermore, let σr be the subsequence of σ containing r and those write
operations that do not follow it in σ; then πr is a legal real-time sequential permutation of σr.
A register is MRMW-regular if all well-formed executions on that register are MRMW-regular.

Atomic Register. A stronger consistency notion for a concurrent register object than regular
semantics is atomicity [Lam86], also called linearizability [HW90]. In short, atomicity stipu-
lates that it should be possible to place each operation at a singular point (linearization point)
between its invocation and response.

Definition 4 (Atomicity). A well-formed execution σ of a concurrent object is atomic (or lin-
earizable), if σ can be extended (by appending zero or more responses) to some execution σ′,
such that there is a legal real-time sequential permutation π of σ′. An object is atomic if all
well-formed executions on that object are atomic.

5.2.5 Key-Value Store
A key-value store (KVS) object is an associative array that allows storage and retrieval of values
in a set X associated with keys in a set K. The size of the stored values is typically much larger
than the length of a key, so the values in X cannot be translated to elements of K and be stored
as keys.

A KVS supports four operations: (1) Storing a value x associated with a key key (denoted
put(key, x)), (2) retrieving a value x associated with a key (x ← get(key)), which may also
return FAIL if key does not exist, (3) listing the keys that are currently associated (list← list()),
and (4) removing a value associated with a key (remove(key)).

Our formal sequential specification of the KVS object is given in Algorithm 4. This im-
plementation maintains in a variable live the set of associated keys and values. The space
complexity of a KVS at some time during an execution is given by the number of associated
keys, that is, by the value |live|.

5.2.6 System model
The system is comprised of a finite set of clients and a set of n atomic wait-free KVSs as base
objects. Each client is named with a unique identifier from an infinite ordered set ID. The KVS
objects are numbered 1, . . . , n. Initially, the clients do not know the identities of other clients
or the total number of clients.

Our goal is to have the clients emulate a MRMW-regular register and an atomic register
using the KVS base objects [Lyn96]. The emulations should be wait-free and tolerate that any
number of clients and any minority of the KVSs may crash. Furthermore, an emulation algo-
rithm should associate only few keys to values in every KVS (i.e., have low space complexity).

5.2.7 Consensus number
The consensus problem requires multiple clients to agree on a common value from a set of pro-
posed values. A consensus object abstracts a service that provides a wait-free implementation
of a distributed protocol that solves the consensus problem [Her91].
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Algorithm 4: Key-value store object i
1 state
2 live ⊆ K ×X , initially ∅
3 On invocation puti(key, value)
4 live← (live \ {〈key, x〉 |x ∈ X}) ∪ 〈key, value〉
5 return ACK

6 On invocation geti(key)
7 if ∃x : 〈key, x〉 ∈ live then
8 return x
9 else

10 return FAIL

11 On invocation removei(key)
12 live← live \ {〈key, x〉 |x ∈ X}
13 return ACK

14 On invocation listi()
15 return {key | ∃x : 〈key, x〉 ∈ live}

Definition 5 (Consensus Object). A consensus object is a shared object with one operation
decide(v); it takes a value v, called a proposal, as input parameter and returns a decision
value. Every client calls decide with its own proposal v at most once. The returned decision
value d satisfies:

1. (Validity) The value d is the proposal of some client; and

2. (Consistency) All clients return the same decision value d.

A consensus object permits any number of clients. For simplicity we consider only binary
consensus in this work, where the proposals are either zero or one.

Next we introduce the concept of consensus numbers, which is an important measure for
the synchronization power of a shared object in a wait-free system.

Definition 6 (Consensus Number [Her91]). The consensus number of a shared object is the
maximum number of clients for which this object can solve the consensus problem. If no maxi-
mum exists, the consensus number is said to be infinite.

The consensus number provides a measure for classifying shared objects with respect to
their power to synchronize multiple concurrent clients. By definition, a consensus object has
infinite consensus number; consensus has been called universal for this reason. One of the
simplest objects considered in the literature is a read/write register; it has consensus number
one [HS08]. The following result, first shown by Herlihy [Her91], organizes all shared objects
in a hierarchy based on their consensus numbers.

Theorem 1 ( [Her91]). If an object X has consensus number n and another object Y has
consensus number m < n, then X cannot be implemented in a wait-free way from Y in a
system with more than m clients.

In other words, a given shared object is strictly more powerful than any other shared object
that has a smaller consensus number.
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5.3 On Robust Data Sharing with Key-Value Stores

This section describes the theoretical formalism of enhancing the dependability of KVS services
through replication over multiple clouds.

Our data replication scheme relies on multiple providers of raw storage, called base objects
here, and emulates a single, more reliable shared storage abstraction, which we model as a
read/write register. A register represents the most basic form of storage, from which a KVS
service or more elaborate abstractions may be constructed. The emulated register tolerates
asynchrony, concurrency, and faults among the clients and the base objects. For increased
parallelism, the clients do not communicate with each other for coordination, and they may not
even be aware of each other.

Many well-known robust distributed storage algorithms exist (for an overview see [CGR11]).
They all use versioning [VA86], whereby each stored value is associated with a logical times-
tamp. For instance, with the multi-writer variant of the register emulation by Attiya et al. [ABND95],
the base objects perform custom computation depending on the timestamp, in order to identify
and to retain only the newest written value. Without this an old-new overwrite problem might
occur when a slow write request with an old value and a small timestamp reaches a base object
after the latter has already updated its state to a newer value with a higher timestamp. On the
other hand, one might let each client use its own range of timestamps and retain all versions
of a written value at the KVSs [GL03, ACKM06], but this approach is overly expensive in the
sense that it requires as many base objects as there are clients. If periodic garbage collection
(GC) is introduced to reduce the consumed storage space, one may face a GC racing problem,
whereby a client attempts to retrieve a value associated with a key that has become obsolete and
was removed.

5.3.1 Algorithm

Pseudo Code Notation

Our algorithm is formulated using functions that execute the register operations. They perform
computation steps, invoke operations on the base objects, and may wait for such operations to
complete. To simplify the pseudo code, we imagine there are concurrent execution “threads”
as follows. When a function concurrently executes a block, it performs the same steps and
invokes the same operations once for each KVS base object in parallel. An algorithm proceeds
past a concurrently statement as indicated by a termination property; in all our algorithms, this
condition requires that the block completes for a majority of base objects.

In order to maintain a well-formed execution, the system implicitly keeps track of pending
operations at the base objects. Relying on this state, every instruction to concurrently execute a
code block explicitly waits for a base object to complete a pending operation, before its “thread”
may invoke another operation. This convention avoids cluttering the pseudo code with state
variables and complicated predicates that have the same effect.

MRMW-Regular Register

We present an algorithm for implementing a MRMW-regular register, where read operations
do not store data at the KVSs.

Inspired by previous work on fault-tolerant register emulations, our algorithm makes use of
versioning. Clients associate versions with the values they store in the KVSs. In each KVS there
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may be several values stored at any time, with different versions. Roughly speaking, when writ-
ing a value, a client associates it with a version that is larger than the existing versions, and when
reading a value, a client tries to retrieve the one associated with the largest version [ABND95].
Since a KVS cannot perform computations and atomically store one version and remove another
one, values associated with obsolete versions may be left around. Therefore our algorithm ex-
plicitly removes unused values, in order to reduce the space occupied at a KVS.

A version is a pair2 〈seq, id〉 ∈ N0 × ID, where the first number is a sequence number
and the second is the identity of the client that created the version and used it to store a value.
When comparing versions with the < operator and using the max function, we respect the
lexicographic order on pairs. We assume that the key space of a KVS is the version space, i.e.,
K = N0 × ID, and that the value space of a KVS allows clients to store either a register value
from V or a version and a value in (N0 × ID)× V .3

At the heart of our algorithm lies the idea of using temporary keys, which are created and
later removed at the KVSs, and an eternal key, denoted ETERNAL, which is never removed.
Both represent a register value and its associated version. When a client writes a value to the
emulated register, it determines the new version to be associated with the value, accesses a
majority of the KVSs, and stores the value and version twice at every KVS — once under a new
temporary key, named according to the version, and once under the eternal key, overwriting its
current value. The data stored under a temporary key directly represents the written value; data
stored under the eternal key contains the register value and its version. The writer also performs
garbage collection of values stored under obsolete temporary keys, which ensures the bound on
space complexity.

Read When a client reads from the emulated register through algorithm regularRead (Algo-
rithm 6), it obtains a version and a value from a majority of the KVSs and returns the value
associated with the largest obtained version.

To obtain such a pair from a KVS i, the reader invokes a function getFromKVS(i) (shown
in Algorithm 5). It first determines the currently largest stored version, denoted by ver0, through
a snapshot of temporary keys with a list operation.

Then the reader enters a loop, from which it only exits after finding a value associated with
a version that is at least ver0. It first attempts to retrieve the value under the key representing
the largest version. If the key exists, the reader has found a suitable value. However, this step
may fail due to the GC racing problem, that is, because a concurrent writer has removed the
particular key between the times when the client issues the list and the get operations.

In this case, the reader retrieves the version/value pair stored under the eternal key. As the
eternal key is stored first by a writer and never removed, it exists always after the first write to
the register. If the retrieved version is greater than or equal to ver0, the reader returns this value.
However, if this version is smaller than ver0, an old-new overwrite has occurred, and the reader
starts another iteration of the loop.

This loop terminates after a bounded number of iterations: Note that an iteration is not suc-
cessful only if a GC race and an old-new overwrite have both occurred. But a concurrent writer
that may cause an old-new overwrite must have invoked its write operation before the reader is-
sued the first list operation on some KVS. Thus, the number of loop iterations is bounded by the

2We denote by N0 the set {0, 1, 2, . . . }.
3In other words, X = V ∪ (N0 × ID) × V . Alternatively one may assume that there exists a one-to-one

transformation from the version space to the KVS key space, and from the set of values written by the clients to
the KVS value space. In practical systems, where K and X are strings, this assumptions holds.
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number of clients that concurrently execute a write operation in parallel to the read operation
(i.e., the point contention of write operations). This intuition is made formal in Section B.1.

Algorithm 5: Retrieve a legal version-value pair from a KVS
1 function getFromKVS(i)
2 list← listi() \ ETERNAL

3 if list = ∅ then
4 return 〈〈0,⊥〉,⊥〉
5 ver0 ← max(list)
6 while True do
7 val← geti(max(list))
8 if val 6= FAIL then
9 return 〈max(list), val〉

10 〈ver, val〉 ← geti(ETERNAL)
11 if ver ≥ ver0 then
12 return 〈ver, val〉
13 list← listi() \ ETERNAL

Algorithm 6: Client c read operation of the MRMW-regular register
1 function regularReadc()
2 results← ∅
3 concurrently for each 1 ≤ i ≤ n, until a majority completes
4 if some operation is pending at KVS i then wait for a response
5 result← getFromKVS(i)
6 results← results ∪ {result}
7 return val such that 〈ver, val〉 ∈ results and ver′ ≤ ver for any 〈ver′, val′〉 ∈ results

Write A client writes a value to the register using algorithm regularWrite (Algorithm 8).
First, the client lists the temporary keys in each base object and determines the largest version
found in a majority of them. It increments this version and obtains a new version to be associated
with the written value.

Then the client stores the value and the new version in all KVSs using a function putInKVS,
shown in Algorithm 7, which also performs garbage collection. It first lists the existing keys
and removes obsolete temporary keys, i.e., all temporary keys excluding the one corresponding
to the maximal version. Subsequently the function stores the value and the version under the
eternal key. To store the value under a temporary key, the algorithm checks whether the new
version is larger than the maximal version of an existing key. If yes, it also stores the new value
under the temporary key corresponding to the new version and removes the key holding the
previous maximal version.

Once the function putInKVS finishes for a majority of the KVSs, the algorithm for writing
to the register completes. It is important for ensuring termination of concurrent read operations
that the writer first stores the value under the eternal key and later under the temporary key.
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Algorithm 7: Store a value and a given version in a KVS
1 function putInKVS(i, verw, valw)
2 list← listi()
3 obsolete← {v | v ∈ list ∧ v 6= ETERNAL ∧ v < max(list)}
4 foreach ver ∈ obsolete do
5 removei(ver)
6 puti(ETERNAL, 〈verw, valw〉)
7 if verw > max(list) then
8 puti(verw, valw)
9 removei(max(list))

Algorithm 8: Client c write operation of the MRMW-regular register
1 function regularWritec(valw)
2 results← {〈0,⊥〉}
3 concurrently for each 1 ≤ i ≤ n, until a majority completes
4 if some operation is pending at KVS i then wait for a response
5 list← listi()
6 results← results ∪ list
7 〈seqmax, idmax〉 ← max(results)
8 verw ← 〈seqmax + 1, c〉
9 concurrently for each 1 ≤ i ≤ n, until a majority completes

10 if some operation is pending at KVS i then wait for a response
11 putInKVS(i, verw, valw)

12 return ACK

Atomic Register

The atomic register emulation results from extending the algorithm for emulating the regular
register. Atomicity is achieved by having a client write back its read value before returning it,
similar to the write-back procedure of Attiya et al. [ABND95].

The write operation is the same as before, implemented by function regularWrite (Al-
gorithm 8). The read operation is implemented by function atomicRead (Algorithm 9). Its
first phase is unchanged from before and obtains the value associated with the maximal ver-
sion found among a majority of the KVSs. Its second phase duplicates the second phase of the
regularWrite function, which stores the versioned value to a majority of the KVSs.

5.3.2 Correctness
For the sake of brevity, we present the correctness proofs for our regular and atomic register con-
structions in a clearly marked appendix. We suggest the interested reader to consult Appendix
B.

5.3.3 Efficiency
We discuss the space complexity of the algorithms in this section. Our algorithms emulate
a MRMW-regular and atomic registers from KVS base objects. The standard emulations of
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Algorithm 9: Client c read operation of the atomic register
1 function atomicReadc()
2 results← ∅
3 concurrently for each 1 ≤ i ≤ n, until a majority completes
4 if some operation is pending at KVS i then wait for a response
5 result← getFromKVS(i)
6 results← results ∪ {result}
7 choose 〈ver, val〉 ∈ results such that ver′ ≤ ver for any 〈ver′, val′〉 ∈ results
8 concurrently for each 1 ≤ i ≤ n, until a majority completes
9 if some operation is pending at KVS i then wait for a response

10 putInKVS(i, ver, val)
11 return val

such registers use base objects with atomic read-modify-write semantics, which may receive
versioned values and always retain the value with the largest version. Since a KVS has simpler
semantics, our emulations store more than one value in each KVS.

Note how the algorithm for writing performs garbage collection on a KVS before storing a
temporary key in the KVS. This is actually necessary for bounding the space at the KVS, since
the putInKVS function is called concurrently for all KVSs and may be aborted for some of
them. If the algorithm would remove the obsolete temporary keys after storing the value, the
function may be aborted just before garbage collection. In this way, many obsolete keys might
be left around and permantly occupy space at the KVS.

We provide upper bounds on the space usage in Section 5.3.3 and continue in Section 5.3.3
with a lower bound. The time complexity of our emulations follows from analogous arguments.

Maximal Space Complexity

It is obvious from Algorithm 8 that when a write operation runs in isolation (i.e., without any
concurrent operations) and completes the putInKVS function on a set C of more than n/2 cor-
rect KVSs, then every KVS in C stores only the eternal key and one temporary key. Every such
KVS has space complexity two. When there are concurrent operations, the space complexity
may increase by one for every concurrent write operation. Recall that point contention denotes
the maximal number of clients executing an operation concurrently.

Theorem 2. The space complexity of the MRMW-regular register emulation at any KVS is at
most two plus the point contention of concurrent write operations.

The proof of this theorem is presented in Section B.2 of the appendix.
A similar theorem holds for the atomic register emulation, except here read operations may

also increase the space complexity. The proof is similar to that of the regular register, and is
omitted for brevity.

Theorem 3. For any execution σ̄, the maximal storage occupied by the atomic algorithm on a
KVS i is at most linear in the concurrent number of operations.

Minimal Space Complexity

We show that every emulation of even a safe [Lam78] register, which is weaker than a regular
register, from KVS base objects incurs space complexity two at the KVS objects.
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Algorithm 1 Sequential spec. of the replica object R
state

(R.ts, R.v), initially (0,⊥);

operation condwrite(ts, v)
if ts > R.ts then

(R.ts, R.v)← (ts, v);
return ACK;

operation read()
return R.v;

Theorem 4. In every emulation of a safe MRMW-register from KVS base objects, there exists
some KVS with space complexity two.

The proof of this theorem is presented in Section B.2 of the appendix.

5.4 On Limitations of Using Cloud Storage for Data Replica-
tion

Many protocols that implement robust shared memory in distributed systems use the notion of
logical timestamps [Lam78] for identifying different versions of a stored value over time. They
usually maintain the stored value in the form of a pair, consisting of a timestamp ts and the
actual value v.

We now introduce a replica object, which is inherent in a large number of distributed im-
plementations of shared memory; it corresponds, for example, to the processors used by Attiya
et al. [ABND95] and to the active disks of Chockler and Malkhi [CM05]. Our replica object
provides functionality to conditionally store a timestamp/value pair, which is required from
the storage primitive in many robust shared storage implementations. It serves any number of
clients.

