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Executive Summary

Cloud computing today is shaped by the involvement of a large number of entities with diverse
trust relationships and by large-scale, complex systems. Security management, in particular in
a distributed way, is essential for achieving a trusted cloud service that fulfills the requirements
of high availability, fault tolerance, and scalability.

In this deliverable, we consolidate and analyze the requirements for distributed security
management, such as high-availability and federation among multiple entities in clouds, and
requirements for the adaption of security management in large-scale cloud infrastructures. We
propose a set of components and architectures that tackle the challenges of distributed security
management, managing large-scale and complex systems, and establishing trust among differ-
ent entities in cloud services. We can categorize these components and architectures into the
following high-level topics:

1. Security properties formalization and automated analysis

2. Distributed security management

3. Integrity assurance and local trust management

Security properties formalization and automated analysis Cloud computing and virtual-
ized infrastructures are often accompanied by complex configurations and topologies. Dynamic
scaling, rapid virtual machine deployment, and open multi-tenant architectures create an envi-
ronment, in which local misconfiguration can create subtle security risks for the entire infras-
tructure. This situation calls for automated deployment as well as analysis mechanisms, which
in turn require a cloud assurance policy language to express security goals for such environ-
ments. Where possible, configuration changes should be statically checked against the policy
prior to implementation on the infrastructure.

We study security requirements of virtualized infrastructures and propose a practical tool-
independent policy language for security assurance. Our policy proposal has a formal founda-
tion, and still allows for efficient specification of a variety of security goals, such as isolation. In
addition, we offer language provisions to compare a desired state against an actual state, discov-
ered in the configuration, and thus allow for a differential analysis. The language is well-suited
for automated deduction, be it by model checking or theorem proving.

Furthermore, we aim to introduce the Trusted Virtual Domain model in the Cloud archi-
tecture, in order to provide customers with a protected environment for their Virtual Machines
(VMs) where the containment and trust properties are guaranteed by the infrastructure and, at
the same time, to address the need for a strong isolation between tenants.

Distributed security management We approach the security and management concerns of
Cloud providers as well as users that stem from the dynamic nature of clouds. For example how
can Cloud providers assure users that: (a.) dependent applications running on different VMs are
hosted within physical proximity (for performance reasons); (b.) mutually exclusive VMs are
not hosted at the same physical server (e.g. for availability and security reasons); and (c.) when
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migrating VMs the new allocated physical servers satisfy users’ application requirements and
security and privacy criteria. We propose a framework which at this foundation stage focuses
on providing secure environment for the management of Clouds’ virtual layer. It also helps in
establishing trust in Cloud’s operational management.

Furthermore, we discuss the logical separation of security and cloud management, while
providing the necessary and required integration. We propose an architecture that integrates
Public-Key-Infrastructure (PKI) management with OpenStack.

Finally, we present DQMP, a decentralized, fault-tolerant, and scalable quota-enforcement
protocol. It allows, for instance, customers to buy a fixed amount of resources (e. g., CPU cycles)
that can be used flexibly within the cloud, and cloud providers to control resource usage of cus-
tomers on a cloud-wide scale.

Integrity assurance and local trust management Managing the allocation of Clouds virtual
machines at physical resources is a key requirement for the success of Clouds. Current im-
plementations of Cloud schedulers do not consider the entire Cloud infrastructure neither they
consider the overall user and infrastructure properties. This results in major security, privacy
and resilience concerns. We propose a novel Cloud scheduler which considers both users’ re-
quirements and infrastructure properties. We focus on assuring users that their virtual resources
are hosted using physical resources that match their properties without getting users involved
into understanding the details of the Cloud infrastructure.
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Chapter 1

Introduction

1.1 TClouds — Trustworthy Clouds

TClouds aims to develop trustworthy Internet-scale cloud services, providing computing, net-
work, and storage resources over the Internet. Existing cloud computing services are generally
not trusted for running critical infrastructure, which may range from business-critical tasks of
large companies to mission-critical tasks for the society as a whole. The latter includes wa-
ter, electricity, fuel, and food supply chains. TClouds focuses on power grids and electricity
management and on patient-centric health-care systems as its main applications.

The TClouds project identifies and addresses legal implications and business opportunities
of using infrastructure clouds, assesses security, privacy, and resilience aspects of cloud comput-
ing and contributes to building a regulatory framework enabling resilient and privacy-enhanced
cloud infrastructure.

The main body of work in TClouds defines an architecture and prototype systems for secur-
ing infrastructure clouds through security enhancements that can harden commodity infrastruc-
ture clouds and by assessing the resilience, privacy, and security extensions of existing clouds.

Furthermore, TClouds provides resilient middleware for adaptive security using a cloud-
of-clouds, which is not dependent on any single cloud provider. This feature of the TClouds
platform will provide tolerance and adaptability to mitigate security incidents and unstable op-
erating conditions for a range of applications running on a clouds-of-clouds.

1.2 Activity 2 — Trustworthy Internet-scale Computing Plat-
form

Activity 2 (A2) carries out research and builds the actual TClouds platform, which delivers trust-
worthy resilient cloud-computing services. The TClouds platform contains trustworthy cloud
components that operate inside the infrastructure of a cloud provider; this goal is specifically
addressed by Workpackage 2.1 (WP2.1). The purpose of the components developed for the
infrastructure is to achieve higher security and better resilience than current cloud computing
services may provide.

The TClouds platform also links cloud services from multiple providers together, specif-
ically in WP2.2, in order to realize a comprehensive service that is more resilient and gains
higher security than what can ever be achieved by consuming the service of an individual cloud
provider alone. The approach involves simultaneous access to resources of multiple commodity
clouds, introduction of resilient cloud service mediators that act as added-value cloud providers,
and client-side strategies to construct a resilient service from such a cloud-of-clouds.

WP2.3 introduces the definition of languages and models for the formalization of user- and
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application-level security requirements, involves the development of management operations
for security-critical components, such as “trust anchors” based on trusted computing technology
(e.g., TPM hardware), and it exploits automated analysis of deployed cloud infrastructures with
respect to high-level security requirements.

Furthermore, A2 will provide an integrated prototype implementation of the trustworthy
cloud architecture that forms the basis for the application scenarios of Activity 3. Formulation
and development of an integrated platform is the subject of WP2.4.

These generic objectives of A2 can be broken down to technical requirements and designs
for trustworthy cloud-computing components (e.g., virtual machines, storage components, net-
work services) and to novel security and resilience mechanisms and protocols, which realize
trustworthy and privacy-aware cloud-of-clouds services. They are described in the deliverables
of WP2.1–WP2.3, and WP2.4 describes the implementation of an integrated platform.

1.3 Workpackage 2.3 — Cross-layer Security and Privacy
Management

The overall objective of WP2.3 is to provide mechanisms to manage the privacy-enhanced re-
silience of the TClouds platform. The work package has three phases that span the three years
of the project. The goal during the first project year was to collect component requirements for
management operations and to explore the interaction between the various technologies and the
demonstration in WP2.4. Furthermore, several concepts and systems for selected management
tasks have been developed.

In the second year, the requirements for large-scale and distributed security management
have been consolidated. The components and the architecture have been developed further and
partially finalized. These components are mostly documented in the current deliverable, and
they show how the security objectives are can be implemented and managed on all different
layers concerned by the TClouds platform.

1.4 Deliverable 2.3.2 — Components and Architecture of Se-
curity Configuration and Privacy Management

Overview. This deliverable consolidates and analyzes the requirements for distributed secu-
rity management, such as high-availability and federation among multiple entities in clouds,
and requirements for the adaption of security management in large-scale cloud infrastructures.
Furthermore, we present a set of components and architectures that tackle the challenges of
distributed security management, managing large-scale and complex systems, and establishing
trust among different entities in cloud services. These components and architectures can be
categorized into the following high-level topics:

1. Security properties formalization and automated analysis

2. Distributed security management

3. Integrity assurance and local trust management

Topic 1 deals with the management of complex cloud infrastructures and establishes languages
for the specification of security policies, models for expressing security domains, and automated
tools for analyzing cloud infrastructures with respect to such security policies.
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In Topic 2, this deliverable presents components and architectures for empowering cloud
users with more management capabilities and security assurance, for logically separating se-
curity management and cloud management, and for enforcing resource quotas in a distributed,
scalable and fault-tolerant way. Thereby fulfilling the consolidated requirements for federated
and highly available security management.

Finally, Topic 3 incorporates trust anchors, such as Trusted Platform Modules, in the man-
agement tasks for cloud infrastructure. In this deliverable, we present an architecture for a new
workload scheduler that matches the security requirements of the cloud users with the attested
security properties of the cloud infrastructure resources.

Structure. The deliverable is structured in the following way: Chapter 2 presents the con-
solidated requirements for distributed security management and for the adaption in large-scale
cloud infrastructures. In Chapter 3, we introduce new languages and models for the expres-
sion of security policies and domains, and automated analysis of such policies is presented
in Chapter 4. These chapters partially appeared also as [BG11, BGM11]. Architectures and
components for distributed security management are aggregated in Chapter 5. This chapter par-
tially appeared also as [AAM11, BDK12]. Finally, Chapter 6 presents an architecture for the
integration of trust anchors in management tasks.

Deviation from Workplan. This deliverable conforms to the DoW/Annex I, Version 2.

Target Audience. This deliverable aims at researchers and developers of security and man-
agement systems for cloud-computing platforms. The deliverable assumes graduate-level back-
ground knowledge in computer science technology, specifically, in virtual-machine technology,
operating system concepts, security policy and models, and formal languages.

Relation to Other Deliverables. Figure 1.1 illustrates WP2.3 and its relations to other work-
packages according to the DoW/Annex I (specifically, this figure reflects the structure after the
change of WP2.3 made for Annex I, Version 2).

The present deliverable, D2.3.2, relates many of the technologies addressed by WP2.3 to the
trustworthy cloud infrastructure (WP2.1), specifically for managing security in a trustworthy
manner. The management of secure virtual layers and trusted virtual domains as described in
Chapters 3 and 5, as well as the trust anchors of Chapter 6, are key technologies in this respect.

D2.3.2 also provides mechanisms for assessing the security of the cloud-of-clouds middle-
ware (WP2.2), specifically through the formal assurance languages and automated validation
methods of Chapters 3 and 4, respectively. Selected components are developed as proof-of-
concept prototypes and integrated into the TClouds platform of WP2.4. They are described in
the corresponding deliverable D2.4.2.

D2.3.2 contributes the components and the architecture for cloud-computing security man-
agement to the development of the two application scenarios in WP3.1 and WP3.2. Further-
more, the components are validated in the context of WP3.3 (“Validation and Evaluation of the
TClouds Platform”, not shown in the figure).
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Chapter 2

Requirements and Analysis of Security Man-
agement

Chapter Authors:
Alexander Bürger, Michael Gröne, Norbert Schirmer (SRX),
Sven Bugiel, Stefan Nürnberger (TUDA)

In this chapter, we consolidate and analyze the requirements for the adaption of security man-
agement in large-scale cloud infrastructures and requirements of federation in the management
of TrustedInfrastructure clouds.

2.1 Adaption for Large-Scale Infrastructures

2.1.1 Introduction

The cloud is composed of many concepts, like virtualization, distributed storage, data bases
and so on. Some of those concepts may even have existed in a similar way in the pre-cloud
era, but their combination forms the cloud. Many enhancements for these basic concepts exist
in terms of security, trustworthiness, reliability or ease of use. Unfortunately, many of them
that do work in the scenario of that single concept cease to work when it comes to their large-
scale application, that is the dynamicity and flexibility of thousands of these instances working
together. The reasons are manifold and typically stem from assumptions that are no longer
true in the cloud, i.e. physical presence or a single machine. The cloud is designed to be as
flexible as possible in order to fulfill the requirements for tailored resources that are billed on a
pay-as-you-go model. For this to work every concept and component has to be flexible because
together they form the infrastructure and services that the cloud offers. However, and this tight
connection is limited by its weakest link in the chain of inter-operating components. We will
look at exemplary security enhancements for the cloud that are not yet deployed because their
large-scale adaption is currently infeasible.

2.1.2 Background

During the analysis conducted here, we assume an arbitrary component that already exists as
a small-scale prototype and adaptation to a large-scale component is planned. For the sake of
generality we do not assume a specific component but the following gives some examples in
order to support imagination of such a component. The component is further assumed to work
with respect to its functional requirements. However, its design might have to be adapted to
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work in large-scale (i.e., the cloud) in order to deliver the same functionality in a distributed,
large-scale infrastructure.

2.1.2.1 Mode of Operation

This component can operate as a central service for the whole cloud or as a local service for
individual physical or virtual machines. Which mode of operation is applicable highly depends
on the component itself.

Central Service An example of a central service is a service that needs to execute in an atomic
fashion, e.g. counting a variable or keeping track of used cloud services. Such a service could
be the cloud scheduler which is responsible for distributing load across the cloud infrastructure
and hence needs to have a complete overview of the cloud.

Local Service An example of a local service or component is a data base that is only attached
to one VM. It does not need to be central and even benefits from better performance due to good
locality to the running VM.

2.1.2.2 Example Components

Logging Logs of an operating system are designed to gather information about events that
happened in the past and might reveal an insight into why something happened (e.g. misconfig-
uration, attack traces etc.). However, as there is no physical access to a machine in the cloud,
accessing these logs from outside the VM is not possible. Consequently, logs can no longer be
used to identify misconfiguration errors that prevent a machine from booting. Moreover, con-
solidation of several logs in one file needs coordination in order to leave the logs in a consistent
state1. The multi-tenancy of clouds makes it also necessary to authenticate log messages which
in turn require a trust anchor for writing authenticated messages to the log.

Trusted Computing A key feature of Trusted Computing is attesting a hardware and/or soft-
ware configuration, e.g. to entrust the machine with secrets. Trusted Computing completely
builds upon the fact that a machines integrity is vouched for by the Trusted Platform Module
(TPM), a chip local to every physical computer. Cloud computing on the other hand virtual-
izes the work load and the physical machines where the VMs run on are selected by the cloud
providers scheduler in a way opaque to the customer. This black box behaviour is diametrically
opposed to the identification requirements of Trusted Computing.

Transactional Memory & Data bases Transactional memory or transactional data bases en-
sure that operations happen in an atomic manner, i.e. the operation either succeeded and is
visible to all subsequent operations or it failed completely and did not leave anything in an in-
consistent state. This behaviour needs a lot of communication overhead due to coordination and
hence imposes a significant slowdown in a distributed system like a cloud.

1Readers-Writers Problem http://en.wikipedia.org/wiki/Readers-writers_problem
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Random Numbers One of the key benefits of the cloud is the ability to clone machines as
they are no longer physical but virtual. This enables enormous scalability effects that are avail-
able at the touch of a button since a service can be multiplied by literally thousands of machines
instantaneously. As all machines are derived from a single instance in this scenario, the com-
plete state of all inherited clones is identical to begin with because they share the same past.
Their future deviation solely varies with their input. This can lead to unwanted and potentially
unsafe behaviour when it comes to random number generators. When all instances are cloned
from a single source they are very likely to produce the same series of random numbers as they
machine they were cloned from.

2.1.3 Cloud Provider Requirements

For the solutions to be actually adapted to a large-scale cloud, they have to climb certain ob-
stacles. First of all, cloud providers want to deliver a satisfying customer experience, which
means that new components need to be thoroughly tested before they can be used by poten-
tially millions of customers analogously to software development and testing life-cycles. This
process usually starts as a proof-of-concept and ripens until a satisfactory level of readiness for
large-scale deployment has been reached.

Generally, new concepts are only adapted to the cloud, when each of the following criteria
is met:

2.1.3.1 No negative impact

A newly introduced component must not affect the existing cloud in a negative way, compared
to status quo. Obvious surfaces of negative impact are:

Security The introduction of a new component could tear a hole in the security system already
in place at the cloud infrastructure.

Performance The introduction of a new component could slow down the throughput of the
network, could congest the computational power of the virtual machines or even the cloud
infrastructure-provided services or could consume valuable memory that could otherwise
be used to run virtual machines.

Latency The introduction of a new component could also affect the response times for virtual
machine start-up, network latency, resource availability and the like.

Reliability The introduction of a new component could affect the redundancy. Hence, it could
be a single point of failure or even unintentionally imede the availability of existing ser-
vices in the infrastructure due to errors or vulnerabilities in the new component.

2.1.3.2 Demand

New components will only be adapted, when there is

1. need on the customer side or

2. a law regulation forcing the providers to do so.
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Otherwise, there is no motivation in doing so. First, the development of a component is
costly and second, this is followed by maintenance costs. If the customers do not demand for
the component, the cost-benefit ratio has a negative impact on the cloud provider. Sometimes,
cloud providers are forced to implement components or processes that are required by law.
Usually, this is due to the fact that the cloud customer is the data owner, but not the data
processor (cloud service provider).

2.1.3.3 Risk & Market Penetration

When introducing a new service (component), there is a certain risk that it is not accepted by
the customers. The benefit of this service has to be as clear as possible to the customer in order
for him to estimate the benefit and hence to be willing to pay a potentially higher fee. This is
why cloud service providers are somewhat reluctant to adapt new services (which are usually
entangled with new costs, see above) until the competing cloud providers will also introduce
that new service. Otherwise, if the benefit of the new service is unclear to the customer, they
might only see the increased costs that are tied to its introduction.

2.1.4 Requirements Analysis for Transfer to Large-Scale Scenarios

Now that we have discussed the technical pitfalls in the previous sections, we analyse which
requirements are needed during the design phase of an algorithm or software so that these cloud
hurdles can be gracefully overcome.

Algorithm must be scalable - If an algorithm is parallizable, it is not necessarily sufficient to
be used in a large-scale multi-tenant environment, where every customer wants to have
the same performance experience regardless of the load of other systems. If an algorithm
is parallelizable but does not scale linearly, it effectively slows down when used by several
parties.

Algorithm must be elastic - Elasticity means that an algorithm must not be based on fixed
assumptions about the parallel work it can distribute, as the cloud is a highly dynamic
infrastructure that constantly changes. If calculation nodes are added and removed as a
consequence of load balancing or hardware failures, optimizations for a fixed assumption
of n nodes will fail if n changes.

2.1.4.1 Performance/scalability

During the design, attention should be paid whether an algorithm is parallelizable in general.
Some algorithms cannot be parallelized because executions or results depend on each other or
it would distort results. However, MapReduce [DG04] that was first introduced by Google,
can be applied to parallelize the processing of huge data sets. MapReduce works on so-called
embarrassingly parallel problems, that are workloads for which little to no effort is required
to divide them in sub-problems. In MapReduce, the Map phase splits the problem and dataset
in smaller chunks that can still be solved individually and distributes them on nodes that work
in parallel. These nodes may in turn again use a Map phase in order to divide their problem.
Then, the Reduce phase combines the delivered results so that the original question or problem
performed on the large dataset can be answered.
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2.1.4.2 Elasticity of the solutions

Scalability is a necessary step towards a large-scale cloud adaptation, but not a sufficient one.
An algorithm can work splendidly on a fixed number of n nodes, but cannot deliver adequate
performance if n changes. A cloud, however, is growing and shrinking rapidly every day. This
is due to failures and lack of resources, new hardware being added or power saving being
applied. The static assumptions of grid computing and clusters do not apply to a highly dynamic
environment such as the cloud.

2.1.4.3 Trust Establishment and Privacy Issues

Establishing trust in the cloud provider is always based on gaining knowledge about the provider’s
processes and infrastructure. Trusted Computing for example can be used to attest that a known-
good software is running on a remote, untrusted machine. The large-scale characteristic of the
cloud, however, renders this easy and secure process infeasible because it has two drawbacks:

1. Virtual machines are scheduled on physical hosts in a way not transparent to the user.
Hence, every physical host a VM runs on has to be attested to the customer.

2. This leads to identifiability of the physical hosts and scheduling algorithm or corporate
secrets in general and gives customers an insight that cloud providers are probably not
willing to share.

2.2 Federated Security Management for the TrustedInfras-
tructure Cloud

We analyse both the technical requirements and security requirements of federation in the man-
agement of the TrustedInfrastructure Cloud, and especially Trusted Virtual Domains (TVD),
which were both introduced in Deliverable D2.1.1 Chapter 13. In short, the TrustedInfrastruc-
ture Cloud is based on Trusted Computing technology, which ensures and measures integrity
of all components (management and servers) and provide Trusted Virtual Domains, which are
isolated virtual computing and networking resources, secured by encryption. With federation
we mean the cooperation of the management components of different stakeholders which col-
laborate or provide infrastructure as a service to other stakeholders.

2.2.1 Requirements Analysis
The TrustedInfrastructure Cloud as used in the TClouds project was introduced in Deliverable
D2.1.1 Chapter 13, and the key concepts of their management are described in Deliverable
D2.3.1 Chapter 6. Therefore, in this section we only shortly summarize some of the core notions
here.

In the TrustedInfrastructure Cloud, a management component, called TrustedObjects Man-
ager (TOM), manages a set of appliances, in case of TClouds these are the TrustedServers (cf.
Figure 2.1).

Central to Trusted Infrastructures is the concept of security zones called Trusted Virtual
Domain (TVD) [CLM+10, CDE+10], which allows to deploy isolated virtual infrastructures
upon shared physical computing and networking resources. By default, different TVDs are
strongly isolated from each other.
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Figure 2.1: Schematic Trusted Infrastructure - TrustedServers managed by TrustedObjects
Manager.

As a public cloud typically hosts various tenants, multi-tenancy of the management com-
ponent is required. Therefore, the default behavior of the TrustedInfrastructure Cloud is to
strongly isolate the TVDs of different tenants. However, in practice different organizations may
want to collaborate which requires to weaken the isolation in a controlled way.

2.2.1.1 Application Scenarios

We describe several application scenarios that motivate the requirements and use-cases for fed-
erated security management. The technology and structure just described for the TrustedInfras-
tructure Cloud is not only applicable for cloud computing, which basically means management
of servers. In fact, our work is based on previous work focused on trustworthy desktop systems
and their management. In the following use cases this shows up as we also consider on premise
systems as part of the ‘TrustedInfrastructure’. For example an organisation wants to securely
connect on premise systems (e.g. a desktop computer) with cloud systems in the same TVD.
that The scenarios are based on the following actors:

• Organisation : A party (e.g. company or federal authority) that may want to extend their
infrastructure for data and computation beyond their premise boundaries, e.g., use cloud
resources or collaborate with another party.

• Provider : An organisation providing infrastructure, such as a cloud provider.

/AS 10/ Provider manages both cloud and organisation infrastructure
This is a very basic setup that is especially attractive to small companies that want to completely
outsource the management of their infrastructure (see Figure 2.2). The provider manages both
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the on premise infrastructure of the organisation (e.g., desktops, laptops, mobile devices) as well
as cloud resources such as storage and servers. In this scenario, either the provider needs a man-
agement component that can both manage the organisations infrastructure as well as the cloud
infrastructure, or the provider may delegate the infrastructure management to its customers,
e.g., by offering them a management interface. Multi-tenancy of the management component is
a crucial requirement here, as the provider needs to work on behalf of different organisations.
This includes the infrastructure management as well as the security management.

Trusted Cloud ProviderInternal Infrastructure

Trusted Management Channel

Cloud TOM

TrustedServer

TrustedDesktop

VoIP telephone

Mobiles

Office

TrustedServer

Figure 2.2: Scenario 1: Single infrastructure spanning internal and cloud resources

/AS 20/ Provider manages cloud and organisation manages own infrastructure
In this scenario the organisation manages their own on premise infrastructure and only extends
its infrastructure into the cloud managed by the provider (see Figure 2.3). Resources in the
providers infrastructure are then allocated on behalf of the organisation.

Since the organization’s infrastructure and security policy is defined by the management
component of the organisation, it conceptually acts as the master, while the management com-
ponent of the provider acts as a slave. Therefore, the provider’s management component re-
trieves management information and deploys it in its cloud infrastructure.

/AS 30/ Two organisations collaborate
In this scenario two organisations host their own infrastructure, independent of each other. They
decide to collaborate and want to be able to exchange information (see Figure 2.4). Each or-
ganisation also has their own TVD-based security policy managed by their own management
component. Exchange of information is governed by a shared TVD which has to be estab-
lished between the two management components. In contrast to Scenario /AS 20/, there is no
conceptual master / slave relationship between the organisations. This also includes that the
organisation does not allocate infrastructure resources on the other organisations infrastructure.

/AS 40/ Two organisations collaborate via third party cloud
This scenario combines Scenario /AS 20/ and Scenario /AS 30/. As in Scenario /AS 30/ two
organisations decide to collaborate and exchange information via a shared TVD. In contrast
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Figure 2.3: Scenario 2: Extend infrastructure into cloud
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Figure 2.4: Scenario 3: Direct collaboration between two organisations

to Scenario /AS 30/, this shared TVD is deployed on the infrastructure of a cloud provider to
establish shared storage or shared computation resources (see Figure 2.5).

2.2.2 Security Requirements

This section describes the security environment, including assumptions, assets, the threat model,
and the security objectives related to the technical requirements described in subsection 2.2.1

2.2.2.1 Assumptions

We now describe the assumption on the security aspects of the environment in which the feder-
ated security management will be used. This includes
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Figure 2.5: Scenario 4: Collaboration between two organisations via cloud resources

• information about the intended usage of the management component, including such as-
pects as the intended application, potential asset value, and possible limitations of use,
and

• information about the environment of use, including physical, personnel, and connectivity
aspects.

In particular, this includes the following assumptions:

/A 10/ Trusted Platform
The Trusted Infrastructure components (TOM and TrustedServer) are built on top of a trusted
platform, employing trusted computing technology (e.g. TPM and remote attestation) and a
security kernel.

/A 20/ Isolation of Organisations
Within a single Trusted Infrastructure, organisations are isolated from each other.

/A 30/ Inner Organisation Information Flow
Within an organisation, TVDs are isolated by default and an information flow is only granted
according to the organisations security policies, in particular the information flow rules.