More precisely, a replica object R stores a timestamp/value pair internally and offers two
operations, called condwrite and read, as shown in Algorithm 1. Operation condwrite(ts, v)
takes a timestamp/value pair as input and returns a constant symbol; it only stores the value v in
the replica object if the timestamp ts is bigger than the internally stored timestamp. Operation
read takes no input and returns a value; it simply accesses the internally stored value and returns
it.

From the point of view of synchronization, replica objects can be used to implement a
consensus object for any number of clients. Hence, a replica is universal and can implement
any synchronization primitive.

Theorem 5. The consensus number of a replica object is infinite.

The proof of this theorem is presented in Section B.3 of the appendix.

5.4.1 The consensus number of a key-value store
A key-value store (KVS) represents an object-based storage service, which has become popular
in the context of cloud storage. Pioneered by Amazon S3 [Amad], it now represents a de-
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facto standard for many commercial cloud storage services (e.g., Windows Azure [CWO+11],
Rackspace [racb], and many others [jcl]).

This section illustrates the fundamental power of a KVS for wait-free synchronization. We
show how to implement a KVS from a so-called snapshot object in a wait-free manner. Snapshot
objects represent a prominent abstraction of shared storage with many applications. Since a
snapshot object can be implemented from register objects, we can show that the KVS object
has consensus number one.

Snapshot objects

A snapshot object [AAD+93], abbreviated SO, is a shared object that stores n values in a system
of n clients, one value per client. In a single-writer snapshot object, as considered here, every
value may only be written by the corresponding client and all clients may read all values.

More precisely, an atomic snapshot object SO maintains a vector D of n values from a
domain V and provides two operations, denoted update and scan. When a client with an in-
dex i ∈ {1, . . . , n} invokes update(i, v) for a value v ∈ V , then SO atomically sets D[i] ← v
and responds with an acknowledgment. No client may invoke update with the index of an-
other client. Operation scan() with no parameters may be invoked by any client and returns the
vector D.

The sequential specification of an atomic snapshot object requires that for each D returned
by scan, entry D[i] for i = 1, . . . , n equals the value d given in the most recent preceding
update(i, d) operation by the client with index i; if there is no such preceding update, then D[i]
is equal to ⊥.

Interestingly, one can implement an atomic snapshot object for any number of clients only
from atomic read/write registers [AAD+93]. Because registers have consensus number one,
atomic snapshot objects have consensus number one.

From snapshot objects to KVS objects

This section gives a constructive proof of the following theorem, by exhibiting a wait-free im-
plementation of a KVS object from atomic snapshot objects.

Theorem 6. The consensus number of a key-value store object is one.

The proof of this theorem is presented in Section B.3 of the appendix.

5.5 Related Work
There is a rich body of literature on robust register emulations that provide guarantees simi-
lar to ours. However, virtually all of them assume read-modify-write functionalities, that is,
they rely on atomic computation steps at the base objects. These include the single-writer
multi-reader (SWMR) atomic wait-free register implementation of Attiya et al. [ABND95], its
dynamic multi-writer counterparts by Lynch and Shvartsman [LS97, GLS10] and Englert and
Shvartsman [ES00], wait-free simulations of Jayanti et al. [JCT98], low-latency atomic wait-
free implementations of Dutta et al. [DGLV10] and Georgiou et al. [GNS09], and the consensus-
free versions of Aguilera et al. [AKMS11]. These solutions are not directly applicable to our
model where KVSs are used as base objects, due to the old-new overwrite problem.

Notable exceptions that are applicable in our KVS context are SWMR regular register em-
ulation by Gafni and Lamport [GL03] and its Byzantine variant by Abraham et al. [ACKM06]
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that use registers as base objects. However, transforming these SWMR emulations to support
a large number of writers is inefficient: standard register transformations [AW04, CGR11] that
can be used to this end require at least as many SWMR regular registers as there are clients,
even if there are no faults. This is prohibitively expensive in terms of space complexity and
effectively limits the number of supported clients. Chockler and Malkhi [CM05] acknowledge
this issue and propose an algorithm that supports an unbounded number of clients (like our al-
gorithm). However, their method uses base objects (called “active disks”) that may carry out
computations. In contrast, our emulation leverages the operations in the KVS interface, which
is more general than a register due to its list and remove operations, and supports an unbounded
number of clients. Ye et al. [YXYB10] overcome the GC racing problem by having the readers
“reserve” the versions they intend to read, by storing extra values that signal to the garbage
collector not to remove the version being read. This approach requires readers to have write
access, which is not desirable.

Two recent works share our goal of providing robust storage from KVS base objects. Abu-
Libdeh et al. [ALPW10] propose RACS, an approach that casts RAID techniques to the KVS
context. RACS uses a model different from ours and basically relies on a proxy between the
clients and the KVSs, which may become a bottleneck and single point-of-failure. In a variant
that supports multiple proxies, the proxies communicate directly with each other for synchro-
nizing their operations. Bessani et al. [BCQ+11] propose a distributed storage system, called
DepSky, which employs erasure coding and cryptographic tools to store data on KVS objects
prone to Byzantine faults. However, the basic version of DepSky allows only a single writer
and thereby circumvents the problems addressed here. An extension supports multiple writers
through a locking mechanism that determines a unique writer using communication among the
clients. In comparison, the multi-writer versions of RACS and DepSky both serialize write op-
erations, whereas our algorithm allows concurrent write operations from multiple clients in a
wait-free manner. Therefore, our solution scales easily to a large number of clients.

5.6 Conclusion

The work described in this chapter offers a theoretical insight in how to build robust storage ab-
stractions from unreliable key-value store (KVS) objects, as commonly provided by distributed
cloud-storage systems over the Internet. These results complement the practical insights pro-
vided in the previous chapter.

In the first part of the chapter, we provided an emulation of a regular register over a set of
atomic KVSs; it supports an unbounded number of clients that need not know each other and
never interact directly.

The presented algorithm is wait-free and robust against the crash failure of a minority of the
KVSs and of any number of clients. The algorithm stores versioned values under two types of
keys — an eternal key that is never removed, and temporary keys that are dynamically added
and removed. This novel mechanism allows garbage collection of obsolete values in parallel
to wait-free client operations. Simulations and benchmarks with actual cloud-storage providers
demonstrate that the algorithm works well under practical circumstances.

For ease of exposition, we have assumed atomic semantics of KVSs, but practical KVSs may
only provide eventual consistency [Vog09]. In our practical experience, we never observed non-
atomic behavior; note that some cloud providers already provide atomic operations [CWO+11].

In the second part of the chapter, we researched in detail the building block of a replicated
storage — a technical foundation of KVS. We have shown that the consensus number of a typ-
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ical storage replica in timestamp-based replication algorithms is infinite, but a KVS, provided
by most cloud storage services, has consensus number one. Therefore these two providers have
fundamentally different power for synchronizing operations of multiple clients in wait-free al-
gorithms (formally captured in Theorem 1). This result explains why replication algorithms
using KVS providers, such as DepSky [BCQ+11] and the algorithms from the beginning of the
chapter, must use more complex methods to synchronize multiple clients than traditional data
replication schemes.

Our result also gives an incentive for considering extensions of the KVS interface, such as
the active KVS model introduced recently [GLK+10].
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Chapter 6

State Machine Replication: The MOD-SMART
BFT Replication Protocol

Chapter Authors:
João Sousa and Alysson Bessani (FFCUL).

6.1 Introduction

Replication is a fundamental technique for implementing dependable services that are able to
ensure integrity and availability despite the occurrence of faults and intrusions. State Machine
Replication (SMR) [Lam78,Sch90] is a popular replication method that enables a set of replicas
(state machines) to execute the same sequence of operations for a service even if a fraction of
the them are faulty.

A fundamental requirement of SMR is to make all client-issued requests to be totally or-
dered across replicas. Such requirement demands the implementation of a total order broadcast
protocol, which is known to be equivalent the consensus problem [CNV06, HT94, MHS11].
Therefore, a solution to the consensus problem is in the core of any distributed SMR protocol.

In the last decade, many practical SMR protocols for the Byzantine fault model were pub-
lished (e.g., [AEMGG+05,CL02,CML+06,KAD+07b,VCBL09,VCB+11]). However, despite
their efficiency, such protocols are monolithic: they do not separate clearly the consensus prim-
itive from the remaining protocol.

From a theoretical point of view, many Byzantine fault-tolerant (BFT) total order broad-
cast protocols (the main component of a BFT SMR implementation) were built using black-box
Byzantine consensus primitives (e.g., [CKPS01,CNV06,HT94,MHS11]). This modularity sim-
plifies the protocols, making them both easy to reason about and to implement. Unfortunately,
these modular transformations plus the underlying consensus they use always require more
communication steps than the aforementioned monolithic solutions.

Figure 6.1 presents the typical message pattern of modular BFT total order broadcast proto-
cols when used to implement SMR. The key point of most of these transformations is the use of
BFT reliable broadcast protocol [Bra84] to disseminate client requests among replicas, ensur-
ing they will be eventually proposed (and decided) in some consensus instance that defines the
order of messages to be executed. As illustrated in Figure 6.1, the usual BFT reliable broadcast
requires three communication steps [Bra84].

It is known that optimally resilient Byzantine consensus protocols cannot safely decide a
value in two or less communication steps [DGV05, MA05]. This means that latency-optimal
protocols for BFT SMR that use only 3f + 1 replicas to tolerate f Byzantine faults (e.g.,
PBFT [CL02]) requires at least three communication steps for the consensus plus two extra
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Figure 6.1: Modular BFT state machine replication message pattern for a protocol that uses
reliable broadcast and a consensus primitives. This protocol is adapted from [MHS11], when
tolerating a single fault.

steps to receive the request from the client and send a reply1. By the other hand, the protocol of
Figure 6.1 requires at least six communication steps to totally order a message in the best-case,
plus one more to send a reply to the client, making a total of seven steps.

Considering this gap, in this chapter we investigate the following question: Is it possible to
obtain a BFT state machine replication protocol with an optimal number of communications
steps (similar to PBFT), while explicitly using a consensus primitive at its core? The main con-
tribution of this work is a new transformation from Byzantine consensus to BFT state machine
replication dubbed Modular State Machine Replication (MOD-SMART), which answers this
question affirmatively. MOD-SMART implements SMR using a special Byzantine consensus
primitive called Validated and Provable Consensus (VP-Consensus), which can be easily ob-
tained by modifying existing leader-driven consensus algorithms (e.g., [Cac09, Lam01, MA05,
RMS10, Zie04]). To our knowledge, MOD-SMART is the first modular BFT SMR protocol
built over a well-defined consensus module which requires only the optimal number of commu-
nication steps, i.e., the number of communication steps of consensus plus two.

The core of our solution is the definition and use of the VP-Consensus as a “grey-box”
abstraction that allows the modular implementation of SMR without using reliable broadcast,
thus avoiding the extra communication steps required to safely guarantee that all requests arrive
at all correct replicas. The monolithic protocols, on the other hand, avoid those extra steps by
merging the reliable broadcast with the consensus protocol, being thus more complex. MOD-
SMART avoids mixing protocols by using the rich interface exported by VP-Consensus, that
allows it to handle request timeouts and, if needed, triggers internal consensus timeouts. The use
of a VP-Consensus is a good compromise between modularity and efficiency, specially because
this primitive can be easily implemented with simple modifications on several leader-driven
partially-synchronous Byzantine consensus protocols [Cac09, Lam01, LM07, MA05, RMS10,
Zie04].

Although this work main contribution is theoretical, our motivation is very practical and
highly relevant to the TClouds project. MOD-SMART is implemented as one of the core mod-
ules of BFT-SMART [LaS10] (described in Chapter 8 of D2.2.1), an open-source Java-based
BFT SMR library in which modularity is treated as a first-class property.

The chapter is organized in the following way. We first describe our system model and the

1This excludes optimistic protocols that are very efficient in contention-free executions [AEMGG+05,
CML+06], speculative protocols [KAD+07b], protocols that rely on trusted components [VCB+11], and fast
protocols that require more than 3f + 1 replicas [MA05].
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problem we want to address in Sections 6.2 and 6.3. The Validated and Provable Consensus
primitive is discussed in Section 6.4. Next, Section 6.5 present the the MOD-SMART algo-
rithms. Possible optimizations and additional considerations are discussed in Section 6.6. In
Sections 6.7 and 6.8 we put the related work in context and present our conclusions. Finally, all
proofs that MOD-SMART implements SMR are described in Appendix C.

6.2 System Model

We consider a system composed by a set of n ≥ 3f + 1 replicas R, where a maximum of f
replicas may be subject to Byzantine faults, and a set C with an unbounded (but finite) number
of clients, which can also suffer Byzantine faults. A process (client or replica) is considered
correct if it never deviates from its specification; otherwise, it is considered faulty.

Like in PBFT and similar protocols [CL02,CML+06,KAD+07b,VCBL09], MOD-SMART

does not require synchrony to assure safety. However, it requires synchrony to provide live-
ness. This means that, even in the presence of faults, correct replicas will never evolve into
an inconsistent state; but the execution of the protocol is guaranteed to terminate only when
the system becomes synchronous. Due to this, we assume an eventually synchronous system
model [DLS88]. In such model, the system operates asynchronously until some unknown in-
stant, at which it will become synchronous. At this point, unknown time bounds for computation
and communication will be respected by the system.

We further assume that all processes communicate through reliable and authenticated point-
to-point channels, that can be easily implemented over fair links using retransmission and mes-
sage authentication codes.

Finally, we assume the existence of cryptographic functions that provide digital signatures,
message digests, and message authentication codes (MAC).

6.3 State Machine Replication

The state machine replication model was first proposed in [Lam78], and later generalized
in [Sch90]. In this model, an arbitrary number of client processes issue commands to a set
of replica processes. These replicas implement a stateful service that changes its state after
processing client commands, and sends replies to the clients that issued them. The goal of this
technique is to make the state at each replica evolve in a consistent way, thus making the ser-
vice completely and accurately replicated at each replica. In order to achieve this behavior, it is
necessary to satisfy four properties:

1. If any two correct replicas r and r′ apply operation o to state s, both r and r′ will reach
state s′;

2. Any two correct replicas r and r′ start with state s0;

3. Any two correct replicas r and r′ execute the same sequence of operations o0, ..., oi;

4. Operations from correct clients are always executed.

The first two requirements can be fulfilled without any distributed protocol, but the follow-
ing two directly translates to the implementation of a total order broadcast protocol – which
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is equivalent to solving the consensus problem. MOD-SMART satisfy properties 3 and 4, as-
suming the existence of a VP-Consensus primitive and that the service being replicated respects
properties 1 and 2.

6.4 Validated and Provable Consensus

In this section we introduce the concept of Validated and Provable Consensus (VP-Consensus).
By ‘Validated’, we mean the protocol receives a predicate γ together with the proposed value
– which any decided value must satisfy. By ‘Provable’, we mean that the protocol generates a
cryptographic proof Γ that certifies that a value v was decided in a consensus instance i. More
precisely, a VP-Consensus implementation offers the following interface:

• VP-Propose(i, l, γ, v): proposes a value v in consensus instance i, with initial leader l and
predicate γ;

• VP-Decide(i, v,Γ): triggered when value v with proof Γ is decided in consensus instance
i;

• VP-Timeout(i, l): used to trigger a timeout in the consensus instance i, and appoint a new
leader process l.

Three important things should be noted about this interface. First, VP-Consensus assumes
a leader-driven protocol, similar to any Byzantine Paxos consensus. Second, the interface as-
sumes the VP-Consensus implementation can handle timeouts to change leaders, and a new
leader is (locally) chosen after a timeout. Finally, we implicitly assume that all correct pro-
cesses will invoke VP-Propose for an instance i using the same predicate γ.

Just like usual definitions of consensus [Cac09,CNV06,HT94], VP-Consensus respects the
following properties:

• Termination: Every correct process eventually decides;

• Integrity: No correct process decides twice;

• Agreement: No two correct processes decide differently.

Moreover, two additional properties are also required:

• External Validity: If a correct process decides v, then γ(v) is true;

• External Provability: If some correct process decides v with proof Γ in a consensus in-
stance i, all correct process can verify that v is the decision of i using Γ.

External Validity was originally proposed by Cachin et al. [CKPS01], but we use a slightly
modified definition. In particular, External Validity no longer explicitly demands validation data
for proposing v, because such data is already included in the proposed value, as will be clear in
Section 6.5.
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6.4.1 Implementation requirements

Even though our primitive offers the classical properties of consensus, the interface imposes
some changes in its implementation. Notice that we are not trying to specify a new consensus
algorithm; we are only specifying a primitive that can be obtained by making simple modifica-
tions to existing ones [Cac09,Lam01,LM07,MA05,RMS10]. However, as described before, our
interface assumes that such algorithms are leader-driven and assume the partially synchronous
system model. Most Paxos-based protocols satisfy these conditions [Cac09, MA05, RMS10,
Zie04], and thus can be used with MOD-SMART. In this section we present an overview of
the required modifications on consensus protocols, without providing explanations for it. We
will come back to the modifications in Section 6.5.5, when it will become clear why they are
required.