2.2.2.2 Assets

The assets describe the primary information under control of the security management. In gen-
eral, we distinguish data from information. Data contains information, but this information
might be encrypted, e.g. within a TVD. So data may be exchanged without revealing the infor-
mation by means of cryptography. The assets that might be compromised by adversaries and
should be protected by security objectives are:
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/D 10/ TVD Information
The primary asset is the information stored within a TVD. This is the organisations primary
data which may be mission critical for their business.

/D 20/ TVD Policy
The secondary asset is the TVD policy itself, especially the information flow policies which
determine the admissible information flows.

2.2.2.3 Threat Model

We now identify possible threats that may compromise the assets.

/T 10/ Unauthorized TVD Sharing
An organization may get unauthorized access to TVD information of another organization by
connecting one TVD of its own environment to one TVD of the other organization without
authorization.

/T 20/ Modified Hypervisor
A malicious administrator of a cloud provider may get unauthorized access to TVD information
of a hosted organization by modifying the used hypervisor such that it, e.g., copies the TVD
information in regular intervals.

/T 30/ Modified Security Policy
A cloud provider may get unauthorized access to TVD information of a hosted organization by
modifying the security policy of its hosted infrastructure of that organization.

/T 40/ Unauthorized Storage Access
A malicious administrator of a cloud provider may get unauthorized access to TVD informa-
tion by reading the TVD information from persistent storage such as hard disks of the cloud
infrastructure.

/T 50/ Unauthorized Network Access
A cloud provider may get unauthorized access to TVD information by reading the TVD infor-
mation from its network.

2.2.2.4 Security Objectives

Now we describe the security objectives the federated management component should guaran-
tee.

/O 10/ Inter Organisation Information Flow
Access to TVD information by an external organisation is permitted only according to the inter-
organisation information flow policy. After an organisation disconnect a shared TVD, no new
information should be accessible for other organisations.
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/O 20/ Security Policy Integrity
The provider must not be able to modify the security policy enforced on behalf of a managed
organization.

/O 30/ Trusted Hypervisor
Only authorized hypervisor configurations running on top of the of the provider’s infrastructure
should have access to TVD information of hosted organizations.

/O 40/ Secure TVD Information
The integrity and confidentiality of TVD information under control of the cloud provider’s
infrastructure, including computation, network, and persistent storage has to be guaranteed.

/O 50/ Authorized Sharing of TVDs
Sharing of two TVDs of two organizations is only allowed if both involved organizations agree
and if the security policy of the used TVDs do not contradict.

2.2.3 Use Cases
From the scenarios above we have extracted the use cases that have to be provided by the
federated management component.

USE CASE UNIQUE ID /UC 10/ (Add organisation)
DESCRIPTION A cloud provider adds a new organisation to the in-

frastructure
ACTORS Provider
PRECONDITIONS Organisation not yet part of infrastructure
POSTCONDITIONS Organisation is ready to use resources of infrastruc-

ture
NORMAL FLOW

1. An administrator of the cloud provider adds the
organisation in the management console

USE CASE UNIQUE ID /UC 20/ (Register provider)
DESCRIPTION Register cloud provider within internal infrastructure

and specify which TVDs may be deployed in cloud
ACTORS Organisation
PRECONDITIONS

POSTCONDITIONS Organisation can deploy resources within the
providers infrastructure

NORMAL FLOW
1. An administrator of the organisation adds a

provider in the management console and selects
TVDs which may be deployed
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USE CASE UNIQUE ID /UC 30/ (Allocate provider resources)
DESCRIPTION An organisation allocates resources (virtual machines

or storage) in the providers infrastructure
ACTORS Organisation
PRECONDITIONS Provider is registered and TVD is selected to be de-

ployed
POSTCONDITIONS Organisation can access the resources from within the

same TVD
NORMAL FLOW

1. An administrator of the organisation allocates
resources from his management console

USE CASE UNIQUE ID /UC 40/ (Deregister from provider)
DESCRIPTION An organisation deregisters from using providers in-

frastructure
ACTORS Organisation
PRECONDITIONS Organisation is registered with the provider
POSTCONDITIONS Organisation can no longer access resources at the

provider
NORMAL FLOW

1. An administrator of the organisation unregisters
via his management console

USE CASE UNIQUE ID /UC 50/ (Register other organisation for collabora-
tion)

DESCRIPTION An organisation registers an other organisation for
collaboration and specifies which TVDs are available
for the other organisation to share information

ACTORS Organisation
PRECONDITIONS

POSTCONDITIONS The other organisation can select a TVD to share in-
formation

NORMAL FLOW
1. An administrator of the organisation selects the

other organisation and the TVDs

TClouds D2.3.2 Page 16 of 123



D2.3.2 – Components and Architecture of Security Configuration and
Privacy Management

USE CASE UNIQUE ID /UC 60/ (Select a shared TVD from other organi-
sation)

DESCRIPTION An organisation selects a shared TVD from an other
organisation

ACTORS Organisation
PRECONDITIONS The TVD of the other organisation selected as shared

TVD
POSTCONDITIONS Both organisations can now use the shared TVD to

exchange information
NORMAL FLOW

1. An administrator of the organisation selects the
other organisation shared TVD
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Cloud computing and virtualized infrastructures are often accompanied by complex configu-
rations and topologies. Dynamic scaling, rapid virtual machine deployment, and open multi-
tenant architectures create an environment, in which local misconfiguration can create subtle
security risks for the entire infrastructure. This situation calls for automated deployment as
well as analysis mechanisms, which in turn require policy languages and models to express
security goals for such environments.

In Section 3.1 of this chapter, we propose a practical tool-independent policy language for
security assurance. Our policy proposal has a formal foundation, and still allows for efficient
specification of a variety of security goals, such as isolation. In addition, we offer language
provisions to compare a desired state against an actual state, discovered in the configuration,
and thus allow for a differential analysis. The language is well-suited for automated deduction,
be it by model checking or theorem proving.

In Section 3.2, we aim to introduce the Trusted Virtual Domains (TVD) model in the Cloud
architecture in order to provide customers with a protected environment for their VMs where
the containment and trust properties are guaranteed by the infrastructure and, at the same time,
to address the need for a strong isolation between tenants. This model is suitable for automated
deployment and an implementation based on libvirt is described.

3.1 A Virtualization Assurance Language for Isolation and
Deployment

3.1.1 Introduction
Cloud and large-scale virtualized infrastructures give rise to complex configurations. This com-
plexity is a side-effect of highly dynamic scaling, rapid machine deployment and open multi-
tenant systems. The complexity renders clouds challenging to administrate with respect to
achieving all security requirements. This holds for cloud providers as well as their subscribers.
The side effects of configuration changes to high-level security goals, such as isolation of ten-
ants, are non-trivial at best. This is particularly true when performing local low-level configu-
ration changes.
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Indeed, research has established that configuration problems in complex environments are
likely to result in security problems. A study of problems in large-scale Internet services by
Oppenheimer et al. [OGP03] highlights configuration problems as the major source of security
issues. We conjecture that these results also apply to virtualized infrastructures and clouds,
because these infrastructures are large-scale, interconnected, heterogeneous systems, as well.
In addition, studies by Berger et al. [BCP+08] point out a complexity increase introduced by
the virtualization of the infrastructure.

Given the impact of configuration problems on large-scale infrastructures, we suggest that
global high-level security properties must be verified complementary to local low-level ones.
This is because local security properties do not compose gracefully to fulfill goals for the entire
topology. Let us exemplify this rationale in the case of isolation for a multi-tenant virtualized
infrastructure. Even if an administrator configures all resources well with regard to local policy
decisions, such as firewall policies for virtual machines or access control policies for virtual
storage, there still may be information flow through the connections of the topology, be it by
covert channels between virtual machines on the same hypervisor, inter-zone VLAN traffic, or
shared physical storage areas.

The complexity of cloud configuration with respect to assuring high-level security goals is
tantalizing. It calls either for infrastructure-wide access control and deployment mechanisms to
enforce the security goals automatically or for verification mechanisms to check for breaches
of the goals. In any case, we need a specification language for high-level assurance goals. Such
a language plays a different role in the three cases mentioned: First in the access enforcement
case, the security assurance language is an auxiliary input to the policy decision engine that
has in turn the function to ensure that the high-level assurance goals are preserved by access
requests. Second in the automated deployment case, the deployment mechanism establishes
deployment patterns that maintain the high-level security goals. Best practices and deployment
templates that incorporate some security targets are insufficient to fulfill high-level security
goals for the entire topology, because a series of local configuration transitions, which fulfill a
local-view security property, may still breach a topology-level security goal in a global view.
Third in the verification case, the high-level security goals constitute the verification target
against which the actual infrastructure is evaluated.

There already exist specification languages for virtualized environments. These languages
aim at provisioning (cf. [DMT10, MGHW09]), or network and reachability properties, e.g.,
firewall topology or distributed network access control [DDLS01]. In the former case, the
specification languages are restricted to single resources, notably virtual machines, however do
not have provisions for statements over the topology. In the latter case, the languages have
provisions to model the topology and properties thereof, however they do not provide language
primitives for expressing diverse security statements as needed in virtualized infrastructures.

We derived the following three categories of interesting security statements for virtualized
infrastructures from existing research literature such as [BCP+08, OGP03, RTSS09a]: opera-
tional correctness, failure resilience, and isolation. First, operational correctness ensures that
services are correctly deployed and that their dependencies are reachable. Second, failure re-
silience ensures that the effects of single component failures cannot cascade and affect many
entities. Third, isolation ensures that different security zones are properly separated and that
traffic between security zones is only routed through trusted guardians.

The goal of this work is to study such high-level security properties of virtualized infrastruc-
tures and propose a policy language to express these as goals. We call the resulting language
Virtualization Assurance Language for Isolation and Deployment (VALID).

TClouds D2.3.2 Page 19 of 123



D2.3.2 – Components and Architecture of Security Configuration and
Privacy Management

3.1.1.1 Contribution

We contribute the first formal security assurance language for virtualized infrastructure topolo-
gies. More precisely, we model such an assurance language in the tool-independent Interme-
diate Format IF [AVI03], which is well suited for automated reasoning. We lay the language’s
formal foundations in a set-rewriting approach, commonly used in automated analysis of se-
curity protocols, with access to graph analysis functions. In addition, we propose language
primitives for a comparison of desired and actual states. As a language aiming at expressing
topology-level requirements, it can express management and security requirements as promoted
by [DDLS01]. Management requirements in the cloud context are, for instance, provisioning
and de-provisioning of machines or establishing dependencies. Security requirements are, for
instance, sufficient redundancy or isolation of tenants. To test soundness and expressibility
of our proposal, we model typical high-level security goals for virtualized infrastructures. We
study the areas deployment correctness, failure resilience, and isolation, and propose exemplary
definitions for respective security requirements in VALID.

3.1.1.2 Outline

We structure this work in a top-down way. We first propose infrastructure-level assurance goals
for virtualized systems in Section 3.1.2. These goals are a diverse sample of the language scope.
In Section 3.1.3, we specify our requirements on the cloud assurance language on a meta-level.
We lay the language’s formal foundations in Section 3.1.4, that is, we introduce its roots in
the Intermediate Format IF [AVI03] and our cloud-specific language primitives and syntax. In
Section 3.1.5, we propose formal specifications of checkable attack states for the assurance
goals defined in Section 3.1.2. Thereby, we exemplify the use of VALID in its application
domain. We briefly discuss a virtualization assurance tool that would incorporate VALID in
Section 3.1.6. We compare our cloud assurance language proposal to other policy language and
virtualization security efforts in Section 3.1.7.

3.1.2 Virtualized Systems Security Goals
We distilled three categories of virtualized systems security goals based on common problems
described in existing research literature: Operational Correctness, Failure Resilience, and Iso-
lation. Furthermore, for each of these categories we identified specific goals that our language
should be capable of capture and express efficiently. Figure 3.1 depicts a simple virtualized
system example that we will use to illustrate the different security goals.

3.1.2.1 Operational Correctness

Operational correctness describes that a service is both correctly deployed and reachable. It
bears some similarity to the Liveness property introduced in [AS86, Lam77] and informally
states that “good things” will eventually happen for a service. Configuration mistakes often
lead to unavailability of services in traditional data center environments (cf. [OGP03]) and is
only intensified in virtualized environments due to their increasing complexity (cf. [BCP+08]).

Deployment correctness means that an entity is deployed in correct operational conditions,
which includes multiple factors: i. The geographic location of the host system can have legal
and technical consequences, e.g., conflicts with privacy laws, or long end-to-end delay due to
geographic disparity. ii. Properties of the host system such as capabilities and reliability can
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Figure 3.1: Virtualized System Example

have a significant impact on the service. iii. Furthermore, the configuration of the host system
and service has to be correct that the service can actually be run on the host.

Reachability means that an entity is connected to all its operational dependencies. On one
hand, these dependencies can be network reachability, i.e., the VM and physical host are actu-
ally reachable over the network from the client-side. On the other hand, these dependencies can
be resource dependencies in general, e.g., that a VM is able to access services on other nodes.
All such dependencies have to be fulfilled in order that the operational correctness of the service
is given.

3.1.2.2 Failure Resilience

Failures of components in a computing environment are unavoidable, but a resulting failure of
services, which are visible to the end users, can be mitigated. Such containment of component
failures are pointed out in [OGP03] and can be summarized as: failure compartmentalization
due to Independent failure, and prevention of cascading failures and limitation of failure impact
due to the Redundancy.

Independent failure means that failures of an entity are well-contained and that dependencies
of entities with the same function will fail independent from each other. This goal nurtures a
diversity of the components deployed in the computing environment. A typical software stack
in a virtualized system consists of a hypervisor, management operating system, virtual machine
system, and the service application. A diversity in this stack, such as using different hypervisors
from different vendors, will have an isolated failure in case of faults in one of these hypervisor
implementations. Independent failure can be satisfied in the example scenario, in case the
hypervisors HypA and HypB hosting the service VMs are provided by different vendors.

Redundancy means that sufficient replication enforces that individual component failures
will leave overall service availability unharmed. The necessary level of redundancy depends
on the desired failure resilience for a service, which also depends on its criticality. Sufficient
redundancy implies the absence of a single point of failure (SPoF). A SPoF exists in a system,
if a dependency of a service is only satisfied by one entity in the whole system. The absence
of such a SPoF entity will increase the failure resilience due to the limitation of a cascading
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failure effect on dependent services. In our example, the service running in VMA is replicated
in VMA’, both running on different physical machine and interconnected with two independent
network links.

3.1.2.3 Isolation

In virtualized environments, such as public infrastructure clouds, we see multi-tenancy in order
to increase the utilization of the system. Isolation compares to Safety [AS86, Lam77] that
undesired information flow do not happen. In [RTSS09a], the problem of undesired information
flow in public infrastructure clouds was exposed.

Isolation of zones means that specified security zones are isolated from each other, either by
correct association of machines to zones or by enforcement of flow isolation between any entity
of different zones. A security zone can be any set of entities in the virtualized environment.
For example, a zone in the case of tenant isolation is the set of resources used by a tenant, and
zone isolation is given if the tenants do not have access to common resources. In the illustrated
example, we have defined two security zones Zone A and Zone B that are disjoint, i.e., isolated
of each other.

Guardian mediation means that information flow between zones is allowed if, and only if,
mediated by a trusted guardian. In case information flow is allowed between the two security
zones defined in our example case, the Firewall guardian has to mediate the traffic between the
zones.

Chinese wall The Chinese wall policy [BN89] in the context of virtualization security de-
scribes that a physical host is not serving VMs of conflicting tenants. Such a policy can be
implemented using the sHype [SVJ+05] hypervisor. VMA and VMC in our example case are
virtual machines of conflicting tenants, therefore they can not be hosted on the same physical
host with regard to the Chinese wall policy.

Secure channels The goal of secure channels describes that certain information flow is only
permitted over secure channels, such as provided by VLAN or VPN in terms of network re-
sources. A VPN link is established between HostA and HostB in our example that acts as a
secure channel.

3.1.3 Requirements

3.1.3.1 Formal Foundations

Virtualized environments can gain complexity beyond human oversight and therefore require
tool-supported deployment and analysis. Thus, we expect the security assurance language to
have formal rigor and be suitable for automated reasoning. This requirement implies a simple,
mathematical structure with controllable state space.

3.1.3.2 Expressibility

There are many different security requirements imposed on virtualized infrastructures. There-
fore, we require that the security assurance language needs to be able to efficiently express a
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wide range of security properties as discussed in Section 3.1.2. First, the language needs to
have three expression layers: i. statements about properties of resources, e.g., their IP address
or functional classification, ii. set operations, such as membership in security zones, iii. graph
operations, such as existence of an information flow or dependency path in a graph model of the
topology. Second, the language needs to be reflexive and self-contained, that is, one can define
new security goals with the existing terms of the grammar and without the need of auxiliary
grammar.

As a corollary of this requirement, we propose that the security assurance language shall
express attack states, that is, states in which a security property is violated, as well as ideal
states, that is, states that assure a correct system behavior. Whereas the first approach is suitable
for more efficient security analysis (model checking) without complete state exploration, the
second approach is suitable for complete verification (theorem proving).

3.1.3.3 Tool and Standard Independence

Virtualized environments are still a young field without settled predominant standards. There-
fore, we require the specification language to be independent from a specific vendor’s tool or a
specific standard.

3.1.3.4 Desired State Comparison

The validation of security properties of virtualized environments provides two different views
on the state of such a virtualized infrastructure: a desired state or the ideal world, as specified
in the policy, and an actual state or real world, i.e., the current configuration of the virtualized
infrastructure. One specific goal of our assurance language is to express comparisons of a
desired state and an actual state discovered in a configuration. Sometimes it is necessary to
make statements about ideal elements as well as real elements in the very same policy statement.
Consider the example that a VM should be hosted on a specific host. Or in other words, the
goal is breached if the VM is hosted on a different machine than specified. This breach can be
efficiently captured using both elements from the ideal and real world in one policy statement.
We specify that we have an ideal machine hosting the VM and also a real machine hosting the
same VM. In order to describe the placement breach, we say that these two machines do not
correspond to each other, i.e., the real machine is not the same as the ideal one in terms of the
given properties. Therefore, if such a statement holds, we observed a placement breach.

3.1.4 Language Syntax

We propose a specification and reasoning language for security properties of virtualized envi-
ronments based on set-rewriting and conditions over states.

VALID uses a subset of the AVISPA Intermediate Format IF [AVI03] as its basis, a meta-
language for automated deduction based on set manipulation and conditions over state expres-
sions. We chose IF as the basis for our work because of its capability to efficiently express
goals as stated in Section 3.1.2, its natural extensibility to state transition formulations, its tool-
independence, and its close relation to general-purpose automated deduction, which is given due
to the strong formal foundation of IF, and its support by model checkers and theorem provers.
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Table 3.1: Basic type constants for virtualized infrastructures.
Type Symbol Description

node denotes the superclass of types in TN.

machine denotes a virtual machine.
hypervisor denotes a hypervisor on a host or VM.
host denotes a physical host.

machineOS denotes an operating system of a virtual
machine.

hostOS denotes an operating system of a phys-
ical host.

network denotes a network component.

zone denotes an isolation zone of an infras-
tructure.

class denotes a functional class of similar
components.

3.1.4.1 Term Algebra and Atomic Terms

We start from atomic terms, that is constants and variables. The value of a constant is fixed, e.g.,
the symbol for the type machine. We call the set of all constant terms signature. A variable can
be matched against any value (of matching type). Atomic terms with different symbols have
different values.

Definition 1 (Term Algebra) We define a term algebra over a signature Σ and a variable set
V . Constants and variables are disjoint alphanumeric identifiers: constants start with a lower-
case letter; variables start with an upper-case letter. We typeset IF elements in sans−serif.

The signature Σ contains a countable number of constant symbols that represent resource
names, numbers and strings.

The atomic terms are typed (see Table 3.1):

Definition 2 (Type System) We have a set of basic types:

T := {node,machine,host,hypervisor,machineOS,
hostOS,network, zone, class}

We write t : τ for a term t having type τ . Variables can be untyped or typed. If a variable has
a basic type, it can generally only be matched against a constant with matching type. The type
symbol node represents a super-type: variables of type node can match against types in the
sub-set:

TN := {machine,host,hypervisor,
machineOS,hostOS,network}

To analyze topologies, we model virtualized infrastructure configurations as graphs. Whereas
the basic graph, called realization, is a unification of vendor-specific elements into abstract
nodes, we introduce further graph transformations to model information flow and dependen-
cies.
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Definition 3 (Graph Types) A graph type G ∈ {real, info,depend} is a constant identifier
for a type of a graph model:

• real denotes a realization graph unification of resources and connections thereof.

• info denotes a realization graph augmented with colorings modeling topology informa-
tion flow.

• depend denotes a realization graph augmented with colorings modeling sufficient con-
nections to fulfill a resource’s dependencies.

3.1.4.2 Function Symbols and Dependent Terms

Definition 4 (Function Symbols) Σ contains a finite set of fixed function symbols.

• pair(A,B) denotes a pair.

• contains(S,E) denotes a untyped set membership relationship of a set S and element E.

• matches(I,R) denotes the correspondence between an element of the ideal world I and
the real world R. Both elements I and R must have the same type.

• edge([G : real]; A,B) is a predicate, which denotes the existence of a single edge be-
tween A and B with respect to an (optional) graph type G.

• connected([G : real]; A,B) is a predicate, denotes existence of a path between A and B,
respect to an (optional) graph type G.

• paths([G : real]; A,B) denotes the complete search of all paths between A and B, with
respect to an optional graph type G. The resulting type of the function is a set of edge
pair sets.

The notation [A : v] denotes an optional argument A with default constant value v.

Observe that the graph functions allow an optional graph type argument G (Definition 3), which
specifies the graph type the function is applied to.

We introduce the notion of dependent terms to model access to resource properties, such as
IP address ipadr(M) or image type imagetype(M) of a machine M.

Definition 5 (Dependent Term Function Symbols) A dependent term is a function symbol de-
noting the mapping of constant values to atomic terms. Σ includes a fixed set of constant sym-
bols for dependent terms.

3.1.4.3 Facts, State and Conditions

VALID aims at reasoning over secure and insecure states of a cloud topology, which we model
as a set of known facts.

Definition 6 (Facts and State) A Fact represents a Boolean piece of knowledge: it can be ei-
ther true or false. A state is a set of ground facts. We express such sets by a dot-operator (“.”),
that is, a commutative, associative, idempotent operator, which joins all elements of a state.

Conditions restrict state terms with auxiliary predicates:
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Definition 7 (Condition) A condition is an inequalities predicate over terms. We define the
condition function symbols for equality equal(Term,Term) and less-or-equal leq(Term,Term)
over terms as well as negation not(Condition) and conjunction operator & Condition over
conditions with their natural semantics.

3.1.4.4 State Transitions

In general, an IF specification consists of an initial state and a finite set of transition rules,
defining a transition relation.

Definition 8 (Transition Rules) Transition rules have form

PF .NF C =[V]⇒ RF

where

• PF and RF are sets of facts, NF is a set of negated facts of the form not(f ) where f is
a fact,

• C is a set of conditions and

• V is a set of variables.

We distinguish the left-hand side (LHS) defining the preceding state and the right-hand side
(RHS) defining the result state. The variables V are existentially quantified in the rule to in-
troduce fresh variables during transitions. RF defines the resulting facts. The variables of
RF must be a subset of the variables of the positive facts PF and the existentially quantified
variables V .1

Note that transition definition does not enforce transition determinism, that is, that result
states are unambiguously defined from the preceding state. IF, being a formal language for
model checking, focuses on exploring the state space and determining reachability of attack
states, possibly following multiple routes.

We focus on specification of security goals over static states and will only specify initial and
goal states. We leave analysis of dynamic systems to future work.

3.1.4.5 Goals

We define goals by specifying an abstract state which constitutes attaining the goal. For an
analysis we pattern-match a Fact set modeling the goals constrained by a conditions list against
the actual analysis state.

Definition 9 (Goal) A goal state is a set of positive and negative facts constrained by a (poten-
tially empty) condition list. It is specified with a unique identifier, an optional graph type G and
a variable list as interface. It has the form:

goal Identifier ([G : real]; VariableList) :=
PF .NF C

where PF and NF are positive and negative fact sets and C a condition list. The graph type G
determines the graph type of unparametrized graph functions used in the goal.

1Note that this excludes the variables only occurring in negative facts and conditions.
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Example 1 (Goal) Let us consider a simple isolation breach attack state, which matches against
a state, in which disjoint zones ZA and ZB contain machines MA and MB respectively, and in
which there exists an information flow path between these two machines. It is determined as
information flow goal by the graph type info. Observe that the goal is defined over variables
and can match against any state with constant zones and machines fulfilling this relation and
that the matching values must be different.

goal i s o l a t i o n b r e a c h ( i n f o ; ZA, ZB,MA,MB) :=
conta ins (ZA,MA) . conta ins (ZB,MB) .

connected (MA,MB)

3.1.4.6 Structured Specifications

Specification of our language consists of distinct sections: The TypesSection introduces all
atomic terms that will be used throughout the analysis. The type section may have two sub-
sections for real and ideal type declarations. The InitsSection specifies initial knowledge on
entities. For instance, here one would specify properties of machines that can be used for iden-
tifying the machine, such as the machine’s IP address as Condition over machine properties.
Knowledge specified here can be about ideal and real entities. The RulesSection specifies the
knowledge on the structure of the virtualized infrastructure. For instance, it specifies which
machine elements are associated with which isolation zones. Note that the topology specified
in this section is particularly important to model the system’s ideal state. Finally, the GoalsSec-
tion defines attack and assurance states which are matched against analysis results.

3.1.4.7 Dual Type System

We introduce the declaration of ideal and real types, that is a dual type system.