The first change is related to the timers needed in the presence of partial synchrony. To our
knowledge, all published algorithms for such system model requires a timer to ensure liveness
despite leader failures [Cac09, Lam98, MA05]. The primitive still needs such timer; but it
will not be its responsibility to manage it. Instead, we invoke VP-Timeout to indicate to the
consensus that a timeout has occurred, and it needs to handle it.

The second change is related to the assumption of a leader-driven consensus. To our knowl-
edge, all the leader-driven algorithms in literature have deterministic mechanisms to select a
new leader when sufficiently many of them suspect the current one. These suspicions are trig-
gered by a timeout. A VP-Consensus implementation still requires the election of a new leader
upon a timeout. However, the next leader will be defined by MOD-SMART, and is passed as
an argument in the VP-Propose and VP-Timeout calls. Notice that these two requirements are
equivalent to assuming the consensus protocol requires a leader election module, just like Ω
failure detector, which is already used in some algorithms [MA05, Cac09].

The third change imposes the consensus algorithm to generate the cryptographic proof Γ to
fulfill the External Provability property. This proof can be generated by signing the messages
that can trigger a decision of the consensus2. An example of proofs would be a set of 2f + 1
signed COMMIT messages in PBFT [CL02] or d(n + f + 1)/2e signed COMMITPROOF
messages in Parametrized FaB [MA05].

Finally, we require each correct process running the consensus algorithm to verify if the
value being proposed by the leader satisfies γ before it is accepted. Correct processes must only
accept values that satisfy such predicate and discard others – thus fulfilling the External Validity
property.

6.5 The MOD-SMART Algorithm

In this section we describe MOD-SMART, our modular BFT state machine replication algo-
rithm. The protocol is divided into three sub-algorithms: client operation, normal phase, and
synchronization phase. The proofs that MOD-SMART satisfies the BFT state machine replica-
tion properties under our system model are presented in the Appendix.

2Due to the cost of producing digital signatures, the cryptographic proof can be generated with MAC vectors
instead of digital signatures, just like in PBFT [CL02].
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6.5.1 Overview
The general architecture of a replica is described in Figure 6.2. MOD-SMART is built on top
of a reliable and authenticated point-to-point communication substrate and a VP-Consensus
implementation. Such module may also use the same communication support to exchange mes-
sages among processes. MOD-SMART uses VP-Consensus to execute a sequence of consensus
instances, where in each instance i a batch of operations are proposed for execution, and the
same proposed batch is decided on each correct replica. This is the mechanism by which we
are able to achieve total order across correct replicas.

VP-Consensus

Reliable and Authenticated

Channels

Mod-SMaRt

Figure 6.2: MOD-SMART replica architecture. The reliable and authenticated channels layer
guarantee the delivery of point-to-point messages, while the VP-Consensus module is used to
establish agreement on the message(s) to be delivered in an consensus instance.

During normal phase, a log of the decided values is constructed based on the sequence of
VP-Consensus executions. Each log entry contains the decided value, the id of the consensus
instance where it was decided, and its associated proof. To simplify our design, MOD-SMART

assumes each correct replica can execute concurrently only the current instance i and previous
consensus instance i − 1. All correct replicas remain available to participate in consensus
instance i− 1, even if they are already executing i. This is required to ensure that if there is one
correct replica running consensus i − 1 but not i, there will be at least n − f correct replicas
executing i− 1, which ensures the delayed replica will be able to finish i− 1.

Due to the asynchrony of the system, it is possible that a replica receives messages for a
consensus instance j such that j > i (early message) or j < i − 1 (outdated message). Early
messages are stored in an out-of-context buffer for future processing while outdated messages
are discarded. We do not provide pseudo-code for this mechanism, relying on our communica-
tion layer to deliver messages in accordance with the consensus instances being executed.

This pretty much describes the normal phase of the protocol, which is executed in the ab-
sence of faults and in the presence of synchrony. When these conditions are not satisfied, the
synchronization phase might be triggered.

MOD-SMART makes use of the concept of regencies. This is equivalent to the view mech-
anism employed by PBFT and ViewStamped Replication [CL02,OL88], where a single replica
will be assigned as the leader for each regency. Such leader will be needed both in MOD-
SMART, and in the VP-Consensus module. During each regency, the normal case operation
can be repeated infinitely; during a synchronization phase, an unbounded (but finite) number of
regency changes can take place, since the system will eventually become synchronous.

The avoidance of executing a reliable multicast before starting the Byzantine consensus
may lead to two problems. First, a faulty leader may not propose messages from some client
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for ordering, making it starve. Second, a faulty client can send messages to all replicas but to
the current (correct) leader, making other replicas suspect it for not ordering messages from this
client. The solution for these problems is to suspect the leader only if the timer associated with
a message expires twice, making processes forward the pending message to the leader upon the
first expiration.

In case a regency change is needed (i.e., the leader is suspected), timeouts will be triggered
at all replicas and the synchronization phase will take place. During this phase, MOD-SMART

must ensure three properties: (1) a quorum of n − f replicas must have the pending messages
that caused the timeouts; (2) correct replicas must exchange logs to jump to the same consensus
instance; and (3) a timeout is triggered in this consensus, proposing the same leader at all correct
replicas (the one chosen during the regency change). Notice that MOD-SMART does not verify
consensus values to ensure consistency: all these checks are done inside of the VP-Consensus
module, after its timeout is triggered. This substantially simplifies faulty leader recovery by
breaking the problem in two self-contained blocks: the state machine replication layer ensures
all processes are executing the same consensus with the same leader while VP-Consensus deals
with the inconsistencies within a consensus.

6.5.2 Client Operation
Algorithm 10 describes how the client invokes an operation in MOD-SMART. When a client
wants to issue a request to the replicas, it sends a REQUEST message in the format specified
(line 6). This message contains the sequence number for the request and the command issued
by the client. The inclusion of a sequence number is meant to uniquely identify the command
(together with the client id), and prevent replay attacks made by an adversary that might be
sniffing the communication channel. A digital signature αc is appended to the message to prove
that such message was produced by client c. Although this signature is not required, its use
makes the system resilient against certain attacks [ACKL08, CWA+09].

The client waits for at least f + 1 matching replies from different replicas, for the same
sequence number (lines 9–11), and return the operation result.

Algorithm 10: Client-side protocol for client c.
1 Upon Init do
2 nextSeq = 0
3 Replies← ∅

4 Upon Invoke(op) do
5 nextSeq = nextSeq + 1
6 send 〈REQUEST, nextSeq, op〉αc to R

7 Upon reception of 〈REPLY, seq, rep〉 from r ∈ R do
8 Replies← Replies ∪ {〈r, seq, rep〉}
9 if ∃ seq, rep : |{〈∗, seq, rep〉 ∈ Replies}| > f

10 Replies← Replies\{〈∗, seq, rep〉}
11 return rep

6.5.3 Normal Phase
The normal phase is described in Algorithm 11, and its message pattern is illustrated in Figure
6.3. The goal of this phase is to execute a sequence of consensus instances in each replica. The
values proposed by each replica will be a batch of operations issued by the clients. Because
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each correct replica executes the same sequence of consensus instances, the values decided in
each instance will be the same in all correct replicas, and since they are batches of operations,
they will be totally ordered across correct replicas. All variables and functions used by the
replicas in Algorithms 11 and 12 are described in Table 6.1.

Reception of client requests are processed in line 1-2 through procedure RequestReceived
(lines 20–24). Requests are only considered by correct replicas if the message contains a
valid signature and the sequence number expected from this client (to avoid replay attacks),
as checked in line 21. If a replica accepts an operation issued by a client, it stores it in the
ToOrder set, activating a timer associated with the request (lines 22–24). Notice that a mes-
sage is also accepted if it is forwarded by other replicas (lines 18-19).

VP-Consensus

Client

R0

R1

R2

R3

VP-Propose VP-Decide

Figure 6.3: Communication pattern of MOD-SMART normal phase for f = 1. A correct client
send an operation to all replicas, a consensus instance is executed to establish total order, the
operation is executed, and a reply is sent to the client.

When the ToOrder set contains some request to be ordered, there is no consensus being
executed and the ordering of messages is not stopped (see next section), a sub-set of operations
Batch from ToOrder is selected to be ordered (lines 3 and 4). The predicate fair ensures that
all clients with pending requests will have approximately the same number of operations in a
batch to avoid starvation. The replica will then create a consensus instance, using Batch as the
proposed value (lines 5 and 6). The predicate γ given as an argument in VP-Propose should
return TRUE for a proposed value V if the following three conditions are met:

1. fair(V ) is TRUE (thus V is not an empty set);

2. Each message in V is either in the ToOrder set of the replica or is correctly signed and
contains the next sequence number expected from the client that issued the operation;

3. Each message in V contains a valid command with respect to the service implemented by
MOD-SMART.

When a consensus instance decides a value (i.e., a batch of operations) and produces its
corresponding proof (line 7), MOD-SMART will: store the batch of operations and its cryp-
tographic proof in each replica log (line 11); cancel the timers associated with each decided
request (line 14); deterministically deliver each operation contained in the batch to the applica-
tion (line 16); and send a reply to the client that requested the operation with the corresponding
response (line 17). Notice that if the algorithm is stopped (possibly because the replica is run-
ning a synchronization phase, see next section), decided messages are stored in a Decided set
(lines 8 and 9), instead of being executed.
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Table 6.1: Variables and functions used in Algorithms 11 and 12.
Variables

Name Initial Value Description
timeout INITIAL TIMEOUT Timeout for a message to be ordered.
maxBatch MAX BATCH Maximum number of operations that a batch may contain.
creg 0 Replica current regency.
nreg 0 Replica next regency.
currentCons -1 Current consensus being executed.
DecLog ∅ Log of all decided consensus instances and their proofs.
ToOrder ∅ Pending messages to be ordered.
Tmp ∅ Messages collected in a STOP messages.
Decided ∅ Decision values obtained during the synchronization phase.
stopped FALSE Indicates if the synchronization phase is activated.
lastSeq[1..∞] ∀c ∈ C : lastSeq[c]← 0 Last request sequence number used by each client c.
ChangeReg[1..∞] ∀g ∈ N : ChangeReg[g]← ∅ Replicas that want a change to regency g.
Data[1..∞] ∀g ∈ N : Data[g]← ∅ Signed STOPDATA messages collected by the leader during change to re-

gency g.
Sync[1..∞] ∀g ∈ N : Sync[g]← ∅ Set of Logs sent by the leader to all replicas during regency change g.

Functions
Interface Description
activateTimers(Reqs, timeout) Creates a timer for each request in Reqs with value timeout.
cancelTimers(Reqs) Cancels the timer associated with each request in Reqs.
execute(op) Makes the application execute operation op, returning the result.
validSig(req) Returns TRUE if request eq is correctly signed.
noGaps(Log) Returns TRUE if sequence of consensus Log does not contain any gaps.
validDec(decision) Returns TRUE if decision contains a valid proof.
hCons(Log) Returns the consensus instance from Log with highest id.
hLog(Logs) Returns the largest log contained in Logs.

Algorithm 11: Normal phase at replica r.
1 Upon reception of m = 〈REQUEST, seq, op〉αc from c ∈ C do
2 RequestReceived (m)

3 Upon (toOrder 6= ∅) ∧ (currentCons = −1) ∧ (¬stopped) do
4 Batch ← X ⊆ ToOrder : |X| ≤ maxBatch ∧ fair(X)
5 currentCons← hCons(DecLog).i+ 1
6 VP-Propose (currentCons, creg mod R, γ,Batch)

7 Upon VP-Decide〈i,Batch,Proof 〉 do
8 if stopped
9 Decided← Decided ∪ {〈i,Batch,Proof 〉}

10 else
11 DecLog ← DecLog ∪ {〈i,Batch,Proof 〉}
12 if currentCons = i then currentCons← −1

// Deterministic cycle
13 foreach m = 〈REQUEST, seq, op〉αc ∈ Batch do
14 cancelTimers ({m})
15 ToOrder ← ToOrder\{m}
16 rep← execute(op)
17 send 〈REPLY, seq, rep〉 to c

18 Upon reception of 〈FORWARDED,M〉 from r′ ∈ R do
19 ∀m ∈M : RequestReceived (m)

20 Procedure RequestReceived(m)
21 if lastSeq[c] + 1 = m.seq ∧ validSig(m)
22 ToOrder ← ToOrder ∪ {m}
23 if ¬stopped then activateTimers({m}, timeout)
24 lastSeq[c]← m.seq

6.5.4 Synchronization Phase

The synchronization phase is described in Algorithm 12, and its message pattern is illustrated in
Figure 6.4. This phase aims to perform a regency change and force correct replicas to synchro-
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nize their states and go to the same consensus instance. It occurs when the system is passing
through a period of asynchrony, or there is a faulty leader that does not deliver client requests
before their associated timers expire. This phase is started when a timeout event is triggered for
a sub-set M of pending messages in ToOrder (line 1).

When the timers associated with a set of requests M are triggered for the first time, the
requests are forwarded to all replicas (lines 2 and 3). This is done because a faulty client may
have sent its operation only to some of the replicas, therefore starting a consensus in less than
n − f of them (which is not sufficient to ensure progress, and therefore will cause a timeout
in these replicas). This step forces such requests to reach all correct replicas, without forcing a
leader change.

If there is a second timeout for the same request, the replica starts a regency change (line 4).
When a regency change begins in a replica, the processing of decisions is stopped (line 7), the
timers for all pending requests are canceled (line 9) and a STOP message is sent to all replicas
(line 10). This message informs other replicas that a timeout for a given set of requests has
occurred. When a replica receives more than f STOP messages requesting the next regency
to be started (line 15), it begins to change its current regency using the valid messages in Tmp
(line 16). This procedure ensures that a correct replica starts a view change as soon as it knows
that at least one correct replica started it, even if no timeout was triggered locally.

When a replica receives more than 2f STOP messages, it will install the next regency
(lines 19 and 20). It is necessary to wait at least 2f + 1 messages to make sure that eventually
all correct replicas will install the next regency. Following this, the timers for all operations in
the ToOrder set will be re-activated and a new leader will be elected (lines 21–23).

After the next regency is installed, it is necessary to force all replicas to go to the same
state (i.e., synchronize their logs and execute the logged requests) and, if necessary, start the
consensus instance. To accomplish this, all replicas send a STOPDATA message to the new
regency leader, providing it with their decision log (line 23). As long as the proof associated
with each decided value is valid and there is no consensus instance missing, the leader will
collect these messages (lines 26 and 27). This is necessary because it proves that each consensus
instances has decided some batch of operations (which will be important later). When at least
n − f valid STOPDATA messages are received by the leader, it will send a SYNC message
to all replicas, containing all the information gathered about their decided instances in at least
n− f replicas (lines 28 and 29).

Client

R0

R1

R2

R3

STOP STOP-DATA SYNC

VP-Consensus VP-Consensus

READ COLLECT PROPOSE

TIMEOUT

TIMEOUT

VP-TIMEOUT VP-DECIDE

TIMEOUT

TIMEOUT

Figure 6.4: Communication steps of synchronization phase for f = 1. This phase is started
when the timeout for a message is triggered for a second time, and can run simultaneously with
VP-Consensus. Dashed arrows correspond to messages of the VP-Consensus protocol.

When a replica receives a SYNC message, it executes the same computations performed by
the leader (lines 31–35) to verify if the leader has gathered and sent valid information. If the
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leader is correct, after receiving the same SYNC message, all correct replicas will choose the
same highest log (line 36) and resume decision processing (line 37). All correct replicas will
evolve into the same state as they deliver the value of each consensus instance that was already
decided in other replicas (lines 40 and 41) and either trigger a timeout in the VP-Consensus
being executed (line 42 and 43) or make everything ready to start a new consensus instance
(line 44).

6.5.5 Reasoning about the Consensus Modifications
As we mentioned in Section 6.4.1, the VP-Consensus primitive does not need to start and stop
timers, since our state machine algorithm already does that. Due to this, the VP-Consensus
module only needs to be notified by the state machine algorithm when it needs to handle a
timeout. This is done by invoking VP-Timeout for a consensus i, at the end of a synchroniza-
tion phase (line 43 of Algorithm 12). The VP-Timeout operation also receives as an argument
the new leader the replica should rely on. This is needed because we assume a leader-driven
consensus, and such algorithms tend to elect the leader in a coordinated manner. But when a
delayed replica jumps from an old consensus to a consensus i during the synchronization phase,
it will be out-of-sync with respect to the current regency, when compared with the majority of
replicas that have already started consensus i during the normal phase. For this reason, we need
to explicitly inform VP-Consensus about the new leader.

Let us now discuss why the External Validity is required for MOD-SMART. The classic
Validity property would be sufficient in the crash fault model, because processes are assumed
to fail only by stopping, and will not propose invalid values; however, in the Byzantine fault
model such behavior is permitted. A faulty process may propose an invalid value, and such
value might be decided. An example of such value can be an empty batch. This is a case that
can prevent progress within the algorithm. By forcing the consensus primitive to decide a value
that is useful for the algorithm to keep making progress, we can prevent such scenario from
occurring, and guarantee liveness as long as the execution is synchronous.

Finally, it should now be clear why the External Provability property is necessary: in the
Byzantine fault model, replicas can lie about which consensus instance they have actually fin-
ished executing, and also provide a fake/corrupted decision value if a synchronization phase is
triggered. By forcing the consensus primitive to provide a proof, we can prevent faulty repli-
cas from lying. The worst thing a faulty replica can do is to send old proofs from previous
consensus. However, since MOD-SMART requires at least n − f logs from different replicas,
there will be always more than f up-to-date correct replicas that will provide their most recent
consensus decision.

6.6 Optimizations
In this section we discuss a set of optimizations for efficient MOD-SMART implementation.
The first important optimization is related with bounding the size of the decision log. In MOD-
SMART, such log can grow indefinitely, making it inappropriate for real systems. To avoid this
behavior we propose the use of checkpoints and state transfer. Checkpoints would be performed
periodically in each replica: after some number D of decisions are delivered, the replica request
the state from the application, save it in memory or disk, and clear the log up to this point3. If

3Notice that, differently from the PBFT checkpoint protocol [CL02], MOD-SMART checkpoints are local
operations.
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Algorithm 12: Synchronization phase at replica r.
1 Upon timeout for requests M do
2 Mfirst ← {m ∈M : first timeout of m}
3 if Mfirst 6= ∅ then send 〈FORWARDED,M〉 to R
4 else if M\Mfirst 6= ∅ then StartRegChange (M\Mfirst)

5 Procedure StartRegChange(M )
6 if nreg = creg
7 stopped← TRUE
8 nreg ← creg + 1
9 cancelTimers(ToOrder) // Cancel all timers

10 send 〈STOP, nreg,M〉 to R

11 Upon reception of 〈STOP, reg,M〉 from r′ ∈ R do
12 if reg = creg + 1
13 Tmp← Tmp ∪M
14 ChangeReg[reg]← ChangeReg[reg] ∪ {r′}
15 if |ChangeReg[reg]| > f
16 M ′ ← {m ∈ Tmp : m.seq > lastSeq[m.c]∧ validSig(m)}
17 StartRegChange (M ′)
18 ToOrder ← ToOrder ∪M ′

19 if |ChangeReg[reg]| > 2f ∧ nreg > creg
20 creg ← nreg
21 activateTimers (ToOrder , timeout)
22 leader ← creg mod n
23 send 〈STOPDATA, reg,DecLog〉αr to leader

24 Upon recept. of m = 〈STOPDATA, creg, Log〉αr′ from r′ ∈ R do
25 if creg mod n = r
26 if (noGaps(Log)) ∧ (∀d ∈ Log : validDec(d))
27 Data[creg]← Data[creg] ∪ {m}

28 if |Data[creg]| ≥ n− f
29 send 〈SYNC, creg,Data[creg]〉 to R

30 Upon reception of 〈SYNC, creg,Proofs〉 from r′ ∈ R do
31 if (nreg = creg) ∧ (creg mod n = r′) ∧ ProofCons[creg] = ∅
32 foreach 〈STOPDATA, creg, Log〉αr′′ ∈ Proofs do
33 if (noGaps(Log)) ∧ (∀d ∈ Log : validDec(d))
34 Sync[creg]← Sync[creg] ∪ {〈r′′, Log〉}

35 if |Sync[creg]| ≥ n− f
36 Log ← hLog(Sync[creg] ∪ {〈r,DecLog〉}) ∪Decided
37 stopped← FALSE
38 Decided← ∅
39 Tmp← ∅

// Deterministic cycle
40 foreach 〈i′, B, P 〉 ∈ Log : i′ > hCons(DecLog).i do
41 Trigger VP-Decide〈i′, B, P 〉

42 if currentCons = hCons(Log).i+ 1
43 VP-Timeout (currentCons, creg mod R)

44 else currentCons = −1
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in the end of a synchronization phase a replica detects a gap between the latest decision of its
own log, and the latest decision of the log it chose, it invokes a state transfer protocol. Such a
protocol would request from the other replicas the state that was saved in their latest checkpoint.
Upon the reception of f + 1 matching states from different replicas, the protocol would force
the application to install the new state, and resume execution.

The second optimization aims to avoid the computational cost of generating and verifying
digital signatures in the protocol critical path: client requests and VP-Consensus proofs (to
satisfy External Provability) can be signed using MAC vectors instead of digital signatures, as
done in PBFT. However, in the case of client requests, this results in a less robust state machine
implementation vulnerable to certain performance degradation attacks [ACKL08, CWA+09].

If we use VP-Consensus based on a Byzantine consensus algorithm matching the generaliza-
tion given in [Lam01], and employ the optimizations just described, MOD-SMART matches the
message pattern of PBFT in synchronous executions with correct leaders, requiring thus same
number of communication steps and cryptographic operations. This is exactly what was done
in BFT-SMART [LaS10], an implementation of optimized MOD-SMART using the Byzantine
consensus protocol described in [Cac09].

6.7 Related Work

Byzantine Fault Tolerance has gained wide-spread interest among the research community ever
since Castro and Liskov showed that state machine replication can be practically accomplished
for such fault model [CL02]. Their algorithm, best known as PBFT (Practical Byzantine Fault
Tolerance) requires 3f + 1 replicas to tolerate f Byzantine faults and is live under the partial
synchronous system model [DLS88] (no synchrony is needed for safety). PBFT is considered
the baseline for all BFT protocols published afterwards.

One of the protocols published following PBFT was Query/Update (Q/U) [AEMGG+05], an
optimistic quorum-based protocol that presents better throughput with larger number of replicas
than other agreement-based protocols. However, given its optimistic nature, Q/U performs
poorly under contention, and requires 5f + 1 replicas. To overcome these drawbacks, Cowling
et al. proposed HQ [CML+06], a hybrid Byzantine fault-tolerant SMR protocol similar to Q/U
in the absence of contention. However, unlike Q/U, HQ only requires 3f + 1 replicas and relies
on PBFT to resolve conflicts when contention among clients is detected. Following Q/U and
HQ, Kotla et al. proposed Zyzzyva [KAD+07b], a speculative Byzantine fault tolerant protocol,
which is considered to be one of the fastest BFT protocol up to date. It is worth noticing that all
these protocols tend to be more efficient than PBFT because they avoid the complete execution
of a consensus protocol in the expected normal case, relying on it only to solve exceptional
cases.

Guerraoui et al. [GKQV10] proposed a well-defined modular abstraction unifying the opti-
mizations proposed by previous protocols through composition, making it easy to design new
protocols that are optimal in well-behaved executions (e.g., synchrony, absence of contention,
no faults), but revert to PBFT if such nice behavior does not hold. However, the modularity
proposed is at state machine replication level, in the sense that each module provides a way to
totally order client requests under certain conditions, and does not suggest any clear separation
between total order broadcast and consensus.

The relationship between total order broadcast and consensus for the Byzantine fault model
is studied in many papers. Cachin et al. [CKPS01] show how to obtain total order broadcast
from consensus provided that the latter satisfy the External Validity property, as needed with
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MOD-SMART. Their transformation requires an echo broadcast plus public-key signature,
adding thus at least two communication steps (plus the cryptography delay) to the consensus
protocol. Correia et al. [CNV06] proposed a similar reduction without relying on public-key sig-
natures, but using a reliable broadcast and a multi-valued consensus that satisfies a validity prop-
erty different from Cachin’s. The resulting transformation adds at least three communication
steps to the consensus protocol in the best case. In a very recent paper, Milosevic et al. [MHS11]
take in consideration many variants of the Byzantine consensus Validity property proposed in
the literature, and show which of them are sufficient to implement total order broadcast. They
also prove that if a consensus primitive satisfy the Validity property proposed in [DH08], then
it is possible to obtain a reduction of total order broadcast to consensus with constant time
complexity – which is not the case of the previous reductions in [CKPS01, CNV06]. How-
ever, their transformation still requires a reliable broadcast, and thus adds at least three com-
munication steps to the consensus protocol. Doudou et al. [DGG05] show how to implement
BFT total order broadcast with a weak interactive consistency (WIC) primitive, in which the
decision comprises a vector of proposed values, in a similar way to a vector consensus (see,
e.g., [CNV06]). They argue that the WIC primitive offers better guarantees than a Byzantine
consensus primitive, eliminating the issue of the Validity property of consensus. The overhead
of this transformation is similar to [CKPS01]: echo broadcast plus public-key signature.

All these works provide reductions from total order broadcast to Byzantine consensus by
constructing a protocol stack that does not take into account the implementation of the consen-
sus primitive; they only specify which properties such primitive should offer — in particular,
they require some strong variant of the Validity property. MOD-SMART requires both a spe-
cific kind of Validity property, as well as a richer interface, as defined by our VP-Consensus
abstraction. The result is a transformation that adds at most one communication step to imple-
ment total order broadcast, thus matching the number of communication steps of PBFT at the
cost of using such gray-box consensus abstraction.

There are many works dedicated to generalize the algorithms of consensus. Lampson pro-
posed an abstract Paxos algorithm, from which several other versions of Paxos can be derived
(e.g., Byzantine, classic, and disk paxos) [Lam01]. Another generalization of Paxos-style pro-
tocols is presented in [LM07], where the protocol is reduced to a write-once register satisfying
a special set properties. Implementations of such register are given for different system and fail-
ures models. Rütti et al. extends these works in [RMS10], where they propose a more generic
construction than in [Lam01], and identify three classes of consensus algorithms. Finally,
Cachin proposes a simple and elegant modular decomposition of Paxos-like protocols [Cac09]
and shows how to obtain implementations of consensus tolerating crash or Byzantine faults
based in the factored modules. All these works aim to modularize Paxos either for implement-
ing consensus [Cac09, LM07, RMS10] or state machine replication [Lam01] under different
assumptions; our work, on the other hand, aims at using a special kind of consensus to obtain a
BFT state machine replication.

6.8 Conclusion

Despite the existence of several works providing efficient BFT state machine replication, none
of them encapsulate the agreement within a consensus primitive, being thus monolithic. On the
other hand, all published modular protocol stacks implementing BFT total order broadcast from
Byzantine consensus require a number of communication steps greater than all practical BFT
SMR. We bridge this gap by presenting MOD-SMART, a latency- and resiliency-optimal BFT
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state machine replication algorithm that achieves modularity using a well-defined consensus
primitive. To achieve such optimality, we introduce the Validated and Provable Consensus
abstraction, which can be implemented by making simple modifications on existing consensus
protocols. The protocol here presented is currently in use in BFT-SMART, an open-source BFT
SMR library [LaS10].
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Chapter 7

Extensible ZooKeeper

Chapter Authors:
Rüdiger Kapitza (TUBS) and Tobias Distler (FAU).

7.1 Introduction

Large-scale applications running on today’s cloud infrastructures may comprise a multitude of
processes distributed over a large number of nodes. Given these circumstances, fault-tolerant
coordination of processes, although being an essential factor for the correctness of an appli-
cation, is difficult to achieve. As a result, and to facilitate their design, fewer and fewer of
such applications implement coordination primitives themselves, instead they rely on external
coordination services. Large-scale distributed storage systems like BigTable [CDG+06] and
HBase [Apa], for example, do not provide means for leader election but perform this task using
the functionality of Chubby [Bur06] and ZooKeeper [HKJR10], respectively.

However, instead of implementing more complex services (e. g., leader election) directly,
state-of-the-art coordination middleware systems only provides a basic set of low-level func-
tions including file-system–like access to key-value storage for small chunks of data, a notification-
based callback mechanism, and rudimentary access control. On the one hand, this approach
has several benefits: Based on this low-level functionality, more complex services and data
structures for the coordination of application processes (e. g., distributed queues) can be im-
plemented. Furthermore, the fact that state-of-the-art coordination services are replicated frees
application developers from the need to deal with fault-tolerance–related problems, as the co-
ordination service does not represent a single point of failure. On the other hand, this flexibility
comes at a price: With more complex services being implemented at the coordination-service
client (i. e., as part of the distributed application), reusability is limited and maintenance be-
comes more difficult. In addition, there is a performance overhead for cases in which a complex
operation requires multiple remote calls to the coordination service. We have seen such prob-
lem in the course of implementing FT-BPEL that externalizes the coordination of the active
replication of businesses process to a coordination service (i.e., ZooKeeper). As we show in
our evaluation, this problem gets worse the more application processes access a coordination
service concurrently.

To address the disadvantages of current coordination services and improve the the perfor-
mance of FT-BPEL, we propose an extendable coordination service. In contrast to existing
solutions, in our approach, more complex services and data structures are not implemented at
the client side but within modules (“extensions”) that are executed at the servers running the co-
ordination service. As a result, implementations of coordination service clients can be greatly
simplified. In fact, in most usage scenarios, only a single remote call to the coordination service
is required.
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In our service, an extension is realized as a sequence of regular coordination service op-
erations that are processed atomically. This way, an extension can benefit from the flexibility
offered by the low-level API of a regular coordination service while achieving good perfor-
mance under contention.

Besides enhancing the implementation of abstractions already used by current distributed
applications, extensions also allow programmers to introduce new features that cannot be pro-
vided based on the functionality of traditional coordination services: By registering custom ex-
tensions, for example, it is possible to integrate assertions into our extendable coordination ser-
vice that perform sanity checks on input data, improving protection against faulty clients. Fur-
thermore, extensions may be used to execute automatic conversion routines for legacy clients,
supporting scenarios in which the format of the coordination-related data managed on behalf of
an application differs across program versions.

In particular, this chapter makes the following three contributions: First, it proposes a coor-
dination service whose functionality can be enhanced dynamically by introducing customized
extensions (see Section 7.3). Second, it provides details on our prototype of an extendable co-
ordination service based on ZooKeeper [HKJR10], a coordination middleware widely used in
industry (see Section 7.4). Third, it presents two case studies, a priority queue and a quota-
enforcement service, illustrating both the flexibility and efficiency of our approach (see Sec-
tion 7.5). In addition, Section 7.2 gives background on state-of-the-art coordination services,
Section 7.6 discusses related work, and Section 7.7 concludes.

7.2 Background

This section provides background information on the basic functionality of a coordination ser-
vice and presents an example of a higher-level abstraction built on top of it.

7.2.1 Coordination Services

Despite their differences in detail, coordination services like Chubby [Bur06] and ZooKeeper [HKJR10]
expose a similar API to the client (i. e., a process of a distributed application, see Figure 7.1).
Information is stored in nodes which can be created (create1) and deleted (delete) by a
client. Furthermore, there are operations to store (setData) and retrieve (getData) the data
assigned to a node. In general, there are two different types of nodes: ephemeral nodes are
automatically deleted when the session of the client who created the node ends (e. g., due to a
fault); in contrast, regular nodes persist after the end of a client session.

Besides managing data, current coordination services provide a callback mechanism to in-
form clients about certain events including, for example, the creation or deletion of a node, or
the modification of the data assigned to a node (see Figure 7.1). On the occurrence of an event
a client has registered a watch for, the coordination service performs a callback notifying the
client about the event. Using this functionality, a client is, for example, able to implement fail-
ure detection of another client by setting a deletion watch on an ephemeral node created by the
client to monitor.

1Note that we use the ZooKeeper terms here as our prototype is based on this particular coordination service.
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Figure 7.1: Callback mechanism usage example: An application process p1 registers a data
watch on a node; when the node’s data is updated, the coordination service notifies p1 about the
modification.

7.2.2 Usage Example: Priority Queue
Based on the low-level API provided by the coordination service, application programmers can
implement more complex data structures to be used for the coordination of processes. Figure 7.2
shows an example implementation of a distributed priority queue (derived from the queue im-
plementation in [Zoo]) that can be applied to exchange data between two processes running on
different machines: a producer and a consumer. New elements are added to the queue by the
producer calling insert; the element with the highest priority is dequeued by the consumer
calling remove.

To insert an element b into the queue, the producer creates a new node and sets its data2 to
b (L. 8). The priority p of the element is thereby encoded in the node name by appending p to
a default name prefix (L. 5). To remove the head element of the queue, the consumer queries
the coordination service to get the names of all nodes matching the default name prefix (L. 13).
From the result set of node names, the consumer then locally determines the head of the queue
by selecting the node name indicating the highest priority (L. 14). Knowing the head node, the
consumer is able to retrieve its data from the coordination service (L. 17) before removing the
node from the queue (L. 18).

Note that the priority-queue implementation in Figure 7.2 has two major drawbacks: First,
while the insert operation involves only a single remote call to the coordination service (L. 8),
the remove operation requires three remote calls (L. 13, 17, and 18), resulting in additional la-
tency. Second, the implementation does not scale for multiple consumer processes: In order to
prevent different consumers from returning the same element, entire remove operations would
either have to be executed sequentially (which is difficult to achieve when consumer processes
run on different machines) or they would have to be implemented optimistically; that is, if the
delete call (L. 18) aborts due to a concurrent remove operation already having deleted the
designated head node, a consumer must retry its remove (omitted in Figure 7.2). In Sec-
tion 7.5.1, we show that the performance of the optimistic variant suffers from contention when
multiple consumer processes access the queue concurrently.

7.3 Enhancing Coordination
The priority-queue example discussed in Section 7.2.2 illustrates the main disadvantage of state-
of-the art coordination services: With implementations of higher-level data structures and ser-

2The ZooKeeper API allows a client to assign data to a node at creation time. Otherwise an additional
setData call would be necessary for setting the node data.
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vices being a composition of multiple low-level remote calls to the coordination service, per-
formance and scalability become a major concern. We address this issue with an extendable
coordination service that provides means to implement additional functionality directly at the
server.