Definition 10 (Dual Types) For each constant or variable symbol, we explicitly declare symbol
to be either universal or restricted to the ideal or real model. A declaration in the top-level of
the TypesSection means universal, a declaration in the subsections idealTypes and realTypes
restricts the declaration to the respective model. The matches(·, ·) fact denotes that two sym-
bols of ideal and real world have a correspondence with each other.

3.1.5 Attack State Definition
We model the security goals from Section 3.1.2 as abstract attack states. In case the state is
reached, a tool will alert that the corresponding goal has been breached. This approach aims at
security analysis by, for instance, model checking.

To facilitate an actual security analysis, one complements these abstract goals with specifi-
cations of the ideal state of the system in two areas: First, one defines the initial knowledge on
entities (InitsSection), that is, properties modeled as dependent terms, such as IP address. Sec-
ond, one defines the knowledge of the ideal structure of the topology (RulesSection) as initial
state, that is, facts known on contains, matches or edge relations.

3.1.5.1 Operational Correctness

For the operational correctness from Section 3.1.2.1, we model deployment breach as exemplary
attack state.
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Deployment Breach: Deployment breach considers in how far VMs are placed on an incor-
rect hypervisor or physical machine.

Definition 11 (Deployment Breach) A deployment breach is an attack state over some virtual
machine M and two different hosts (HA, HB), in which edge(HA,M), i.e., M is hosted on HA,
is a specified fact, but edge(HB,M) was observed.

sec t ion types :
M : machine
subsect ion idealTypes :

HA : host
subsect ion realTypes :

HB : host

sec t ion goals :
goal deploymentBreach ( r e a l ; HA,HB,M) :=

not ( matches (HA,HB) ) . edge (HA,M) . edge (HB,M)

After declaring Fact that HA does not match HB, the left-side of the statement contains
the matched facts of the ideal world, that is, edge(HA,M), the right side of the statement the
observed fact of the real world edge(HB,M).

Unreachability: Unreachability is an attack state that there does not exist a path between a
machine and a dependent resource in the dependency graph.

Definition 12 (Unreachability) A unreachability is an attack state over some machine M and a
resource set {RA, . . . ,RN}, on which M depends. The attack state is triggered if no dependency
path between M and at least one of the needed resources RI exists.

3.1.5.2 Failure Resilience

Single Point of Failure:

Definition 13 (Single Point of Failure) A single point of failure is an attack state over any
machine M and any two different resources (RA, RB) with equivalent function. A single point
of failure exists if only path(M,RA) holds, but not(path(M,RB)) for any RB.

In general, a single point of failure exists if there is only one dependency path between a re-
source and its dependencies. This requires knowledge what the dependencies of a certain re-
source (type) are and which other resources can fulfill the same function. For instance, for a
network single point of failure, one may consider all network switches that connect to the Inter-
net, independently from the ones connecting to the Intranet. We therefore define different attack
state goals for different resource types and model the goals with functional classes of resources
fulfilling the same purpose.
sec t ion types :

M : machine
NA, NB : network
C : c lass

sec t ion goals :
goal s inglePoF Net ( depend ; NA,NB,M,C) :=

conta ins (C,NA) . conta ins (C,NB) . connected (M,NA) .
not ( connected (M,NB) )
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Interdependent Failure Behavior:

Definition 14 (Interdependent Failure Behavior) Interdependent failure behavior is an at-
tack state over two different machines (MA,MB) with the same functional class C and k pairs
of resource and associated class, i.e., a specific implementation, such as:

({RA1, . . . ,RAN},CRA), . . . , ({RK1, . . . ,RKN},CRK)

We have an attack if for any two machines (MA, MB) of class C, there exists a resource of the
same class they both have in their stack.

3.1.5.3 Isolation

Zoning & Isolation Breach: We specify a simple isolation analysis over machines and zones.
Machines can be recognized by their properties, for instance an IP or MAC address. By the
contains rule, we express that a machine is associated with zone (i.e., that the zone contains
the machine).

Definition 15 (Zoning Breach) A zoning breach is an attack state over a pair of machines
(MA, MB) and zones (ZA, ZB), where either MA is declared to be in ZA and not present, or
MB is declared not to be in ZB, but was found there in the real state.

sec t ion types :
MA, MB : machine
subsect ion idealTypes :

ZA, ZB : zone
subsect ion realTypes :

ZA0 , ZB0 : zone

sec t ion goals :
goal zoningBreach Missing ( i n f o ; ZA, ZA0 ,MA) :=

matches (ZA, ZA0) . conta ins (ZA,MA) .
not ( conta ins (ZA0 ,MA) )

goal zoningBreach Unknown ( i n f o ; ZB, ZB0 ,MB) :=
matches (ZB, ZB0) . not ( conta ins (ZB,MB) ) .

conta ins (ZB0 ,MB)

Isolation breach is more complex as it incorporates the existence of information flow paths
between zones.

Definition 16 (Isolation Breach) An isolation breach is an attack state over any pair-wise dif-
ferent variable machines (MA,MB) and zones (ZA,ZB), MA in ZA and MB in ZB, in which
there exists a path between MA and MB.

sec t ion types :
MA, MB : machine
ZA, ZB : zone

sec t ion goals :
goal i so la t i onBreach ( i n f o ; ZA, ZB,MA,MB) :=

conta ins (ZA,MA) . conta ins (ZB,MB) .
connected (MA,MB)
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Guardian Circumvention: Guardian Circumvention is an attack state corresponding to Guardian
Mediation from Section 3.1.2. It means that there exist paths between machines that are not
controlled by a trusted guardian.

Definition 17 (Guardian Circumvention) Guardian circumvention is an attack state over any
pair-wise different variable machines (MA,MB), guardian G and zones (ZA,ZB), MA in ZA
and MB in ZB, in which there exists a path between MA and MB, which does not contain the
guardian G. The attack state naturally extends to a set of multiple guardians.

sec t ion types :
G : guardian
MA, MB : machine
ZA, ZB : zone
N : node

sec t ion goals :
goal guardianCircumvent ion ( i n f o ; ZA, ZB,MA,MB) :=

conta ins (ZA,MA) . conta ins (ZB,MB) . connected (MA,MB) .
conta ins ( paths (MA,MB) ,X) . not ( conta ins (X, (G,N) )

3.1.6 Virtualization Assurance Tool
We report that we have implemented a virtualized systems assurance tool, which is able to
discover heterogeneous virtualized infrastructures, such as ones based on Xen and VMware,
and build up a unified graph representation thereof. The tool provides mechanisms for graph
operations and information flow analysis. VALID needs to be integrated into such a tool for
diagnosis purposes, that is, matching the security goals against the currently deployed system.
We built a parser for our language grammar using ANTLR2, a Java parser generator. We aim
at integrating the parser as well as VALID-specific analysis capabilities into the assurance tool
as future work. To project a VALID policy onto native IF as well as use it with an existing IF
tool, our assurance tool has to resolve graph function symbols (edge, connected,paths) into
the set of all valid graph assignments. In addition, the tool needs to translate knowledge about
the discovered real state into policy statements about real entity properties and topology.

3.1.7 Related Work
Automated network infrastructure analysis Narain et al. [NCPT06] analyze network in-
frastructures with regard to single point of failure using a formal modeling language. In con-
trast, our approach focuses on providing a generic language to express a variety of high-level
security goals, among them the absence of single point of failure. Previous work has also an-
alyzed network reachability in an automated way, for example, [XZM+04] for IP networks,
[KSS+09] for VLANs, and [BSP+10a] for cloud configurations. In terms of network man-
ageability and configuration management, Ballani and Francis [BF07] propose a deployment
language that overcomes the complexity of the low-level configuration. It allows the specifica-
tion of high-level configuration goals to improve the manageability and was applied to network
tunnels. Narain [Nar05] proposes modeling a network configuration using a formal language
and do automated reasoning on this formal model.

2www.antlr.org
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Formal languages for security policies and modeling Ponder [DDLS01] is an object-oriented
formal specification language for access control policies and role management in distributed
systems. However, it does not aim at expressing high-level security goals for virtualized infras-
tructure topologies. Kagal et al. [KFJ03] present a policy language for pervasive computing,
which is similar to cloud computing environments with regard to their dynamic behavior. It is
to express entitlements on actions, services, or conversations of an entity, such as an agent or
user. Their implementation is based on Prolog. Alloy [Jac02] is a first-order logic modeling
language, which is used, among other things, in network infrastructure modeling and analy-
sis [Nar05, NCPT06]. Alloy can express structural properties as relations between objects as
well as temporal aspects as dynamic models with states and allowed transitions. It has potential
as suitable basis for our cloud assurance language, however we opted for IF as basis because of
two reasons. First, IF has a strong formal foundation. Second, IF is supported by model check-
ers and theorem provers, such as AVISPA [ABB+05], SATMC [AC04], and OFMC [BMV05a]
in combination with a fix-point evaluation exportable to Isabelle [Pau94].

Virtualized systems specification languages The Open Virtualization Format (OVF) [DMT10]
is a standardized specification language for the packaging and distribution of virtual machines.
OVF is used to describe general information and virtual resource usage for an individual vir-
tual machine or a virtual appliance consisting of multiple VMs, but not for an entire virtualized
infrastructure as in our approach. Virtual Machine Contracts [MGHW09] are a policy spec-
ifications based on OVF that govern the security requirements of a virtual machine, e.g., to
specify firewall rules. Similar to OVF, the objective of this language is linked to provision-
ing rather than expressing high-level security goals on the topological level. On the hypervisor
level, sHype [SVJ+05] is an implementation of access and isolation control for virtual machines,
which uses a XML-based access control policy3. Again, the policy only applies to one entity in
the virtualized system, i.e., the hypervisor hosting virtual machines.

3.1.8 Conclusion and Future Work
We studied virtualized systems security goals in the categories operational correctness, failure
resilience, and isolation. We proposed a formal language to express such high-level security
goals, which, unlike previous work, covers topological aspects rather than just individual vir-
tual machines. We chose the Intermediate Format (IF) as formal foundation of our language
because of its support by existing general-purpose model checkers and theorem provers. We
demonstrated the ability of our language to efficiently express a diverse set of virtualized sys-
tems security goals by giving concrete specifications for a subset of the studied goals.

Further potential future work is to study dynamic models of virtualized infrastructures, in
order to capture and analyze configuration changes and state transitions in general.

3.2 Deploying TVDs in the Cloud

3.2.1 Introduction
Cloud computing is one of the most promising technologies in these days since it allows a user
to access a potentially unlimited set of virtualized resources to offer a service over Internet
without buying the required infrastructure, thus avoiding the maintenance costs.

3Xen User Manual, Section 10.3.
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In order to deploy his service, the user has only to determine the resources needed to run
it in the cloud environment: the number of running instances, the amount of virtual storage
space and the quantity of data that will be exchanged with the outside network. Then, he can
deploy the service on the assigned VMs by configuring the operating system, the network and
the needed software.

However, cloud computing raises new security issues that are not present in the case of ad-
hoc infrastructure. In particular, from the Cloud providers perspective, the effort is concentrated
in ensuring the isolation between tenants whose virtualized resources may have been allocated
on the same physical nodes. Thus, as already stated in the Section 3.1.1, the configuration of
the infrastructure must be validated against the security goals to avoid undesired information
flows between different customers.

Besides, also for Cloud users there are security concerns that should be properly addressed.
If an user wants to deploy a service using multiple instances, he must ensure that all his instances
are configured correctly and the communication between each other is adequately protected.
Otherwise, there may be the situation where an external VM may interfere with those executing
the user service, so that the latter will not behave correctly.

One solution to address these issues is to consider a groups of VMs as an unique entity on
which a security policy must be coherently enforced. A model that has been developed for this
purpose is the Trusted Virtual Domain.

3.2.1.1 Background

Trusted Virtual Domains (TVDs) is a model for deploying business and IT services in complex
and heterogeneous distributed systems. It aims to provide an operating environment where a
secure operational policy is uniformly enforced over all entities and that has some verifiable
properties, containment, trust and simplification.

While these properties can be in general ensured using existing technologies, the novelty of
the TVD concept consists in the definition, in a consistent way, of high level operations required
for managing the life cycle of this protected environment that are then mapped in component-
specific instructions, relieving the burden for users to configure the underlying software and
hardware.

A TVD consists of an Execution Environment (EE), (e.g. a virtual machine) and an abstract
communication channel which allows the former to securely communicate with other EEs and
can be implemented, for instance, using VLANs and IPsec. Further, an EE is executed by a
physical node through one or more software container (i.e. the hypervisor), which ensures the
isolation from other running instances.

When a new TVD is defined, it must be specified the secure operational policy to be enforced
among all TVD members. In particular, it is possible to specify functional requirements (i.e.
limitations on what members can do), quality requirements (i.e. the adherence of a component
to a specific standard) and implementation/mechanism mappings. The above requirements must
be verified each time a new EE joins a TVD.