7.3.1 Basic Approach
To add functionality to our coordination service, programmers write extensions that are in-
tegrated via software modules. Depending on the mechanism an extension operates on, we
distinguish between the following three types:

• During integration, a node extension registers a virtual node through which the extension
will be accessible to the client. In contrast to a regular node, client operations invoked
on a virtual node (or one of its sub nodes) are not directly executed by the coordination-
service logic; instead, such requests are intercepted and redirected to the corresponding
node extension.

• A watch extension may be used to customize/overwrite the behavior of the coordination
service for a certain watch. Such an extension is executed each time a watch event of the
corresponding type occurs.

• A session extension is triggered at creation and termination of a client session and is
therefore suitable to perform initialization and cleanup tasks.

Note that an extension module providing additional functionality may be a composition of mul-
tiple extensions of possibly different types.

In general, an extension is free to use the entire API provided by the coordination service.
As a consequence, a stateful extension, for example, is allowed to create own regular nodes to
manage its internal state. Furthermore, a complex node extension, for example, may translate

1 CoordinationService cs = establish connection;

3 void insert(byte[] b, Priority p) {
4 /∗ Encode priority in node name. ∗/
5 String nodeName = "/node-" + p;

7 /∗ Create node and set its data to b. ∗/
8 cs.create(nodeName, b);
9 }

11 byte[] remove() {
12 /∗ Find the node with the highest priority. ∗/
13 String[] nodes = get node names from cs;
14 String head = node from nodes

with highest priority according to its name;

16 /∗ Get node data and remove node. ∗/
17 byte[] b = cs.getData(head);
18 cs.delete(head);
19 return b;
20 }

Figure 7.2: Pseudo-code implementation of a priority-queue client (ZooKeeper): an element is
represented by a node, the priority is encoded in the node name.
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an incoming client request into a composite request comprising a sequence of low-level oper-
ations. Note that, in such a case, our coordination service guarantees that low-level operations
belonging to the same composite request will be executed atomically (see Section 7.4.3).

7.3.2 Usage Example: Enhanced Priority Queue

Figure 7.3 shows how the implementation of the priority-queue client from Figure 7.2 can be
greatly simplified by realizing the queue as a node extension that is accessed via a virtual node
/queue. In contrast to the traditional implementation presented in Section 7.2.2, our extension
variant only requires a single remote call for the removal of the head element from the queue.

When a client inserts an element into the queue by creating a sub node of /queue (L. C5),
the request is forwarded to the queue extension, which in turn processes it without any modifica-
tions (L. E5); that is, the extension creates the sub node as a regular node. To dequeue the head
element, a client issues a getData call to a (non-existent) sub node /queue/next (L. C10).
On the reception of a getData call to this particular sub-node name, the extension removes
the head element and returns its data to the client (L. E10-E17).

Although the steps executed during the dequeuing of the head element are identical to
the corresponding procedure in the traditional priority-queue implementation (L. 12-19 in Fig-
ure 7.2), there is an important difference: the calls for learning the node names of queue el-
ements (L. E11), for retrieving the data of the head element (L. E15), and for deleting the
head-element node (L. E16) are all local calls with low performance overhead. Furthermore,
with these three calls being processed atomically, the implementation does not suffer from con-
tention, as shown in Section 7.5.1.

7.4 Extendable ZooKeeper

In this section, we present details on the implementation of Extendable ZooKeeper (EZK), our
prototype of an extendable coordination service, which is based on ZooKeeper [HKJR10].

7.4.1 Overview

EZK relies on actively-replicated ZooKeeper for fault tolerance. At the server side, EZK (like
ZooKeeper) distinguishes between client requests that modify the state of the coordination ser-
vice (e. g., by creating a node) and read-only client requests that do not (e. g., as they only
read the data of a node). A read-only request is only executed on the server replica that has
received the request from the client. In contrast, to ensure strong consistency, a state-modifying
request is distributed using an atomic broadcast protocol [JRS11] and then processed by all
server replicas.

For EZK, we introduce an extension manager component into each server replica which is
mainly responsible for redirecting the control and data flow to the extensions registered. The
extension manager performs different tasks for different types of extensions (see Section 7.3.1):
On the reception of a client request, the extension manager checks whether the request accesses
the virtual node of a node extension and, if this is the case, forwards the request to the corre-
sponding extension. This way, a node extension is able to control the behavior of an incoming
request before the request had any impact on the system. In addition, the extension manager
intercepts watch events and, if available, redirects them to the watch extensions handling the
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Client Implementation
C1 CoordinationService cs = establish connection;

C3 void insert(byte[] b, Priority p) {
C4 /∗ Create node and set its data to b. ∗/
C5 cs.create("/queue/node-" + p, b);
C6 }

C8 byte[] remove() {
C9 /∗ Remove head node and return its data. ∗/

C10 return cs.getData("/queue/next");
C11 }

Coordination Service Extension Implementation
E1 CoordinationServiceState local = local state;

E3 void create(String name, byte[] b) {
E4 /∗ Process request without modifications. ∗/
E5 local.create(name, b);
E6 }

E8 byte[] getData(String name) {
E9 if("/queue/next".equals(name)) {

E10 /∗ Find node with the highest priority. ∗/
E11 String[] nodes = get node names from local;
E12 String head = node from nodes

with highest priority according to its name;

E14 /∗ Get node data and remove node. ∗/
E15 byte[] b = local.getData(head);
E16 local.delete(head);
E17 return b;
E18 } else {
E19 /∗ Return data of regular node. ∗/
E20 return local.getData(name);
E21 }
E22 }

Figure 7.3: Pseudo-code implementation of a priority queue in our extendable coordination
service: the extension is represented by a virtual node /queue.

specific events, allowing the extension to customize the callback to the client. Finally, the ex-
tension manager also monitors ZooKeeper’s session tracker and notifies the session extensions
registered about the start and end of client sessions.

7.4.2 Managing an Extension
For extension management in EZK we provide a built-in management extension that is acces-
sible through a virtual node /extensions. To register a custom extension, a client creates
a sub node of /extensions and assigns all necessary configuration information as data to
this management node. For a node extension, for example, the configuration information in-
cludes the name of the virtual node through which the extension can be used by a client, and
a Java archive containing the extension code to execute when a request accesses this virtual
node. Furthermore, a client is able to provide an ephemeral flag indicating whether the exten-
sion should be automatically removed by EZK when the session of the client who registered the
extension ends; apart from that, an extension can always be removed by explicitly deleting its
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Figure 7.4: Throughput (i. e., successful dequeue operations) for different priority-queue im-
plementations for different numbers of consumer processes.

corresponding management node.
When EZK’s management extension receives a request from a client to register an extension,

it verifies that the extension code submitted is a valid Java archive, and then distributes the re-
quest to all server replicas. By treating the request like any other state-modifying request, EZK
ensures that all server replicas register the extension in a consistent manner. After registration
is complete the extension manager starts to make use of the extension.

7.4.3 Atomic Execution of an Extension

Traditional implementations of complex operations comprising multiple remote calls to the
coordination service (as, for example, removing the head element of a priority queue, see Sec-
tion 7.2.2) require the state they operate on not to change between individual calls. As a conse-
quence, such an operation may be aborted when two clients modify the same node concurrently,
resulting in a significant performance penalty (see Section 7.5.1). We address this problem in
EZK by executing complex operations atomically.

In ZooKeeper, each client request modifying the state of the coordination service is trans-
lated into a corresponding transaction which is then processed by all server replicas. In the
default implementation a single state-modifying request leads to a single transaction. To sup-
port more complex operations, we introduce a new type of transaction in EZK, the container
transaction, which may comprise a batch of multiple regular transactions. EZK guarantees that
all transactions belonging to the same container transaction will be executed atomically on all
server replicas, without interfering with other transactions. By including all transactions of the
same extension-based operation in the same container transaction, EZK prevents concurrent
state changes during the execution of an extension.

7.5 Case Studies

In this section, we evaluate the priority-queue extension introduced in Section 7.3.2. Further-
more, we present an additional example of how extensions can be used in our coordination
service to efficiently provide more complex functionality. All experiments are conducted us-
ing a coordination-service cell comprising five server replicas (i. e., a typical configuration for
ZooKeeper), each running in a virtual machine in Amazon EC2 [ec2]; coordination-service
clients are executed in an additional virtual machine. As in practice distributed applications
usually run in the same data center as the coordination service they rely on [Bur06], we allocate
all virtual machines in the same EC2 region (i. e., Europe).
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1 CoordinationService cs = establish connection;

3 void allocate(int amount) {
4 do {
5 /∗ Determine free quota and node version. ∗/
6 (int free, int version) = cs.getData("/memory");

8 /∗ Retry if there is not enough quota. ∗/
9 if(free < amount) sleep and continue;

11 /∗ Calculate and try to set new free quota. ∗/
12 cs.setData("/memory", free - amount, version);
13 } while(setData call aborted unsuccessfully);
14 }

Figure 7.5: Pseudo-code implementation of a quota-server client in ZooKeeper: the current
amount of free quota is stored in the data of /memory; to release quota, allocate is called
with a negative amount.

7.5.1 Priority Queue
Our first case study compares a traditional priority-queue implementation (see Section 7.2.2)
against our extension-based EZK variant (see Section 7.3.2). For both implementations, we
measure the number of successful dequeue operations per second for a varying number of con-
sumer processes accessing the queue concurrently. At all times during the experiments, we
ensure that there are enough producer processes to prevent the queue from running empty. As a
result, no dequeue operation will fail due to lack of items to remove.

Figure 7.4 presents the results of the experiments: For a single consumer process, the prior-
ity queues achieve an average throughput of 139 (ZooKeeper variant) and 195 (EZK) dequeue
operations per second, respectively. The difference in performance is due to the fact that in
the ZooKeeper implementation the remove operation comprises three (i. e., two read-only and
one state-modifying) remote calls to the coordination service, whereas the extension-based EZK
variant requires only a single (state-modifying) remote call.

Our results also show that for multiple consumer processes the ZooKeeper priority queue
suffers from contention: Due to its optimistic approach a dequeue operation may be aborted
when issued concurrently with another dequeue operation (see Section 7.2.2), causing the suc-
cess rate to decrease for an increasing number of consumers. In contrast, dequeue operations
in our EZK implementation are executed atomically and therefore always succeed on a non-
empty queue. As a result, the extension-based EZK variant achieves better scalability than the
traditional priority queue.

7.5.2 Quota Enforcement Service
Our second case study is a fault-tolerant quota enforcement service guaranteeing upper bounds
for the overall resource usage (e. g., number of CPUs, memory usage, network bandwidth) of a
distributed application [BDK12]. In order to enforce a global quota, each time an application
process wants to dynamically allocate additional resources, it is required to ask the quota service
for permission. The quota service only grants this permission in case the combined resource
usage of all processes of the application does not exceed a certain threshold; otherwise the
allocation request is declined and the application process is required to wait until additional
free quota becomes available, for example, due to another process terminating and therefore
releasing its resources.
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Traditional Implementation

Figure 7.5 illustrates how to implement a quota service based on a state-of-the-art coordina-
tion service. In this approach, information about free resource quotas (in the example: the
amount of free memory available) is stored in the data assigned to a resource-specific node (i. e.,
/memory). To request permission for using additional quota, an application process invokes
the quota client’s allocate function indicating the amount of quota to be allocated (L. 3).
Due to the traditional coordination service only providing functionality to get and set the data
assigned to a node, but lacking means to modify node data based on its current value, the quota
client needs to split up the operation into three steps: First, the client retrieves the data assigned
to /memory (L. 6), thereby learning the application’s current amount of free quota. Next, the
quota client checks whether the application has enough free quota available to grant the per-
mission (L. 9). If this is the case, the client locally computes the new amount of free quota and
updates the corresponding node data at the coordination service (L. 12).

Note that the optimistic procedure described above is only correct as long as the data as-
signed to /memory does not change between the getData (L. 6) and setData (L. 12) re-
mote calls. However, as different quota clients could invoke allocate for the same resource
type concurrently, this condition may not always be justified. To address this problem, state-of-
the-art coordination services like Chubby [Bur06] and ZooKeeper [HKJR10] use node-specific
version counters (which are incremented each time the data of a node is reassigned) to provide
a setData operation with compare-and-swap semantics. Such an operation only succeeds if
the current version matches an expected value (L. 12), in this case, the version number that cor-
responds to the contents the quota client has retrieved (L. 6). If the two version numbers differ,
the setData operation fails and the quota client retries the entire allocation procedure (L. 13).

Extension-based Implementation

In contrast to the traditional implementation presented in Section 7.5.2 where remote calls is-
sued by a quota client may be aborted due to contention, allocation requests in our extension-
based EZK variant of the quota enforcement service (see Figure 7.6) are always granted when
enough free quota is available. Here, to issue an allocation request, a client invokes a setData
call to the virtual /memory-quota node passing the amount of quota to allocate as data (L. C6).
In the absence of network and server faults, this call only aborts if the amount requested ex-
ceeds the free quota currently available (L. E8), in which case the quota client retries the pro-
cedure (L. C7) after a certain period of time (omitted in Figure 7.6). At the EZK server, the
quota enforcement extension functions as a proxy for a regular node /memory: For each in-
coming setData call to this particular node (L. E4), the extension translates the request into
a sequence of operations (i. e., a read (L. E5), a check (L. E8), and an update (L. E11)) that are
processed atomically.

Evaluation

We evaluate both implementations of the quota enforcement service varying the number of
quota clients accessing the service concurrently from 1 to 40. During a test run, each client
repeatedly requests 100 quota units, and when the quota is granted (possibly after multiple
retries), immediately releases it again. In all cases, the total amount of quota available is limited
to 1500 units. As a consequence, in scenarios with more than 15 concurrent quota clients,
allocation requests may be aborted due to lack of free quota.
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Client Implementation
C1 CoordinationService cs = establish connection;

C3 void allocate(int amount) {
C4 do {
C5 /∗ Issue quota demand. ∗/
C6 cs.setData("/memory-quota", amount);
C7 } while(setData call aborted unsuccessfully);
C8 }

Coordination Service Extension Implementation
E1 CoordinationServiceState local = local state;

E3 void setData(String name, int amount) {
E4 if("/memory-quota".equals(name)) {
E5 int free = local.getData("/memory");

E7 /∗ Abort if there is not enough quota. ∗/
E8 if(free < amount) abort;

E10 /∗ Calculate and set new free quota. ∗/
E11 local.setData("/memory", free - amount);
E12 } else {
E13 /∗ Set data of regular node. ∗/
E14 local.setData(name, amount);
E15 }
E16 }

Figure 7.6: Pseudo-code implementation of a quota server in our extendable coordination ser-
vice: a call to setData only aborts if there is not enough quota.

The throughput results for this experiment presented in Figure 7.7 show that our EZK quota
server provides better scalability than the state-of-the-art ZooKeeper variant. For a small num-
ber of concurrent clients, the fact that the total amount of quota is limited has no effect: As in
the priority-queue experiment (see Section 7.5.1), the ZooKeeper implementation suffers from
contention, whereas the throughput of the EZK quota server improves for multiple quota clients.
For more than 15 quota clients, the fraction of aborted allocation requests increases in both im-
plementations with every additional client, leading to an observable throughput decrease for the
EZK quota server for more than 20 clients.

Figure 7.5.2 shows that the costs for a single quota allocation greatly differ between both
quota-service implementations: For 40 clients, due to contention and the limited amount of total
quota, it takes a ZooKeeper client more than 57 remote calls to the coordination service to be
granted the quota requested; an EZK quota client on average has to issue less than 2 remote calls
for the same scenario. Note that in the ZooKeeper variant, release operations are also subject
to contention, requiring up to 28 remote calls per successful operation. In contrast, the release
operation in our EZK implementation always succeeds using a single remote call.

7.6 Related Work

With the advent of large distributed file systems emerged the need to coordinate read and write
accesses on different nodes. This problem was solved by distributed lock managers [ST87], the
predecessors of current coordination services.

In contrast to the file-system–oriented coordination middleware systems Chubby [Bur06]
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and ZooKeeper [HKJR10], DepSpace [BACF08] is a Byzantine fault-tolerant coordination ser-
vice which implements the tuple space model. As the tuple space abstraction does not provide
an operation to alter stored tuples, in order to update the data associated with a tuple, the tuple
has to be removed from the tuple space, modified, and reinserted afterwards. In consequence,
implementations of high-level data structures and services built over DepSpace are expected to
also suffer from contention for multiple concurrent clients. Note that, with our approach not
being limited to a specific interface, this problem could be addressed by an extension-based
variant of DepSpace.

Boxwood [MMN+04] shares our goal of freeing application developers from the need to
deal with issues like consistency, dependability, or efficiency of complex high-level abstrac-
tions. However, unlike our work, Boxwood focuses on storage infrastructure, not coordination
middleware systems. In addition, the set of abstractions and services exposed by Boxwood is
static, whereas our extendable coordination service allows clients to dynamically customize the
behavior of existing operations and/or introduce entirely new functionality.