3.2.1.2 Our contribution

In this work we aim to introduce the TVD model in the Cloud architecture in order to provide
customers with a protected environment for their VMs where the containment and trust proper-
ties are guaranteed by the infrastructure and, at the same time, to address the need for a strong
isolation between tenants as already mentioned in the Section 3.2.1.
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In particular, we study how a generic Cloud infrastructure must be enhanced to support
TVDs by defining requirements for the physical nodes and for the Cloud Controller. Further, we
analyze the language of libvirt in order to determine whether already defined elements allow
to describe the TVD configuration and we introduce new elements to cover the missing parts.
Among possible TVD implementations proposed in the design document [BGJ+05], we choose
to describe the solution identified by Case 1.

3.2.2 Benefits of TVDs to the Cloud
The TVD model could give significant benefits to Cloud Computing in that it allows to create an
environment from a group of VMs where well-defined security properties and the enforcement
of a security policy are guaranteed by the underlying Cloud infrastructure. In particular, through
the containment and trust properties it is possible to achieve the following security goals:

• Secure communication among a group of VMs. The containment property ensures
that a TVD member can communicate only with other members without interception and
interference from external entities. A customer may create a TVD to ensure that commu-
nication happens only among their VMs so that they cannot be attacked by instances of
other tenants. This may eliminate the need of configuring the firewall to properly filter
the network traffic.

• Allow join to TVD only VMs with the desired trust level. The trust property guarantees
that a VM can join a TVD only if its level of trust is that expected. In particular, the level of
trust depends of the security mechanisms implemented in the physical node and it must be
verifiable by other TVD members. Using this property it could be possible to restrict the
access to a TVD only to VMs running on physical nodes that have been verified through
the TCG remote attestation.

• Limit the damage from a compromised host. Using the TVD model allows to limit
the damage caused by a compromised host that tries to attack other VMs by sending
malicious packets over the Cloud network. Indeed, an important assumption derived by
the containment property is that a TVD can be considered isolated from other TVDs. This
means that, if physical nodes are certified to properly handle these packets without being
corrupted, a compromised host is able to attack only TVDs for which it is allowed to run
an instance, leaving the others unaffected.

3.2.3 Enhancing the Cloud infrastructure to support TVDs
In order to provide support for TVDs in the Cloud, the infrastructure must be enhanced to
properly implement all TVD operations and to ensure that the defined secure operational policy
is uniformly enforced over all their members. This work is focused on evaluating existent Cloud
components in order to determine the changes to the configuration model needed to describe
TVDs and to guarantee the containment property.

Since the TVD is an abstract model that can be implemented using different technologies,
we chose a specific solution among those proposed in [BGJ+05] to give the reader a concrete
proposal about the requirements that must be satisfied to achieve our goal. In particular, we
chose to implement the Case 1, which requires an hypervisor for the isolation, TCG-based
attestation for the verification, and VLAN + IPsec for the channels.
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In the following, we analyze required configuration changes by splitting them in three areas:
management of EEs, communication channel between EEs and TVD management.

Management of EEs From the TVD model specifications, the software container in the node
is expected to handle creation and destruction of EEs, resources provisioning and auditing oper-
ations requested by the Domain Controller. These functions can be implemented by the Cloud
physical nodes that must receive from the Cloud Controller, the component that manages the
Cloud infrastructure, the list of defined TVDs together with the TVD membership information
at the time the latter requests the creation of a new VM.

Communication channel between EEs While there are several studies in the literature [Dmi10,
CDRS07, BCP+08] that implement a complete solution covering all possible interactions among
VMs, in this document we will describe the configuration of physical nodes and other network
components related to two typical network topologies. In the former case depicted in the Fig-
ure 3.2(a), we consider a layer 2 network as it is a realistic option for connecting nodes in the
same Cloud data centre. In the latter, we analyze the scenario represented in the Figure 3.2(b)
where some nodes are connected at layer 3, as it can happen if a customer instantiates its VMs
in different locations of the same Cloud.

switch

Node A Node B

VM VM

VM VM

cloud datacenter

(a) L2 network on a cloud datacenter

router

Node A

router

Node B

Layer 3
Network

VMVM
VMVM cloud

datacenter
one

cloud
datacenter

two

(b) L3 network on different cloud datacenters

Figure 3.2: Typical Cloud network topologies

The VLAN technology, specified in the implementation choice, allows to separate the com-
munication of different TVDs through L2-adjacent physical nodes by associating them to a
different VLAN tag. This way, a VM believes to be connected to an isolated network composed
only by members of the same TVD, while the underlying infrastructure is responsible to deliver
only data with the associated tag.

When two TVD members are running on physical nodes that are not L2 adjacent (assuming
we want to achieve L2 connectivity), the infrastructure must create an IP tunnel (e.g with the
Generic Routing Encapsulation protocol - GRE) on which the tagged Ethernet frames are en-
capsulated. In this case, the traffic exchanged between the two nodes must be protected by an
IPsec connection to ensure confidentiality and data source authentication.

The configuration of physical nodes must be set so that they can properly label Ethernet
frames coming from VMs, with the tag associated to the TVD they belong to, and to unlabel
incoming data before delivering them to the correct VMs. The advantages of performing these
operations at physical node level are that there is no need for additional configuration in the
VMs and that, even if a VM gets compromised, it cannot attack other TVDs by sending Ethernet
frames with a different tag.
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In order to perform the above operation, a physical node, as already mentioned for the man-
agement of EEs, must have the list of defined TVDs and, in addition, must know the VLAN
tag associated to each TVD. Then, it can properly configure the network interface of VMs ac-
cording to the TVD membership information provided by the Cloud Controller. Finally, if an
IP tunnel is required for the communication among TVD members, it receives from the Cloud
Controller the related configuration, such as the remote IP address and the parameters for the
IPsec connection.

In the end, we want to mention that also network components of the Cloud network must
be properly configured. In particular, the switches that connect physical nodes must support
VLANs and their ports must be configured as trunk.

TVD management The Cloud Controller is the central component of a Cloud infrastructure
as it executes operations requested by customers (i.e. the creation of new instances or the
allocation of virtual storage) and performs the management of physical nodes and network
components. This makes the Cloud Controller the right candidate also to manage TVDs.

This component must hold the overall configuration for defined TVDs (e.g. the VLAN tags)
and must distribute it to the physical nodes. Through its interface it should allow customers
to define which TVD a new VM will be member of, information that will be transmitted to the
physical node designed to run the instance.

Another critical task of the TVD management component is to determine whether all mem-
bers of a TVD are L2 adjacent to each other. Otherwise, it must generate the configuration for
creating a secure tunnel and send it to the involved physical nodes.

Finally, it is responsibility of this component to define for which TVDs a physical node
is allowed to run new instances. In particular, the benefit of this restriction is that it could
be possible to deploy mission-critical TVDs only on those physical nodes that meet specific
security requirements. To achieve this goal, the TVD management component must define a
set of filtering rules that physical nodes and network components will enforce so that they are
protected from a compromised host that sends packets to TVDs for which it is not authorized.
More details about these filtering rules will be explained in the Section 3.2.4

3.2.4 Describing TVDs using libvirt
In the TVD model one important aspect covered is the definition of the APIs. More in detail,
APIs must be defined for EEs management, communication and code execution and for the
software container management. In particular the latter API must allow the Domain Controller
to perform TVD management operations like attestation, monitoring and member registration.

The model of a generic Cloud infrastructure is very similar in that there is one Cloud Con-
troller that perform operations requested by customers and management tasks by invoking an
API defined on physical nodes to execute virtualization-specific functions. In common Cloud
software (i.e. OpenStack4 and OpenNebula5) this API is currently implemented by libvirt 6.

This software allows to perform virtualization functions on a physical node regardless of
the specific hypervisor in execution and to model virtualized resources using XML standard
language, which can be flexible enough to describe the TVD configuration.

In this section we will verify whether requirements stated in the Section 3.2.3 can be sat-
isfied using libvirt. In particular, we will analyze in the following whether elements already

4OpenStack - http://www.openstack.com
5OpenNebula - http://www.opennebula.org
6Libvirt - http://libvirt.org
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defined in the language can be used to describe the TVD configuration and we will propose
new items to cover the missing parts. Since this work is focused on defining a data model to
be used by the Cloud infrastructure to properly implement TVDs, we assume that the Cloud
Controller can determine, depending on the network topology, the defined TVDs and others
security requirements, the correct configuration parameters to ensure the containment property
for running VMs.

At the end of this section, an example of a global TVD configuration will be depicted in the
Figure 3.3. This example includes both the already existent libvirt configuration elements and
the new ones we are proposing.

3.2.4.1 State of the art

Since version 0.9.4 libvirt introduces in the virtual network definition a new element called port-
group. Using portgroups, administrators are capable to put VM connections to a virtual network
into different classes, with each class potentially having different level or type of service.

As specified in the official documentation, for each network multiple portgroups can be
defined and one of them, optionally, can be set as the default portgroup. Each class of connec-
tion, a portgroup, is identified by the name attribute and the level or the type of service that it
represents is expressed using the subelements <virtualport> and <bandwidth>. The
former represents a port of IEEE 802.1Qbh capable bridge where the network interface of an in-
stantiated VM is plugged, the latter enables administrators to set Quality of Service parameters.
In the <virtualport> element an administrator may set some attributes of the subelement
<parameters> in order to associate it to a certain VLAN.

In the VM description, a virtual network interface is defined by using the element<interface>
with the attribute type set to the value network. A network interface may be associated to
a certain portgroup by specifying its name as attribute in the subelement <source>. This
way, if the portgroup is associated to a VLAN through the <virtualport> subelement, the
domain can be considered member of this VLAN.

# Network definition which includes two portgroups definition.

<network>
<name>network_alpha</name>
...
<portgroup name="alpha" default="yes">

<virtualport type="802.1Qbh">
<parameters profileid="vlan_alpha"/>

</virtualport>
</portgroup>
<portgroup name="beta">

<virtualport type="802.1Qbh">
<parameters profileid="vlan_beta"/>

</virtualport>
</portgroup>
...

</network>

# Domain definition which includes a network interface associated
# to a portgroup alpha
<domain>

<interface type="network">
<source network="network_alpha" portgroup="vlan_alpa">
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...
</interface>

</domain>

3.2.4.2 Missing features

New forwarding mode In order to make the frame tagging process transparent for the vir-
tual domain, we propose to delegate this procedure to the host bridge. This approach may be
considered as a new forward mode called vlanbridge which can be specified in the virtual net-
work definition. To apply this new mode, the presence of a virtual switch 802.1Q capable is
required. A possible solution may be the substitution of the standard Linux bridge driver with
that provided by Open vSwitch7.

<network>
<name>mynet</name>
<forward mode="vlanbridge">

<interface dev="eth0" />
<tunnel name="mytun" />

</forward>
</network>

Tunnel element definition In routed networks the Ethernet frames could be encapsulated in
L3 packets to create a L2 adjacency between endpoints. The encapsulation can be executed
by establishing a tunnel between endpoints of a communication. In libvirt a configuration el-
ement capable to describe a tunnel is not available. We propose to define an element called
<tunnel> to get libvirt able to manage the encapsulation by establishing a tunnel. Below is
depicted an example of the possible definition of a GRE tunnel.

<tunnel type="gre">
<name>mytun</name>
<uuid>0adcaee0-6aba-402e-88fd-5d05384a0515</uuid>
<device>gre0</device>
<remoteip>130.192.12.88</remoteip>
...

</tunnel>

As proposed, the tunnel element does not include any security feature. Considering the
definition of the TVD channel using the libvirt configuration language, the tunnel element could
be a good place where to put security features like an IPsec profile.

IPSec profile definition Following the guidelines of already existent configuration elements
in libvirt, an IPsec profile could be defined as an independent element which can be optionally
attached to another one, for example to a tunnel. A first draft of the <ipsecprofile>
element structure includes subelements required for external references (name and uuid) and
subelements to describe Security Associations and Security Policies.

<ipsecprofile>
<name>myipsecprofile</name>
<uuid>d8e0d396-8e90-47ec-991d-f739e9611442</uuid>

7Open vSwitch - http://www.openvswitch.org
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<sa>...</sa>
<sp>...</sp>

</ipsecprofile>

To apply IPsec settings to the tunnel definition, an IPsec profile could be specified as subele-
ment of the <tunnel> element.

Filtering capabilities In order to enhance the filtering process, we define an element called
<accesslist> which includes an IP address and a list of portgroups. While the IP address
identify the remote endpoint of a channel (i.e. the remote host of a tunnel), the portgroup list is
a list of enabled VLANs. By adopting the <accesslist> elements it is possible to verify if
an Ethernet frame received by a remote host is tagged with a tag corresponding to an allowed
VLAN. In this way, if an host is compromised the attack effects would be confined to the TVDs
enabled for the host.

<accesslist>
<name>list_alpha</name>
<uuid>c167ac3d-6e81-440c-b5b4-e9738969460a</uuid>
<ip>2.156.16.31</ip>
<portgroup name="service_alpha" />
<portgroup name="service_beta" />
...

</accesslist>

In addition to the enhancement of the security level, <accesslist> may simplify the
management of the TVD structure. In fact, by applying a modification only to a portgroup
list in the <accesslist>, the logical topology of the TVD among the Cloud nodes may be
changed. Moreover, in vision to introduce the usage of virtual switches (e.g. Open vSwitch), the
information collected in <accesslist> elements may be used to generate the configuration
to be injected to the host bridge.