Relational database management systems rely on stored procedures [SAH87] (i. e., com-
positions of multiple SQL statements) to reduce network traffic between applications and the
database, similar to our use of extensions to minimize the number of remote calls a client has
to issue to the coordination service. In active database systems [PD99], triggers (i. e., a special
form of stored procedures) can be registered to handle certain events, for example, the insertion,
modification, or deletion of a record. As such, triggers are related to watches in coordination
services. The main difference is that in general a trigger is a database-specific mechanism which
is transparent to applications. As a result, applications are not able to change the behavior of
a trigger. In contrast, our extendable coordination service offers applications the flexibility
to customize the service using a composition of extensions operating on nodes, watches, and
sessions.

7.7 Conclusion
This chapter proposed to enhance the coordination of distributed applications by relying on an
extendable coordination service. It alleviates shortcomings of the current FT-BPEL implemen-
tation and allows programmers to dynamically introduce custom high-level abstractions which
are then executed on the server side. Our evaluation shows that by processing complex opera-
tions atomically, an extendable coordination service offers significantly better performance and
scalability than state-of-the-art implementations.
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Appendix A

Additional Material for Chapter 4

A.1 Auxiliary functions

This section presents the two auxiliary functions used in the protocols of Algorithms 1 and 2.
The description of these functions is available in Table 4.1.

Algorithm 13: DEPSKY-A and DEPSKY-CA auxiliary functions.
1 function queryMetadata(du)
2 begin
3 m[0 .. n− 1] ←− ⊥
4 parallel for 0 ≤ i ≤ n− 1 do
5 tmpi ←− cloudi.get(du, “metadata” )

6 if verify(tmpi,K
du
uw) then m[i]←− tmpi

7 wait until |{i : m[i] 6=⊥}| ≥ n− f
8 for 0 ≤ i ≤ n− 1 do cloudi.cancel pending()
9 return m

10 procedure writeQuorum(du, name, value)
11 begin
12 ok[0 .. n− 1] ←− false
13 parallel for 0 ≤ i ≤ n− 1 do
14 ok[i]←− cloudi.put(du, name[i], value[i])

15 wait until |{i : ok[i] = true}| ≥ n− f
16 for 0 ≤ i ≤ n− 1 do cloudi.cancel pending()

The two functions presented in Algorithm 13 are similar and equally simple: the process
just accesses all the n clouds in parallel to get or put data and waits for replies from a quorum
of clouds, canceling non-answered RPCs.

A.2 Storage Protocols Correctness

This section presents correctness proofs of the DEPSKY-A and DEPSKY-CA protocols. The
first lemma states that the auxiliary functions presented in the previous section are wait-free.

Lemma 1. A correct process will not block executing writeQuorum or queryMetadata.

Proof. Both operations require n − f clouds to answer the put and get requests. For write-
Quorum, these replies are just acks and they will always be received since at most f clouds are
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faulty. For the queryMetadata, the operation is finished only if one metadata file is available.
Since we are considering only non-malicious writers, a metadata written in a cloud is always
valid and thus correctly signed using Kdu

rw . It means that a valid metadata file will be read from
at least n− f clouds and the process will choose one of these files and finish the algorithm.

The next two lemmas state that if a correctly signed metadata is obtained from the cloud
providers (using queryMetadata) the corresponding data can also be retrieved and that the meta-
data stored on DEPSKY-A and DEPSKY-CA satisfy the properties of a regular register [Lam86]
(if the clouds provide this consistency semantics).

Lemma 2. The value associated with the metadata with greatest version number returned by
queryMetadata, from now on called outstanding metadata, is available on at least f + 1 non-
faulty clouds.

Proof. Recall that only valid metadata files will be returned by queryMetadata. These meta-
data will be written only by a non-malicious writer that follows the DepSkyAWrite (resp. Dep-
SkyCAWrite) protocol. In this protocol, the data value is written on a quorum of clouds on line
8 (resp. line 14) of Algorithm 1 (resp. Algorithm 2), and then the metadata is generated and
written on a quorum of clouds on lines 9-12 (resp. lines 15-18). Consequently, a metadata is
only put on a cloud if its associated value was already put on a quorum of clouds. It implies
that if a metadata is read, its associated value was already written on n− f clouds, from which
at least n− f − f ≥ f + 1 are correct.

Lemma 3. The outstanding metadata obtained on an DepSkyARead (resp. DepSkyCARead)
concurrent with zero or more DepSkyAWrites (resp. DepSkyCAWrites) is the metadata written
on the last complete write or being written by one of the concurrent writes.

Proof. Assuming that a client reads an outstanding metadata m, we have to show that m was
written on the last complete write or is being written concurrently with the read. This proof can
easily be obtained by contradiction. Suppose m was written before the start of the last complete
write before the read and that it was the metadata with greatest version number returned from
queryMetadata. This is clearly impossible because m was overwritten by the last complete
write (which has a greater version number) and thus will never be selected as the outstanding
metadata. It means that m can only correspond to the last complete write or to a write being
executed concurrently with the read.

With the previous lemmas we can prove the wait-freedom of the DEPSKY-A and DEPSKY-
CA registers, showing that their operations will never block.

Theorem 7. All DEPSKY read and write operations are wait-free operations.

Proof. Both Algorithms 1 and 2 use functions queryMetadata and writeQuorum. As shown
in Lemma 1, these operations can not block. Besides that, read operations make processes wait
for the value associated with the outstanding metadata. Lemma 2 states that there are at least
f + 1 correct clouds with this data, and thus at least one of them will answer the RPC of lines
21 and 27 of Algorithms 1 and 2, respectively, with values that match the digest contained on
the metadata (or the different block digests in the case of DEPSKY-CA) and make d[i] 6=⊥,
releasing itself from the barrier and completing the algorithm.

The next two theorems show that DEPSKY-A and DEPSKY-CA implement single-writer
multi-reader regular registers.
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Theorem 8. A client reading a DEPSKY-A register in parallel with zero or more writes (by the
same writer) will read the last complete write or one of the values being written.

Proof. Lemma 3 states that the outstanding metadata obtained on lines 16-17 of Algorithm 1
corresponds to the last write executed or one of the writes being executed. Lemma 2 states that
the value associated with this metadata is available from at least f + 1 correct clouds, thus it
can be obtained by the client on lines 20-24: just a single valid reply will suffice for releasing
the barrier of line 24 and return the value.

Theorem 9. A client reading a DEPSKY-CA register in parallel with zero or more writes (by
the same writer) will read the last complete write or one of the values being written.

Proof. This proof is similar to the one for DEPSKY-A. Lemma 3 states that the outstanding
metadata obtained on lines 22-23 of Algorithm 2 corresponds to the last write executed or one
of the writes being executed concurrently. Lemma 2 states that the values associated with this
metadata are stored on at least f + 1 non-faulty clouds, thus a reader can obtain them through
the execution of lines 26-30: all non-faulty clouds will return their values corresponding to
the outstanding metadata allowing the reader to decode the encrypted value, combine the key
shares and decrypt the read data (lines 33-35), inverting the processing done by the writer on
DepSkyCAWrite (lines 7-10).

A.3 Lock Protocol Correctness

This section presents correctness proofs for the data unit locking protocol. Recall from Section
4.4.1 that this protocol requires two extra assumptions: (1) contending writers have their clocks
synchronized with precision ∆/2 and (2) the storage clouds provides at least read-after-write
consistency.

Before the main proofs, we need to present a basic lemma that shows that a lock file created
in a quorum of clouds is read in a later listing of files from a quorum of clouds.

Lemma 4. An object o created with the operation writeQuorum(du, o, v) and not removed
will appear in at least one result of later list(du) operations executed on a quorum of clouds.

Proof. ThewriteQuorum(du, o, v) operation is only completed when the object is created/writ-
ten in a quorum of at least n − f clouds (line 15 of Algorithm 13). If a client tries to list the
objects of du on a quorum of clouds, at least one of the n− f clouds will provide it since there
is at least one correct cloud between any two quoruns ((n− f) + (n− f)− n > f ).

In order to prove the mutual exclusion on lock possession we need to precisely define what
it means for a process to hold the lock for a given data unit.

Definition 7. A correct client c is said to hold the write lock for a du at a given time t if an
object du-lock-c-T containing sign(du-lock-c-T, Kc) with T + ∆ < t appears in at least one
list(du) result when this operation is executed in a quorum of clouds.

With this definition, we can prove the safety and liveness properties of Algorithm 3.

Theorem 10 (Mutual exclusion). At any given time t, there is at most one correct client that
holds the lock for a data unit du.
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Proof. Assume this is false: there is a time t in which two correct clients c1 and c2 hold the lock
for du. We will prove that this assumption leads to a contradiction.

If both c1 and c2 hold the write lock for du we have that both du-lock-c1-T1 and du-lock-
c2-T2 with T1 + ∆ < t and T2 + ∆ < t are returned in list(du) operations from a quorum of
clouds. Algorithm 3 and Lemma 4 states that it can only happens if both c1 and c2 wrote valid
lock files (line 12) and did not remove them (line 19). In order for this to happen, both c1 and
c2 must see only their lock files in their second list(du) on the clouds (lines 14-16).

Two situations may arise when c1 and c2 acquire write locks for du: either c1 (resp. c2)
writes its lock file before c2 (resp. c1) lists the lock files the second time (i.e., either w1 precedes
r2 or w2 precedes r1) or one’s lock file is being written while the other is listing lock files for
the second time (i.e., either w1 is executed concurrently with r2 or w2 is executed concurrently
with r1).

In the first situation, when c2 (resp. c1) lists available locks, it will see both lock files and
thus remove du-lock-c2-T2 (resp. du-lock-c1-T1), releasing the lock (lines 14-20).

The second situation is more complicated because now we have to analyze the start and
finish of each phase of the algorithm. Consider the case in which c1 finishes writing its lock file
(line 12) after c2 executes the second list (lines 14-15). Clearly, in this case c2 may or may not
see du-lock-c1-T1 in line 18. However, we can say that the second list of c1 will see du-lock-c2-
T2 since it is executed after c1 lock file is written, which happens, only after c2 start its second
list, and consequently after its lock file write. It means that the condition of line 18 will be
true for c1, and it will remove du-lock-c1-T1, releasing its lock. The symmetric case (c2 finishes
writing its lock after c1 executes the second list) also holds.

In both situations we have a contradiction, i.e., it is impossible to have an execution and
time in which two correct clients hold the lock for du.

Theorem 11 (Obstruction-freedom). If a correct client tries to obtain the lock for a data unit
du without contention it will succeed.

Proof. When there is no other valid lock in the cloud (i.e., the condition of line 10 holds), c
will write du-lock-c-T on a quorum of clouds. This lock file will be the only valid lock file
read on the second list (the condition of line 18 will not hold) since (1.) no other valid lock file
is available on the clouds, (2.) no other client is trying to acquire the lock, and (3.) Lemma 4
states that if the lock file was written it will be read. After this, c acquire the lock and return
it.

A.4 Consistency Proportionality

In this section we prove the consistency proportionality of the DEPSKY-A and DEPSKY-CA
protocols considering some popular consistency models [Lam86, TDP+94, Vog09].

In the following theorem we designate by the weakest cloud the correct cloud that provides
less guarantees in terms of consistency. In homogeneous environments, all clouds will provide
the same consistency, but in heterogeneous environments other clouds will provide at least the
guarantees of the weakest cloud.

Theorem 12. If the weakest cloud used in a DEPSKY-CA setup satisfies a consistency model C,
the data unit provided by DEPSKY-CA also satisfies C for any C ∈ {eventual, read-your-writes,
monotonic reads, writes-follow-reads, monotonic writes, read-after-write}.
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(Sketch). Notice that cloud consistency issues only affect metadata readings since in the DEPSKY-
CA (Algorithms 2), after the max id variable is defined (line 23), the clients keep reading the
clouds until the data value is read (lines 24-32). So, even with eventual consistency (the weak-
est guarantee we consider), if the metadata file pointing to the last version is read, the data will
eventually be read.

Let Qw be the quorum of clouds in which the metadata of the last executed write w was
written and let Qr be the quorum of clouds where queryMetadata obtained an array of n −
f metadata files on a posterior read r. Let cloud ∈ Qw ∩ Qr be the weakest cloud among
the available clouds. For each of the considered consistency models, we will prove that if
cloud provides this consistency, the register implemented by DEPSKY-CA provides the same
consistency.

For eventual consistency [Vog09], if the outstanding metadata file was written on cloud and
no other write operation is executed, it will be eventually available for reading in this cloud, and
then its associated data will be fetched from the clouds. As a consequence, the data described
in the metadata file will be read eventually, satisfying this model.

For read-your-writes consistency, if both w and r are executed by c, the fact that cloud
provides this consistency means that at least this cloud will return the metadata written in w
during r execution. Consequently, the result of the read will be the value written in w, satisfying
this model.

For monotonic reads consistency, assume c executed r and also another posterior read r′.
Let Qr′ be the quorum accessed when reading metadata file on r′. Let cloud ′ ∈ Qr ∩ Qr′ be a
correct cloud providing monotonic reads consistency. We have to prove that r′ will return the
same data of r or a value written in a posterior write. Since cloud ′ satisfy monotonic reads,
the metadata file read in r′ will be either the one read in r or another one written by a posterior
write. In any of the two cases, the corresponding value returned will satisfy the monotonic reads
consistency.

For writes-follow-reads consistency, the result is trivial since, as long as we have no con-
tending writers, the metadata files are written with increasing version numbers. Since the clouds
provide at least this consistency, it is impossible to observe (and to propagate) writes in a dif-
ferent order they were executed, i.e., to observe them in an order different from the version
numbers of their metadata.

The same arguments holds for monotonic writes: since the clouds provide at least this con-
sistency, it is impossible to observe the writes in a different order they were executed.

Finally, for read-after-write consistency1, the safety properties proved in previous section
(see Theorem 9) can be easily generalized for any read-after-write model. If the outstanding
metadata file was written on a cloud satisfying this consistency model during write w and no
other write operation is executed, any read succeeding w will see this file, and its associated
data will be fetched from the cloud.

Since the critical step of Theorem 12’ proof uses the intersection between metadata’ reads
and writes, the following corollary states that the result just proved for DEPSKY-CA is also
valid for DEPSKY-A. The key reason is that both protocols read and validate metadata files in
the same way, as can be seen in lines 16-17 of Algorithm 1 and 22-23 of Algorithm 2).

Corollary 13. If the weakest cloud used in a DEPSKY-A setup satisfies a consistency model C,
the data unit provided by DEPSKY-A also satisfies C for any C ∈ {eventual, read-your-writes,
monotonic reads, writes-follow-reads, monotonic writes, read-after-write}.

1Any of the consistency models introduced in [Lam86] satisfies read-after-write since the reads return the value
written in the last complete operation in absence of contention.
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Appendix B

Proofs for Chapter 5

B.1 Correctness of the Register Constructions

This section proves the correctness of the register constructions presented in Section 5.3.1.
For establishing the correctness of the algorithms, note first that every client accesses the

KVS objects in a well-formed manner, as ensured by the corresponding checks in Algorithm 6
(line 4), Algorithm 8 (lines 4 and 10), and Algorithm 9 (lines 4 and 8).

A global execution of the system consists of invocations and responses of two kinds: those
of the emulated register and those of the KVS base objects. In order to distinguish between
them, we let σ̄ denote an execution of the register (with read and write operations) and let σ
denote an execution of the KVS base objects (with put, get, list, and remove operations).

We say that a KVS-operation o is induced by a register operation ōwhen the client executing
ō invoked o according to its algorithm for executing ō. Furthermore, a read operation reads a
version ver when the returned value has been associated with ver (Algorithm 6 line 7), and
a write operation writes a version ver when an induced put operation stores a value under a
temporary key corresponding to ver (Algorithm 8 line 11).

At a high level, the register emulations are correct because the read and write operations al-
ways access a majority of the KVSs, and hence every two operations access at least one common
KVS. Furthermore, each KVS stores two copies of a value under the eternal and under tempo-
rary keys. Because the algorithm for reading is carefully adjusted to the garbage-collection
routine, every read operation returns a legitimate value in finite time. Section B.1.1 below
makes this argument precise for the regular register, and Section B.1.2 addresses the atomic
register.

B.1.1 MRMW-Regular Register

We prove safety (Theorem 14) and liveness (Theorem 15) for the emulation of the MWMR-
regular register. Consider any execution σ̄ of the algorithm, the induced execution σ of the
KVSs, and a real-time sequential permutation π of σ (note that σ is determined by the operations
on the atomic KVSs). Let πi denote the sequence of actions from π that occur at some KVS
replica i.

According to Algorithm 8, every write operation to the register induces exactly two put
operations, one with a temporary key and one with the eternal key; the write may also remove
some temporary keys. We first establish that for every KVS, the maximum of all versions that
correspond to an associated temporary key always increases.

Lemma 5 (KVS version monotonicity). Consider a KVS i, a write operation w that writes
version ver, and some operation puti in πi induced byw with a temporary key. Then the response
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of any operation listi in πi that follows puti contains at least one temporary key that corresponds
to a version equal to or larger than ver.

Proof. We show this by induction on the length of some prefix of πi that is followed by an
imaginary list′ operation. (Note that list does not modify the state of KVS i.)

Initially, no versions have been written, and the claim is vacuously true for the empty prefix.
According to the induction assumption, the claim holds for some prefix ρi. We argue that it
also holds for every extension of ρi. When ρi is extended by a puti operation, the claim still
holds. Indeed, the claim can only be affected when ρi is extended by an operation removei with
a key that corresponds to version ver and when no puti operation with a temporary key that
corresponds to a larger version than ver exists in ρi.

A removei operation is executed by some client that executes a write operation and function
putInKVS in two cases. In the first case, when Algorithm 7 invokes operation removei in line 5,
it has previously executed listi and excluded from obsolete the temporary key corresponding to
the largest version ver′. The induction assumption implies that ver′ ≥ ver. Hence, there exists
a temporary key corresponding to ver′ ≥ ver also after removei completes.

In the second case, when Algorithm 7 invokes removei in line 9, then it has already stored
a temporary key corresponding to a larger version than ver through operation puti (line 8),
according to the algorithm. The claim follows.

Lemma 6 (Partial order). In an execution σ̄ of the algorithm, the versions of the read and write
operations in σ̄ respect the partial order of the operations in σ̄:

a) When a write operation w writes a version vw and a subsequent (in σ̄) read operation r
reads a version vr, then vw ≤ vr.

b) When a write operation w1 writes a version v1 and a subsequent write operation w2 writes
a version v2, then v1 < v2.

Proof. For part a), note that both operations return only after receiving responses from a ma-
jority of KVSs. Suppose KVS i belongs to the majority accessed by the putInKVS function
during w and to the majority accessed by r. Since w ≺σ̄ r, the puti operation induced by w pre-
cedes the first listi operation induced by r. Therefore, the latter returns at least one temporary
key corresponding to a version that is vw or larger according to Lemma 5.

Consider now the execution of function getFromKVS (Algorithm 5) for KVS i. The previ-
ous statement shows that the client sets v0 ≥ vw in line 5. The function only returns a version
that is at least v0. As Algorithm 6 takes the maximal version returned from a KVS, the version
vr of r is not smaller than vw.

The argument for the write operations in part b) is similar. Suppose that KVS i belongs to
the majority accessed by the putInKVS function during w1 and to the majority accessed by the
list operation during w2. As w1 ≺σ̄ w2, the puti operation induced by w1 precedes the listi
operation induced by w2. Therefore, the latter returns at least one temporary key corresponding
to a version that is v1 or larger according to Lemma 5. Hence, the computed previous maximum
version 〈seqmax, idmax〉 of Algorithm 8 in w2 is at least v1. Subsequently, operation w2 at client c
determines its version v2 = 〈seqmax + 1, c〉 > 〈seqmax, idmax〉 ≥ v1.

The two lemmas prepare the way for the following theorem. It shows that the emulation
respects the specification of a multi-reader multi-writer regular register.

Theorem 14 (MRMW-regular safety). Every well-formed execution σ̄ of the MRMW-regular
register emulation in Algorithms 6 and 8 is MRMW-regular.
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Proof. Note that a read only reads a version that was written by a write operation. We con-
struct a sequential permutation π̄ of σ̄ by ordering all write operations of σ̄ according to their
versions and then adding all read operations after their matching write operation; concurrent
read operations are added in arbitrary after, the others in the same order as in σ̄.

Let r be a read operation in σ̄ and denote by σ̄r and by π̄r the subsequences of σ̄ and p̄i
according to Definition 3, respectively. They contain only r and those write operations that do
not follow r in σ̄. We show that π̄r is a legal real-time sequential permutation of σ̄r.

Due to the construction of π̄, operation r returns the value written by the last preceding
write operation or ⊥ if there is no such write. The sequence π̄r is therefore legal with respect
to a register.

It remains to show that π̄r respects the real-time order of σ̄r. Consider two operations o1

and o2 in σ̄r such that o1 ≺σ̄r o2. Hence, also o1 ≺σ̄ o2. Note that o1 and o2 are either both
write operations or o1 is a write operation and o2 is the read operation r. If o1 is a write of a
version v1 and o2 is a write of a version v2, then Lemma 6a shows that v1 < v2. According to
the construction of π̄, we conclude that o1 ≺π̄ o2. If o1 is a write of a version v1 and o2 is a read
of a version v2, then Lemma 6b shows that o1 ≺π̄ o2, again according to the construction of π̄.
By the construction of π̄r, this means that o1 ≺π̄r o2. Hence, π̄r is also a real-time sequential
permutation of σ̄r.

It remains to show that the register operations are also live. We first address the read oper-
ation, and subsequently the write operation.

Lemma 7 (Wait-free read). Every read operation completes in finite time.

Proof. The algorithm for reading (Algorithm 6) calls the function getFromKVS once for every
KVS and completes after this call returns for a majority of the KVSs. As only a minority of
KVSs may fail, it remains to show that when a client c invokes getFromKVS for a correct
KVS i, it returns in finite time.

Algorithm 5 implements getFromKVS. It first obtains a list list of all temporary keys from
KVS i and returns if no such key exists. If some temporary key is found, it determines the
corresponding largest version ver0 and enters a loop.

Towards a contradiction, assume that client c never exits the loop in some execution σ̄ and
consider the induced execution σ of the KVSs.

We examine one iteration of the loop. Note that since all operations of c are wait-free, the
iteration eventually terminates. Prior to starting the iteration, the client determines list from an
operation listi. In line 8 the algorithm attempts to retrieve the value associated with key vc =
max(list) through an operation getc(vc). This returns FAIL and the client retrieves the eternal
key with an operation getc(ETERNAL). We observe that listc ≺σ getc(vc) ≺σ getc(ETERNAL).

Since getc(vc) fails, some client must have removed it from the KVS with a remove(vc)
operation. Applying Lemma 5 to version vc now implies that prior to the invocation of getc(vc),
there exists a temporary key in KVS i corresponding to a version vd > vc that was stored
by a client d. Denote the operation that stored vd by putd(vd). Combined with the previous
observation, we conclude that

listc ≺σ putd(vd) ≺σ getc(vc) ≺σ getc(ETERNAL). (B.1)

Furthermore, according to Algorithm 7, client d has stored a tuple containing vd > vc
under the eternal key prior to putd(vd) with an operation putd(ETERNAL). But the subsequent
getc(ETERNAL) by client c returns a value containing a version smaller than vc. Hence, there

TClouds D2.2.2 Page 119 of 130



D2.2.2 – Preliminary Specification of Services and Protocols of Mid-
dleware for Adaptive Resilience

must be an extra client e writing concurrently, and its version-value pair has overwritten vd and
the associated value under the eternal key. This means that operation pute(ETERNAL) precedes
getc(ETERNAL) in σ and stores a version ve < vc. Note that pute(ETERNAL) occurs exactly
once for KVS i during the write by e.

As client e also uses Algorithm 8 for writing, its results variable must contain the responses
of list operations from a majority of the KVSs. Denote by liste its list operation whose response
contains the largest version, as determined by e. Let list0

c denote the initial list operation by c that
determined ver0 in Algorithm 5 (line 5). We conclude that liste precedes list0

c in σ. Summarizing
the partial-order constraints on e, we have

liste ≺σ list0
c ≺σ pute(ETERNAL) ≺σ getc(ETERNAL). (B.2)

To conclude, in one iteration of the loop by reader c, some client d concurrently writes to
the register according to (B.1). An extra client e concurrently writes as well and its write oper-
ation is invoked before list0

c and irrevocably makes progress after d invokes a write operation,
according to (B.2). Therefore, client e may cause at most one extra iteration of the loop by the
reader. Since there are only a finite number of such clients, client c eventually exits the loop.
This contradicts the assumption that such an execution σ̄ and the induced σ exist, and the lemma
follows.

Lemma 8 (Wait-free write). Every write operation completes in finite time.

Proof. The algorithm for writing (Algorithm 8) calls the function list for every KVS, and con-
tinues after this call returns for a majority of the KVSs. Then, it calls the function putInKVS
for every KVS and returns after this call returns for a majority of the KVSs. As only a minority
of KVSs may fail, it remains to show that when a client c invokes putInKVS for a correct KVS,
it returns in finite time.

Algorithm 7 implements putInKVS. It calls list, possibly removes keys with remove and
puts an eternal and possibly a temporary key in the KVS. Since all these operations are wait-
free, the function returns in finite time.

The next theorem summarizes these two lemmas and states that the emulation is wait-free.

Theorem 15 (MRMW-regular liveness). Every read and write operation of the MRMW-regular
register emulation in Algorithms 6 and 8 completes in finite time.

B.1.2 Atomic Register
We state the correctness theorems for the atomic register emulation and sketch their proofs. The
complete proofs are similar to the ones for the MRMW-regular register emulation.

Theorem 16 (Atomic safety). Every well-formed execution σ̄ of the atomic register emulation
in Algorithms 9 and 8 is atomic.

Proof sketch [ABND95]. Note that a read operation can only read a version that has been writ-
ten by some write operation. We therefore construct a sequential permutation π̄ by ordering the
operations in σ̄ according to their versions, placing all read operations immediately after the
write operation with the same version. Two concurrent read operations in σ̄ that read the same
version may appear in arbitrary order; all other read operations appear ordered in the same way
as in σ̄.
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We show that π̄ is a legal real-time sequential permutation of σ̄. From the construction of
π̄, it follows that every read operation returns the value written by the last preceding write
operation, after which it was placed. Therefore, π̄ is a legal sequence of operations with respect
to a register.

It remains to show that π̄ respects the real-time order of σ̄. Consider two operations o1 and
o2 in σ̄ such that o1 ≺σ̄ o2. Operation o1 is either a write or a read operation. In both cases, it
completes only after storing its (read or written) version v1 together with its value at a majority
of the KVSs under a temporary key that corresponds to v1. Operation o2 is either a write or a
read operation. In both cases, it first lists the versions in a majority of the KVSs and determines
the maximal version among the responses. Let this maximal version be v2. Because at least one
KVS lies in the intersection of the two sets accessed by o1 and by o2, we conclude that v2 ≥ v1.
If o2 is a read operation, it reads version v2, and if o2 is a write operation, it writes a version
strictly larger than v2. Therefore, according to the construction of π̄, we obtain o1 ≺π̄ o2 as
required.

Theorem 17 (Atomic liveness). Every read and write operation of the atomic register emulation
in Algorithms 9 and 8 completes in finite time.

Proof sketch. The only difference between the regular and the atomic register emulations lies
in the write-back step at the end of the atomicRead function. It is easy to see that storing the
temporary key corresponding to the same version again may only effect the algorithm and its
analysis in a minor way. In particular, the argument for showing Lemma 7 must be extended to
account for concurrent read operations, which may also store values to the KVSs now. Similar
to a concurrent write operation, an atomic read operation may delay a reader by one iteration
in its loop. But again, there are only a finite number of clients writing concurrently. A read
operation therefore completes after a finite number of steps.

B.2 Analysis of the Efficiency of Register Constructions
Theorem 18. The space complexity of the MRMW-regular register emulation at any KVS is at
most two plus the point contention of concurrent write operations.

Proof. Consider an execution σ̄ of the MRMW-regular register emulation. We prove the theo-
rem by considering the operations o1, o2, . . . of some legal real-time sequential permutation π
of σ, the KVS execution induced by σ̄.

If at some operation ot the number of keys that is written to KVS i but not removed is x, then
at some operation prior to ot, at least x register operations were concurrently run. We prove by
induction on t. Initially the claim holds since there are no keys put and no clients run. Assume
it holds until ot−1 and prove for ot. If operation ot is not a put, then the number of put keys is
the same as at ot−1 and the claim holds by the induction assumption.

If operation ot is puti, invoked by some client c, then it is performed by this client’s writec
that first removed all but one temporary keys in its GC routine (Algorithm 7 lines 4–9). These
remove operations precede the put in σ̄, and therefore also its real-time sequential permutation
π. All (except maybe one) versions that were written by writes that completed before writec are
therefore removed before operation ot. The temporary keys in the system at ot−1 are ones that
were written by operations concurrent with writec. The putc operation therefore increases their
number by one, so the number of keys is at most the number of concurrent write operations, as
required.
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Theorem 19. In every emulation of a safe MRMW-register from KVS base objects, there exists
some KVS with space complexity two.

Proof. Toward a contradiction, suppose that every KVS stores only one key at any time.
Note that a client in an algorithm may access a KVS in an arbitrary way through the KVS

interface. For modeling the limit on the number of stored values at a KVS, we assume that
every put operation removes all previously stored keys and retains only the one stored by put.
A client might still “compress” the content of a KVS by listing all keys, retrieving all stored
values, and storing a representation of those values under one single key. In every emulation
algorithm for the write operation, the client executes w.l.o.g. a “final” put operation on a KVS
(if there is no such put, we add one at the end).

Note a client might also construct the key to be used in a put operation from values that it
retrieved before. For instance, a client might store multiple values by simply using them as the
key in put operations with empty values. This is allowed here and strengthens the lower bound.
(Clearly, a practical KVS has a limit on the size of a key but the formal model does not.)

Since operations are executed asynchronously and can be delayed, a client may invoke an
operation at some time, at some later time the object (KVS) executes the operation atomically,
and again at some later time the client receives the response.

In every execution of an operation with more than n/2 correct KVSs it is possible that all
operations of some client invoked on less than n/2 KVSs are delayed until after one or more
client operations complete.

Consider now an execution with three KVSs, denoted a, b, and c. Consider three executions
α, β, and γ that involve three clients cu, cx, and cr.

Execution α. Client cx invokes write(x) and completes; let T 0
α be the point in time after that;

suppose the final put operation from cx on KVS b is delayed until after T 0
α; then b executes this

put; let T 1
α be the time after that; suppose the corresponding response from b to cx is delayed

until the end of the execution.
Subsequently, after T 1

α , client cr invokes read and completes with responses from b and c;
all operations from cr to a are delayed until the end of the execution. Operation read returns x
according to the register specification.

Execution β. Client cx invokes write(x) and completes, exactly as in α; let T 0
β (= T 0

α) be the
time after that; suppose the final put operation from cx on KVS b is delayed until the end of the
execution.

Subsequently, after T 0
β , client cu invokes write(u) and completes; let T 1

β be the time after
that; all operations from cu to KVS c are delayed until the end of the execution.

Subsequently, after T 1
β , client cr invokes read and completes; all operations from cr to a are

delayed until the end of the execution. Operation read by cr returns u according to the register
specification.

Execution γ. Client cx invokes write(x) and completes, exactly as in β; let T 0
γ (= T 0

β ) be the
time after that; suppose the final put operation from cx to KVS b is delayed until some later
point in time.

Subsequently, after T 0
γ , client cu invokes write(u) and completes, exactly as in β; let T 1

γ

(= T 1
β ) be the time after that; all operations from cu to KVS c are delayed until the end of the

execution.
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Subsequently, after T 1
γ , the final put operation from cx to KVS b induced by operation

write(x) is executed at KVS b; let T 2
γ be the time after that; suppose the corresponding response

from KVS b to cx is delayed until the end of the execution.
Subsequently, after T 2

γ , client cr invokes read and completes; all operations from cr to
KVS a are delayed until the end of the execution. The read by cr returns u by specification.
But the states of KVSs b and c at T 2

γ are the same as their states in α at T 1
α , hence, cr returns x

as in α, which contradicts the specification of the register.

B.3 Analysis of Cloud Storage Limitations
Theorem 20. The consensus number of a replica object is infinite.

Proof. We show how to implement a consensus objectC from a replica objectR. The emulation
is shown in Algorithm 2 and works as follows. At the start, the timestamp/value pair at R is
initialized to (0,⊥). When a client invokes decide(v) of C with a proposal v, then the emulation
tries to write the pair (1, v) to R. Subsequently it reads the value stored by R and returns it as
the decision value.

Algorithm 2 Implementation of a consensus object C using a replica R
operation decide(v)

R.condwrite(1, v);
d← R.read();
return d;

The intuition behind this emulation is that only the first invocation of condwrite executed
by R will succeed in storing a value, say v1, at R; it does not matter which client executes it.
Every subsequent conditional write is simply ignored because R already stores timestamp 1.
Once the first client has decided v1, every other client that invokes decide(v) also obtains v1.

Object C is wait-free because the implementation contains no loops, the underlying replica
R is wait-free, and every operation immediately returns. Furthermore, C satisfies the validity
property of a consensus object, because decided value is read from R and because the proposal
of at least one client is written to R before it is read. Hence, the decided value must be an input
from a client. Moreover, C also implements consistency because only the first ever invocation
of condwrite may change the value the is returned from R by read. Hence, C is a consensus
object according to Definition 5.

Note that there is no upper bound on the number of clients that can write to or read from R;
therefore, this implementation solves consensus for any number of clients. According to Defi-
nition 6, together with Theorem 1, this implies that the consensus number of a replica object is
infinite.

Theorem 21. The consensus number of a key-value store object is one.

Proof. We implement a KVS object K with one atomic snapshot object SO. Recall that clients
interact with every object in a well-formed manner.