3.2.5 Conclusions
The TVD model allows to address some of the security issues raised in Cloud environments by
defining a new entity for which it is possible to guarantee properties like containment and trust.
In this work, instead of proposing a specific implementation of TVDs, we focused on modeling
the configuration of a generic Cloud infrastructure at high level using libvirt, which is already
used by common Cloud solutions for the configuration of physical nodes.

From the analysis of this software, we discovered that it already defines some configuration
elements to describe the mechanisms chosen for providing the containment property of TVDs,
such as the portgrougs for VLANs. However, some work must be done to map this description
on component-specific instructions for VLAN-aware bridges because, actually, only the direct
forwarding of Ethernet frames through the physical network interface is supported.

Another area of work is represented by the enhancement of the Cloud Controller, which
must determine the libvirt configuration of physical nodes to ensure the isolation between TVDs.
We envision a great opportunity of integrating our work with VALID and the related validation
tool [BGM11] to express the TVD isolation as security goal and to verify that the overall infras-
tructure configuration does not violate this goal.
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Figure 3.3: TVD configuration in L2/L3 networks
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Chapter 4

Automated Verification of Virtualized In-
frastructures

Chapter Authors:
Sören Bleikertz, Thomas Groß (IBM)

Virtualized infrastructures and clouds present new challenges for security analysis and formal
verification: they are complex environments that continuously change their shape, and that give
rise to non-trivial security goals such as isolation and failure resilience requirements. We present
a platform that connects declarative and expressive description languages with state-of-the-art
verification methods. The languages integrate homogeneously descriptions of virtualized in-
frastructures, their transformations, their desired goals, and evaluation strategies. The different
verification tools range from model checking to theorem proving; this allows us to exploit the
complementary strengths of methods, and also to understand how to best represent the anal-
ysis problems in different contexts. We consider first the static case where the topology of
the virtual infrastructure is fixed and demonstrate that our platform allows for the declarative
specification of a large class of properties. Even though tools that are specialized to checking
particular properties perform better than our generic approach, we show with a real-world case
study that our approach is practically feasible. We finally consider also the dynamic case where
the intruder can actively change the topology (by migrating machines). The combination of a
complex topology and changes to it by an intruder is a problem that lies beyond the scope of
previous analysis tools and to which we can give first positive verification results.

4.1 Introduction

Virtualized infrastructures and clouds form complex and rapidly evolving environments that can
be impacted by a variety of security problems. Manual configuration as well as security anal-
ysis often capitulate in face of these ever-changing complex systems. The need for automated
security assurance analysis is immediate. Given the volatility of virtualized infrastructure con-
figurations as well as the diversity of desired security goals, specialized analysis tools—even
though having performance advantages—have limited benefits.

As a general approach, we propose to first specify abstract security goals as desired state
for a virtualized infrastructure in a formal language. For instance, goals can be in the areas
operational correctness (e.g., “Are all VMs deployed on their intended clusters?”), failure re-
silience (e.g., “Does the infrastructure provide enough redundancy for critical components?”)
or isolation (e.g., “Are VMs of different security zones isolated from each other?”). Second,
we employ a generic analysis tool to evaluate the actual state, i.e., the virtualized infrastructure
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configuration, against this desired state. Thus, we obtain an automated analysis mechanism that
can check the configuration—and configuration changes—against a high-level security policy.

Such an automated analysis can cover two scopes: in the static case, we analyze a single
state of a virtualized infrastructure against the desired properties. In the dynamic case, we
consider the actual configuration as a start state and consider transitions that can change this
configuration. In our example, we consider particularly changes that an intruder can make to the
network (within the limits of his access rights), e.g., by migrating VMs to other security zones.
The question is whether we can reach an attack state in this way, i.e., a current configuration of
the system that violates the required security properties. The dynamic case is a generalization
of the static case that can only be handled by the model-checking tools.

From engagements with customers running large-scale virtualized infrastructures, we learned
that they are interested in a broad range of security goals. Specialized tools can be applied to a
subset of these security goals, as we already demonstrated in previous research (cf. [BGSE11])
for security zone isolation. However, a general approach is desired that can cover this broad
range of security requirements.

Our goal is to establish general-purpose verification methods as an automated tool for se-
curity assurance of virtualized infrastructures. We present a platform that connects declarative
and expressive description languages with state-of-the-art verification methods. With such a
platform, we can benefit from the variety of existing methods and recent advances such as those
in the field of SMT solving. As desired state specification, we take security assurance goals in
the formal language VALID (cf. Chapter 3.1) as inputs. As actual state, we lift the configuration
of a heterogeneous virtualized infrastructure to a unified graph model. For this, we employ a
security assurance analysis tool called SAVE [BGSE11], which also computes graph coloring
overlays, that model, e.g., information flow. We develop a translator that connects these de-
scriptions with the various state-of-the-art verification tools. The translation involves adapting
the verification problem to the domain of the respective tool, and property-preserving simplifi-
cations and abstractions to support the verification. In particular, the translation does not add
false positives or false negatives to the model.

In this work we demonstrate that model-checking of cloud infrastructures is in general pos-
sible, and we exemplify our approach by studying three examples: zone isolation, secure mi-
gration, and absence of single point of failure on the network level. The first example is a static
case, which asks whether machines from different security zones are somehow connected in
an information flow graph. The relevancy of this case was confirmed in a case study with a
financial institution. The second example is of dynamic nature, and asks whether an intruder
with rights to migrate VMs can reach an attack state, either by migrating the machine through
an insecure network (thereby modifying the VM) or to a physical machine he controls. Secure
migration as an example is used to show our first result in verifying dynamic problems, which
are in our future interest. The last example belongs to the static case, and we consider that
between certain machines we must have redundant network links. Studying a broader range of
scenarios using our proposed general approach is left as future work.

4.1.1 Contributions
We are the first to apply general-purpose model-checking for the analysis of general security
properties of virtualized infrastructures. We propose the first analysis machinery that can check
the actual state of arbitrary heterogeneous infrastructure clouds against abstract security goals
specified in a formal language. Our approach covers static analysis as well as dynamic analysis
and uses a versatile portfolio of problem solver back-ends to benefit from their different solution
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strategies (fix-point evaluation, resolution, etc.).
We believe that our experiments with different analysis strategies (Horn clauses, transition

rules) are of independent interest, because the problem instances for security assurance of vir-
tualized infrastructures are structured differently than traditional application domains of model
checkers, notably security protocols. In addition, we gained some insights on the complexity
relations of different problem classes.

As a case study, we successfully model checked a sizable1 production infrastructure of a
global financial institution against the zone isolation goal. We have previously analyzed this
infrastructure extensively with specialized tools and found the same problems with this generic
approach. We report that our different optimizations allowed us to improve the performance
by several orders of magnitude: whereas the unoptimized problem instances did not terminate
within several hours, the optimized problem instances completed the analysis in the order of
seconds.

This work build upon the following results: Bleikertz et al. [BGSE11] introduced an analysis
system for virtualized infrastructures, called SAVE, which models configurations in a graph
representation and runs graph-coloring based information flow analysis on this representation.
Bleikertz and Groß introduced a domain-specific language, called VALID (cf. Chapter 3.1),
which allows us to specify security goals for virtualized infrastructures in formal terms. This
work makes distinct new contributions by introducing analysis based on general-purpose model
checking on SAVE’s graph representation against VALID specifications. The system presented
in this work goes far beyond information flow analysis of [BGSE11] by enabling validation of
a wide range of security goals.

4.1.2 Architecture

We aim at the evaluation of an actual state against a desired state, for which we employ a tool
architecture illustrated in Figure 4.1. To specify a desired state, we formulate general security
goals in VALID [BG11], a language for security assurance of virtualized infrastructures.

To obtain the actual state of a virtualized infrastructure, we employ a tool for assurance
analysis of virtualized infrastructures, called SAVE [BGSE11]. It comes with discovery probes
for heterogeneous clouds such as VMware, Xen, pHyp, etc. and takes their proprietary con-
figuration data as inputs. It lifts the configuration data to a unified graph representation of the
virtualized infrastructure (the realization model) and computes transitive closures over a graph
coloring model for information flow tracing. SAVE outputs its graph representations as actual
state basis of our analysis.

We use and compare several state-of-the-art tools for automated verification. The first is
the AVANTSSAR platform2; it consists of three verification backends, OFMC [BMV05b],
CL-Atse [Tur06], and SAT-MC [AC08], that all have the common input language ASLan
(AVANTSSAR Specification Language). We have focused here on OFMC and made initial
experiments with the other two; due to lack of source code availability and lack of support of
Horn clauses in current SAT-MC, we could not run CL-AtSe and SAT-MC on the large scale
case study through their web interface. The particular strength of AVANTSSAR is that we can
model a dynamic network and check whether a property holds in all reachable states of the net-
work. For the simpler case of analyzing a static network, a broader range of tools is applicable
as we can express verification as deducibility problems in first-order Horn clauses. We con-

1approximately 1,300 VMs, 25,0000 nodes and 30,000 edges
2http://www.avantssar.eu/
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Figure 4.1: Architecture for model checking of general security properties of virtualized infras-
tructures.

sider here the automatic first-order theorem prover SPASS [WDF+09]3 and the protocol verifier
ProVerif [Bla01]4. We also made initial experiments with the SuccinctSolver [NNS02]5. In
general, our hope is that tools based on different methods can have complementary strengths
and connecting them allows us to benefit from all advances of the tools.

As the key component for the actual/desired state analysis, we develop a compiler that takes
the graph representation of the actual state and the desired state specification in VALID as inputs
and compiles problem instances for the solver back-ends. It refines the graph representation
(e.g., by abstracting from nodes that cannot affect the analysis goal or by introducing “fast
lanes”), compiles a term algebra from it, and enhances this problem instance with an analysis
strategy (such as, Horn clauses or intruder transition rules) and the goal specified in VALID 6.

4.2 Information Flow Analysis Tool Preliminaries

We use an analysis tool for information flow analysis of virtualized infrastructures [BGSE11] to
discover the actual configuration of a virtualized infrastructure, abstract it into a unified graph
model and determine potential information flow by transitive closure over graph coloring. This
tool will provide the bases for the term algebra to describe the actual state. It proceeds in the
following phases7: The first phase of building a graph model is realized using a discovery step
that extracts configuration information from heterogeneous virtualized systems, and a transla-
tion step that unifies the configuration aspects in one graph model. For the subsequent analysis,
we apply the graph coloring algorithm defined in [BGSE11] parametrized by a set of traversal

3http://www.spass-prover.org/
4http://www.proverif.ens.fr/
5http://www.imm.dtu.dk/cs_SuccinctSolver/
6The AVANTSSAR tools accept VALID goals out of the box, we translate the goals for the other tools
7For further details about this process we refer the reader to [BGSE11].
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rules and a zone definition. The resulting colored graph model is the actual state input for the
compiler to be verified against the desired state security polices.

Discovery The goal of the discovery phase is to retrieve sufficient information about the con-
figuration of the target virtualized infrastructure. For this matter, platform-specific data is ob-
tained through APIs such as VMware VI, XenAPI, or libVirt, and then aggregated in one dis-
covery XML file. It contains information, among others, about the virtual machines, virtual
networks, and storage in a platform-specific representation. The target virtualized infrastruc-
ture, for which we will discover its configuration, is specified either as a set of individual phys-
ical machines and their IP addresses, or as one management host that is responsible for the
infrastructure. Additionally, associated API or login credentials need to be specified. For each
physical or management host given in the infrastructure specification, we will employ a set of
discover probes that are able to gather different aspects of the configuration.

We illustrate the discovery procedure with VMVare as example. Here, the discovery probe
connects to vCenter to extract all configuration information of the managed resources. It does
so by querying the VMware API with the retrieveAllTheManagedObjectReferences() call,
which provides a complete iteration of all instances of ExtensibleManagedObject, a base
class from which other managed objects are derived. We ensure completeness by fully serializ-
ing the entire object iteration into the discovery XML file, including all attributes.

Transformation into a Graph Model We translate the discovered platform-specific config-
uration into a unified graph representation of the virtualization infrastructure, the realization
model (cf. [BGSE11] for the formal specification of the graph model). It expresses the detailed
configuration of the various virtualization systems and includes the physical machine, virtual
machine, storage, and network details as vertices. We generate the realization model by a trans-
lation of the platform-specific discovery data. This is done by so-called mapping rules that
obtain platform-specific configuration data and output elements of our cross-platform realiza-
tion model. Our tool then stitches these fragments from different probes into a unified model
that embodies the fabric of the entire virtualization infrastructure and configuration.