The idea behind the emulation is to maintain in SO[i] a list of all put and remove operations
executed on the KVS by the client with index i. Every such operation is represented by a tuple
(i, ts, key, val) ∈ {1, . . . , n} × N0 × K × V , where ts represents a logical timestamp that is
incremented by every client when it executes an operation.
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The history of operations of the client with index i, as stored in D[i], consists of a concate-
nated list of such tuples:

D[i] = (i, ts, key, val) ‖ · · · ‖ (i, ts′, key′, val′).

For two tuples τ = (i, ts, key, val) and τ ′ = (j, ts′, key′, val′) we define a tuple order relation
and say that τ is bigger than τ ′, denoted τ > τ ′, whenever ts > ts′ or ts = ts′ ∧ i > j.

We next describe the implementation; a formal statement appears in Algorithm 3.
The operation put(key, val) by a client with index i first scans SO and retrieves all histories.

Then it determines the maximal tuple (j, ts, k, v) from all histories according to tuple order. It
increments the timestamp, sets t ← ts + 1, appends the tuple (i, t, key, val) to the list in D[i],
and uses the result to update its entry in SO. Recall that only the client with index i may invoke
update(i, ·).

Operation get(key) just scans the snapshot object and searches in the returned histories for
the largest tuple according to tuple order whose key equals key; denote this by (i, ts, key, val).
If such a tuple is found, the operation returns val; otherwise, it returns ⊥.

To execute remove(key), the implementation stores the special character ⊥ under key using
the put operation already implemented.

Finally, the list() operation scans the snapshot object, examines every tuple from every
history, and retains, for every key, the maximal tuple according to tuple order. These tuples are
collected in a set K. The list to return is then obtained by extracting the keys of those tuples
from K in which the value is not ⊥, i.e., those that have not been removed.

Note that the size of D[i] could be reduced without affecting the emulation: operations that
have been superseded by other operations (for the same key but with a larger timestamp) can be
eliminated to save space.

We now show that this implementation produces linearizable histories that satisfy the spec-
ification of a KVS. Given a history σ, we construct a legal sequential history π that satisfies the
properties of linearizability and argue that it is legal.

• The empty history is legal.

• Any history without concurrent operations is legal. This follows because the timestamps
are strictly monotonically increasing during all put and remove operations. As the get
operation returns the value with the highest timestamp in tuple order, get returns the most
recently written value. The same argument shows that the output of the list operation is
legal.

• Two concurrent get and/or list operations with no concurrent put or remove operations
can be ordered in any way, since they do not affect each other.

• Two concurrent put and/or remove operations with the same key are scheduled according
to the order on the tuples that represent them. Suppose clients p and r are concurrently
invoking operations ωp = put and ωr = remove with the same key. The operations are
scheduled such that ωp >π ωr if and only if the tuple representing ωp is bigger than the
tuple representing ωr. Note that p 6= r because all clients execute operations in a well-
formed way. Thus, one of the two tuples is strictly bigger than the other in tuple order.
All subsequent get and list operations also return the result of the operation (ωp or ωr) that
is scheduled last. Another subsequent put and remove operation with the same key will
increment the timestamp, hence, the results of ωp or ωr are never returned afterwards.

TClouds D2.2.2 Page 124 of 130



D2.2.2 – Preliminary Specification of Services and Protocols of Mid-
dleware for Adaptive Resilience

• Consider now a put or remove operation that is concurrent to get or list operation. We
observe that the update on SO near the end of the put and remove operations and the
scan on SO at the beginning of the get and list operations are linearizable because SO is
atomic.

We schedule a put or remove operation ω in π before a concurrent get or list operation
ρ whenever the update in ω precedes the scan in ρ. If ω <π ρ, then ω incremented the
timestamp and ρ returns the value written by ω because it has the maximal timestamp, as
required. Otherwise, if ρ <π ω, then ρ appears in π before ω. This is also legal since the
scan operation of ρ has not been affected by the update operation in ω according to the
construction of π. Hence, the value returned by ρ is legal.

• Finally, consider multiple concurrent put and/or remove operations. As shown before,
executions with one put or remove operation concurrent to one further operation can be
linearized.

Assume that k − 1 put and remove operations have been linearized and consider the k-th
put or remove operation ω. It is scheduled:

– after all get and list operations whose embedded scan precedes the update operation
in ω;

– before all get and list operations whose embedded scan is scheduled after the update
operation in ω;

– before all put and remove operations by clients with a higher index; and

– after all put and remove operations by clients with a smaller index.

It is straightforward to verify that π constructed like this is sequential and legal.

• History π preserves the real-time order of σ because no sequential operations are re-
ordered.

This completes the construction of our wait-free implementation of a KVS object from a
single-writer atomic snapshot object. Since the snapshot object has consensus number one,
Theorem 1 implies that the consensus number of a KVS object is also one.
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Algorithm 3 Implementation of a KVS object K form a snapshot object SO.
operation put(key, val) by client with index i

D ← SO.scan();
t← 0;
for j ∈ {1, . . . , n} and (j, ts, k, v) ∈ D[j] do

if k = key and t < ts then
t← ts;

t← t+ 1;
d← D[i] ‖ (i, t, key, val);
SO.update(i, d);
return;

operation get(key) by client with index i
D ← SO.scan();
(t, val)← (0,⊥);
for j ∈ {1, . . . , n} and (j, ts, k, v) ∈ D[j] do

if k = key and t < ts then
(t, val)← (ts, v);

return val;

operation remove(key) by client with index i
put(key,⊥); // invoke the operation on itself
return;

operation list()
D ← SO.scan();
let L be the set of distinct keys from D, i.e.,

L←
{
k
∣∣(j, ts, k, v) ∈

⋃n
i=1 D[i]

}
;

K ← ∅;
for key ∈ L do

let (j, ts, k, v) be the biggest tuple in
⋃n
i=1D[i]

with k = key according to tuple order;
if v 6= ⊥ then

K ← K ∪ {key};
return K;
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Appendix C

Correctness of MOD-SMART

In this Appendix we prove the correctness of MOD-SMART, described in Chapter 6. The first
theorem proves the safety of the protocol, i.e., that all correct replicas process the same se-
quence of operations.

Theorem 22. Let p be the correct replica that executed the highest number of operations up
to a certain instant. If p executed the sequence of operations o1, ..., oi, then all other correct
replicas executed the same sequence of operations or a prefix of it.

Proof. Assume that r and r′ are two distinct correct replicas and o and o′ are two distinct
operations issued by correct client(s). Assume also that b and b′ are the batches of operations
were o and o′ were proposed, respectively. For r and r′ to be able to execute different sequences
of operations that are not prefix-related, at least one of three scenarios described below needs to
happen.

(1) VP-Consensus instance i decides b in replica r, and decides b′ in r′. Since in this
scenario the same sequence number can be assigned to 2 different batches, this will cause o and
o′ to be executed in different order by r and r′. But by the Agreement and Integrity properties of
VP-Consensus, such behavior is impossible; Agreement forbids two correct processes to decide
differently, and Integrity prevents any correct process from deciding more than once.

(2) b is a batch decided at VP-Consensus instance i in both r and r′, but the operations in b
are executed in different orders at r and r′. This behavior can never happen because Algorithm
11 (line 13) forces the operations to be ordered deterministically for execution, making these
operations be executed in the same order by these replicas.

(3) Replica r executes sequence of operations S = o0, ..., os and r′ executes a subset of
operations in S (but not all of them), preserving their relative order. This will result in a gap in
the sequence of operations executed by r′. From Algorithm 11, we can see that any operation
is executed only after the VP-Decide event is triggered. This event is triggered either when
a consensus instance decides a batch in line 7 — which occurs during the normal phase — or
when invoked by Algorithm 12 in line 41. For simplicity, let us assume that each batch of
messages contains a single operation. In the absence of a synchronization phase, lines 3-6 of
Algorithm 11 ensure that any consensus instance i is only started after instance i−1 is decided.
This forces any correct process to execute the same sequence of operations.

Lets now reason about the occurrence of a synchronization phase. In such case, r′ will create
the Log set at Algorithm 12, and then trigger the Decide event for each decision contained in
Log (lines 36-41). Log is created using operations from both the most up-to-date log contained
in the SYNC message or from the replica’s DecLog (line 36). Let us assume that r′ did not
execute S before entering the synchronization phase. Let us further consider T = {os+1, ..., ot}
with t ≥ s + 1 to be a sub-sequence of operations that have been executed by r. For r′ to skip
S in this situation, it is necessary that Log contains U (such that U is a prefix of T ) but does
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not contain S, and that r′ triggers VP-Decide at Algorithm 12 (line 41) for each operation in U .
This situation can never happen since r′ is correct, and the algorithm ensures Log is constructed
using valid operations (satisfying validDec) from decision logs that contain no gaps, i.e.,
satisfy the noGaps predicate. Furthermore, each decision in Log also satisfied the validDec
predicate, so r′ will not pick a sequence of operations with invalid decisions. Finally, since r′

is correct, DecLog will already satisfy these predicates. This means that either: (1) both S and
U are in Log ; (2) only S is in Log , (3) neither sequence is in Log . Therefore, if Log contains U ,
then it must also contain S, and both sequences will be executed in r′.

Next lemmata prove several MOD-SMART properties. These lemmata use the following
additional definitions. We say that an operation issued by a client c completes when c receives
the same response for the operation from at least f + 1 different replicas. We also consider that
an operation sent by a client is valid if it is correctly signed and if its sequence number is greater
than the sequence number of the last operation sent by that client.

Lemma 9. If a correct replica receives a valid operation o, eventually all correct replicas
receive o.

Proof. We have to consider four possibilities concerning the client behavior and the system
synchrony.

(1) Correct client and synchronous system. In this case, the client will send its operation to
all replicas, and all correct ones will receive the operation and store it in the ToOrder set before
a timeout occurs (Algorithm 11, line 1-2 plus procedure RequestReceived).

(2) Faulty client and synchronous system. Assume a faulty client sends a valid operation o
to at least one correct replica r. Such replica will initiate a timer t and start a consensus instance
i (Algorithm 11, lines 1 and 2 plus procedure RequestReceived). However, not enough replicas
(less than n − f ) will initialize a consensus instance i. Because of this, the timeout for t will
eventually be triggered on the correct replicas that received it (Algorithm 12, line 1), and o will
be propagated to all other replicas (lines 2 and 3). From here, all correct ones will store the
operation in the ToOrder set (Algorithm 11, lines 18 and 19 plus procedure RequestReceived).

(3) Correct client and asynchronous system. In this case, a correct replica might receive an
operation, but due to delays in the network, it will trigger its timeout before the client request
reaches all other replicas. Such timeout may be triggered in a correct replica and the message
will be forwarded to other replicas. Moreover, since the client is correct, the operation will
eventually be delivered to all correct replicas and they will store it in their ToOrder set.

(4) Faulty client and asynchronous system. This case is similar to 3), with the addition that
the client may send the request to as few as one correct replica. But like it was explained in 2),
the replica will send the operation to all other replicas upon the first timeout. This ensures that
eventually the operation will be delivered to all correct replicas and each one will store it in the
ToOrder set.

Therefore, if a correct replica receives a valid operation o, them all correct replicas eventu-
ally receive o.

Lemma 10. If a synchronization phase for regency g starts with a faulty leader l, then eventually
synchronization phase for regency g′ > g starts with correct leader l′ 6= l.

Proof. Each synchronization phase uses a special replica called ‘leader’, that receives at least
n − f STOPDATA messages and sends a single SYNC message to all replicas in the system
(Algorithm 12, lines 24-29). If such leader is faulty, it can deviate from the protocol during
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this phase. However, its behavior is severely constrained since it can not create fake logs (such
logs are signed by the replicas that sent them in the STOPDATA messages). Additionally, each
entry in the log contains the proof associated with each value decided in a consensus instance,
which in turn prevents the replicas from providing incorrect decision values. Because of this,
the worst a faulty leader can do, is:

(1) Not send the SYNC message to a correct replica. In this case, the timers associated with
the operations waiting to be ordered will eventually be triggered at all correct replicas - which
will result in a new iteration of the synchronization phase.

(2) Send two different SYNC messages to two different sets of replicas. This situation can
happen if the faulty leader waits for more than n−f STOPDATA messages from replicas. The
leader will then create sets of logs L and L′, such that each set has exactly n − f valid logs,
and sends L to a set of replicas Q, and L′ to another set of replicas Q′. In this scenario, Q and
Q′ may create different logs at line 36 of Algorithm 12, and resume normal phase at different
consensus instances. But in order to ensure progress, at least n − f replicas need to start the
same consensus instance (because the consensus primitive needs these minimum amount of
correct processes). Therefore, if the faulty leader does not send the same set of logs to a set
Qn−f with at least n−f replicas that will follow the protocol (be them either all correct or not),
the primitive will not make progress. Hence, if the faulty leader wants to make progress, it has
to send the same set of logs to at least n−f replicas. Otherwise, timeouts will occur, and a new
synchronization phase will take place.

Finally, in each synchronization phase a new leader is elected. The new leader may be
faulty again, but in that case, the same constraints explained previously will also apply to such
leader. Because of this, when the system reaches a period of synchrony, after at most f regency
changes, there is going to be a new leader that is correct, and progress will be ensured.

Lemma 11. If one correct replica r starts consensus i, eventually n− f replicas start i.

Proof. We need to consider the behavior of the clients that issue the operations that are ordered
by the consensus instance (correct or faulty), the replicas that start such instance (correct or
faulty), and the state of the system (synchronous or asynchronous).

We can observe from Algorithm 11 that an instance is started after selecting a batch of oper-
ations from the ToOrder set (lines 4-6). This set stores valid operations issued by clients. From
Lemma 9, we know that a valid operation will eventually be received by all correct replicas, as
long as at least one of those replicas receives it. Therefore, it is not necessary to consider faulty
clients in this lemma.

From the protocol, it can be seen that a consensus instance is started during the normal phase
(Algorithm 11, line 6). Following this, there are two possibilities:

(1) r decides a value for i before a timeout is triggered. For this scenario to happen, it is
necessary that at least n− f processes participated in the consensus instance without deviating
from the protocol. Therefore, n− f replicas had to start instance i.

(2) A timeout is triggered before r is able to decide a value for i. This situation can happen
either because the system is passing through a period of asynchrony, or because the current
leader is faulty. Let us consider a consensus instance j such that j is the highest instance started
by a correct replica, say r′. Let us now consider the following possibilities:

2-a) r started i and i < j. Remember that our algorithm executes a sequence of consensus
instance, and no correct replica starts an instance without first deciding the previous one (Algo-
rithm 11, lines 3-6). If i < j, j had to be started after i was decided in r′. But if i was decided,
at least n − f processes participated in this consensus instance. Therefore, n − f replicas had
to start instance i.
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2-b) r started i and i > j. This situation is impossible, because if j is the highest instance
started, and both r and r′ are correct, i cannot be higher than j.

2-c) r started i and i = j. In this case, the synchronization phase might be initialized before
all correct replicas start i. Because only a single correct replica might have started i, the log
which goes from instance 0 to instance i − 1 might not be present in the SYNC message (sent
by Algorithm 12, lines 28-29), even if all replicas are correct (because the leader can only safely
wait for n − f correct STOPDATA messages). This means that an instance h such that h ≤ i
will be selected by all correct replicas upon the reception of the SYNC message from the leader.

If the system is asynchronous, multiple synchronization phases might occur, where in each
one a new leader will be elected. In each iteration, a faulty replica may be elected as leader;
but from Lemma 10, we know that a faulty leader cannot prevent progress. Therefore, when
the system finally becomes synchronous, eventually a correct leader will be elected, and h will
eventually be started by n− f replicas.

Finally, let us consider the case where h < i. In this case, a total of n− f replicas may start
h instead of i. But by the Termination property of our primitive, h will eventually decide, and
all correct replicas will start the next instance. Because of this, eventually n − f replicas will
start i, even if more synchronization phases take place.

Using the previous lemmata we can prove that MOD-SMART satisfies the SMR Liveness
with the following theorem.

Theorem 23. A valid operation requested by a client eventually completes.

Proof. Let o be a valid operation which is sent by a client, and I the finite set of consensus
instance where o is proposed. Due to Lemma 9, we know that o will eventually be received by
all correct replicas, and at least one of them will propose o in at least one instance of I (the fair
predicate ensures this). By Lemma 11, we also know that such instances will eventually start in
n− f replicas.

Furthermore, let us show that there must be a consensus instance i ∈ I where o will be
part of the batch that is decided in i. As already proven in Lemma 11, all correct replicas will
eventually receive o. Second, we use the fair predicate to avoid starvation, which means that
any operation that is yet to be ordered, will be proposed. Because of this, all correct replicas will
eventually include o in a batch of operations for the same consensus instance i. Furthermore,
the γ predicate used in the VP-Consensus ensures that (1) the operations in the batch sent by the
consensus leader is not empty; (2) it is correctly signed; and (3) the sequence number of each
operation is the next sequence number expected from the client that requested it.

Since there are enough replicas starting i (due to Lemma 11), the Termination property of
consensus will hold, and the consensus instance will eventually decide a batch containing o in at
least n−f replicas. Because out of this set of replicas there must be f+1 correct ones, owill be
correctly ordered and executed in such replicas. Finally, these same replicas will send a REPLY
message to the client (line 17, Algorithm 11), notifying it that the operation o was ordered and
executed. Therefore, a valid operation requested by a client eventually completes.
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