Again, we illustrate this process for a VMware discovery. Each mapping rule embodies
knowledge of VMware’s ontology of virtualized resources to configuration names, for instance,
that VMware calls storage configuration entries storageDevice. We have a mapping rule that
maps VMware-specific configuration entries to the unified type and, therefore, establishes a
node in the realization model graph. We obtain a complete iteration of elements of these types
as graph nodes. The mapping rules also establish the edges in the realization model. In the
VMware case, the edges are encoded implicitly by XML hierarchy (for instance, that a VM
is part of a physical host) as well as explicitly by Managed Object References (MOR). The
mapping rules establish edges in the realization model for all hierarchy-links and for all MOR-
links between configuration entries for realization model types.

This approach obtains a complete graph with respect to realization model types. Observe
that configuration entries that are not related to realization model types are not represented in
the graph. This may introduce false negatives if there exist unknown devices that yield further
information flow edges. To test this, we can introduce a default mapping rule to include all
unrecognized configuration entries as dummy node and all respective MOR links as edges.

Coloring Through Graph Traversal The graph traversal phase obtains a realization model
and a set of information source vertices with their designated colors as input. The graph col-
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oring outputs a colored realization model, where a color is added to a node if permitted by an
appropriate traversal rule. We apply a first-matching algorithm to select the appropriate traversal
rule for a given pair of vertices.

We use the following three type of traversal rules that are stored in a ordered list. Flow rules
model the knowledge that information can flow from one type of node to another if an edge
exists. E.g., a VM can send information onto a connected network. We represent these rules
by “follow”. Isolation rules model the knowledge that certain edges between trusted nodes do
not allow information flow. E.g., a trusted firewall is known to isolate, i.e., information does
not flow from the network into the firewall. We represent these rules by “stop”. Default rule
Whenever two types are not covered by an isolation or flow rule, then we default to “follow”. In
order to be on the safe side, we assume that flow is possible along this unknown type of edges.
An example of a set of traversal rules can be found in [BGSE11].

Output Actual State As actual state formulation for our subsequent analysis, the tool outputs
different kinds of unified graph models of the infrastructure. We call the graph with the topology
of the entire infrastructure realization model; as we will see in Section 4.3, this models the graph
type real of the desired state specification in VALID. In addition, we obtain subgraphs of the
topology that are reachable by a color in the information flown analysis; they model the graph
type info of the desired state specification.

4.3 Language Preliminaries
We briefly introduce the concepts of the languages VALID and ASLan (cf. Chapter 3) which are
at the core of our formal models. ASLan stands for AVANTSSAR Specification Language [AVA10],
a set-rewriting based formalism for specification of infinite state transition systems dedicated
to security of distributed systems. ASLan is an extension of the AVISPA Intermediate For-
mat [AVI03]; one of the key extensions of ASLan is the integration of Horn clauses that allow
for complex evaluations within every state of the transition system.

The Virtualization Assurance Language for Isolation and Deployment (VALID) [BG11] is a
formal language building upon ASLan/IF for specifying security assurance goals of virtualized
infrastructures. It is a domain-specific extension and customization of ASLan, in particular
introducing a typing system tailored to the needs of virtualized infrastructures and graph-based
analysis. Being close to ASLan, it is relatively well-suited for the connection with the model-
checking tools of the AVANTSSAR platform.

We describe the two languages along-side (as their structure and meaning is very similar)
and highlight the differences.

Term Algebra At the core of ASLan and VALID is a term algebra over a signature Σ and vari-
able symbols V . In concrete syntax, all constant and function symbols of Σ are alphanumeric
identifiers that start with a lower-case letter, while variable symbols of V start with upper-case
letters. We typeset ASLan/VALID elements in sans−serif. We interpret terms in the free al-
gebra, i.e., syntactically different terms represent different values. In particular, two different
constants always represent different entities. We use standard notions of terms such as ground
(terms without variables), substitution, and matching.

In ASLan, terms represent usually (cryptographic) messages where constants can be the
identifiers of participants, cryptographic keys, etc., and functions represent cryptographic oper-
ations like symmetric encryption. In VALID, in contrast, the constants denote the elements of
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the virtualized infrastructure such as virtual and physical machines, switches, and zones. We
rarely deal with composed terms, and use only constants and variables.

VALID’s Type System All constants in VALID have a type, according to the following type
system:

Definition 18 (Type System) We have a finite set of type symbols (disjoint from variable and
constant symbols) that include for this work the following:

T := {node,machine,host,network, zone}

We also have an acyclic subtype relation between types; here, all the types machine,host, and
network are subtypes of type node.

A valid specification must contain one type declaration for every used constant symbol,
and at most one for every used variable. All variables without type declaration are untyped.
Compound terms are always untyped. A typed variable can only be matched against a constant
of the same type or of a subtype. A type declaration that term t has type τ is denoted by t : τ .

To analyze topologies, we model virtualized infrastructure configurations as graphs. Whereas
the basic graph, called realization, is a unification of vendor-specific elements into abstract
nodes, we introduce further graph transformations to model information flow and dependen-
cies.

Definition 19 (Graph Types) A graph type
G ∈ {real, info,depend,net} is a constant identifier for a type of a graph model:

• real denotes a realization graph unification of resources and connections thereof.
• info denotes a realization graph augmented with colorings modeling topology informa-

tion flow.
• depend denotes a realization graph augmented with colorings modeling sufficient con-

nections to fulfill a resource’s dependencies.
• net denotes a realization graph augmented with colorings modeling network topology

information flow.

Facts and States The next layer of ASLan and VALID are facts (aka predicates) expressing
relationships between terms. We use in this work the following (untyped) signature of facts
symbols (disjoint from constant, variable, and type symbols) with their intuitive meaning:

• contains(Z,M) where typically Z and M are constant or variable symbols of type zone
and machine, respectively. This denotes that machine M belongs to zone Z.
• edge([G : real]; A,B) is a predicate, which denotes the existence of a single edge be-

tween A and B with respect to an (optional) graph type G.
• connected([G : real]; A,B) is a predicate, which denotes existence of a path between A

and B, respect to an (optional) graph type G.

The notation [A : v] denotes an optional argument A with default constant value v.
There are further predicate symbols used in VALID that we do not discuss here for brevity,

such as paths used to iterate over all paths, and matches used to relate ideal and real nodes.
A state is a finite set of ground facts that hold true in the state (and all other facts are false).

We denote states using the an enumeration of facts separated by “.” (which technically can be
regarded as a commutative, associative, and idempotent operator).
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Rules and Goals An ASLan specification consists of an initial state, a set of rules that give
rise to a transition relation, and a set of goals that describe a set of states, usually the violations
of the security properties.8 The security analysis shall then determine whether a goal state is
reachable from the initial state by using the rules. Moreover, one may add Horn clauses to
specify immediate consequences within a single state which we discuss in more detail below.

The rules have the form PF.NF.C ⇒ RF where PF and RF are sets of facts, NF is a set of
negative facts (denoted using the ASLan operator not(·)), and C is a set of inequalities on terms.
The variables of RF must be a subset of the variables of PF. Such a rule is interpreted as follows:
we can make a transition from state S to state S′ if S contains a match for all “positive” facts
of PF, does not contain any instance that can match a negative fact of RF, and the inequalities
of C do hold under the given match. (More formally, the variables of PF are thus existentially
quantified, and the ones that only occur in NF and C are universally quantified.) The successor
state is obtained by removing the matched positive facts of PF and adding the RF under the
matching substitution.

For example, the following rule expresses that, if an intruder resides at a node N and there
is an edge from N to another node M and M is not contained in a particular zone z, then the
intruder can move to M:

intruderAt(N).edge(N,M).not(contains(z,M))
⇒ edge(N,M).intruderAt(M)

Upon this transition, the fact intruderAt(N) is deleted (because it is not repeated on the right-
hand side); the fact edge(N,M) remains in the graph because it is repeated on the right-hand
side.

Goals are quite similar to rules in that have the form PF.NF.C (like a rule without right-
hand side) and by the same semantics as rules characterize a set of states, usually “bad” states
for state-based safety properties. In VALID, goal specifications are also labeled with a graph
type G.

Horn Clauses ASLan introduced the specification of Horn clauses to the transition system to
allow for specifying immediate consequences within a state. One of the main application is the
formalization of access control policies: access rights can be expressed as a direct consequence
of other facts that express for instance that an employee is a member of particular group. Horn
clauses and the state transition system can mutually interact. First, a transition can change the
facts that currently hold (e.g., an employee changes to another group) which has immediate
consequences for the access rights via the Horn clauses. Second, the fact representing the
(current) access decision can be the condition of another transition rule (where an employee
requests access to a resource). In our context, we can also use the Horn clauses to formalize
properties of the current graph. E.g., to formalize that connected() is the symmetric transitive
closure of the edge() predicate we can simply specify:

connected(A,B) :− edge(A,B)
connected(B,A) :− edge(A,B)
connected(A,C) :− edge(A,B).connected(B,C)

Introducing or removing edges upon transitions would automatically change the connected()
relation.

8Alternatively, ASLan allows for specifying goals also as LTL properties, a feature that we do not use in this
work, however.
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4.4 Problem Classes
During our analysis, we found that the analysis goals for virtualized infrastructures can be
structured into orthogonal problem classes, and that different problem classes exhibit consistent
complexity tendencies for the solver-backends. We consider problem classes with respect to
three (syntactical) criteria on attack states and intruder rules: locality, positivity, and dynamics.

4.4.1 Local vs. Global
Definition 20 (Locality) We call an attack state local if it only exhibits state facts that will be
part of the initial state, e.g., edge() and contains(). We call an attack state global if it exhibits
state facts that must be derived by an evaluation over the topology (e.g., connected()). We use
these terms for the corresponding problem instances, as well.

Secure migration—in the sense that the intruder cannot reach a state in which he controls the
physical host to which a VM was migrated—is a local problem, because the attack state will be
formulated on the edge() statement between these components.9 Zone isolation mentioned in
the introduction is an example of a global problem, because it needs to consider the connections
throughout the topology.

All other factors equal, we conjecture that local problems can be consistently checked more
efficiently than global problems. We also conjecture a positive performance correlation between
Horn clause based models and problem solvers with local problems, and between transition
based models and problem solvers with global problems.

4.4.2 Positive vs. Negative Attack States
Attack states formulated in VALID can contain positive as well as negative facts.

Definition 21 (Positivity) We call an attack state positive if it exclusively contains positive
state facts. We call an attack state negative if it contains at least one negative state fact. We use
these terms for the corresponding problem instances, as well.

The secure migration and zone isolation examples are positive problems. A negative attack state
is, for instance, the guardian mediation introduced in [BG11], which is fulfilled if there exists
any connection between a machine and a network that is not mediated by a guardian (firewall).

All other factors equal, we conjecture that positive problems can be checked more efficiently
than negative problems.

4.4.3 Static vs. Dynamic
We consider problems that are statically checking whether the actual state fulfills a desired state.
By introducing additional transition rules we can allow the intruder to transform the virtualized
infrastructure to reach an attack state, and therefore introduce dynamics.

Definition 22 (Dynamics) We call a problem instance static if its transition rules and Horn
clauses only include topology traversal over the initial state. We call a problem instance dy-
namic if it contains transition rules or Horn clauses that model intruder capabilities to change
the initial state.

9Another example for a local problem is machine placement specified in [BG11], the question whether each
VM in the actual state has an edge to the physical host specified in the desired state.
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Many example problems presented in [BG11] (machine placement, zone isolation, guardian
mediation) are static in first instantiation. As soon as we extend the intruder rules/clauses with
rights to, e.g., start, stop or migrate machines or to reconnect networks/storage, we obtain dy-
namic problems. Secure migration introduced above is a dynamic problem.

All other factors equal, we conjecture that static problems can be checked more efficiently
than dynamic problems. In the static case, it is more efficient to check for several attack states
than in the dynamic case. We conjecture that first-order logic models and tools will have an
advantage at static problems, whereas transition based models and tools will have an advantage
at dynamic problems.

4.5 Compiling Problem Instances
This section discusses how we compile problem instances for the solver back-ends, thus, ex-
plains the compiler which is a key component of the architecture in Section 4.1.2. The compiler
receives the following inputs: the realization model or derivatives as a graph representation of
the actual state and a VALID policy as representation of the desired state.

The success and efficiency of the solver back-ends are largely determined by the initial size
of the problem instance, by solution strategies that limit the search tree complexity, and by
problem formulations that match the solvers’ capabilities. Therefore, the compiler must strive
for a significant complexity reduction while maintaining generality. Because we target sizable
real-world infrastructures, the initial problem size may easily be in the order of tens of thousands
of nodes and the compiler’s pruning prove crucial.

The compiler works in multiple phases:

• Graph Transformation: Reducing the complexity of the graph and representing it as term
algebra facts.

• Strategy Amendment: Introducing sensible analysis strategies into the problem instance
that match the solver’s strengths’.

4.5.1 Graph Transformation
A (colored) realization model input consists of high-level nodes, such as machine, and low-
level nodes, such has ipInterface, as well as edges that model the connections between these
components. In general, we aim at representing the edges of this graph as edge() facts in term
algebra and give the problem solvers means to derive graph facts, notably connected().

Real-world virtualized infrastructures consist of tens of thousands low-level components
and similarly many edges, an initial complexity that could easily overwhelm the solver back-
ends. Therefore, we support the solver back-ends in traversing these graphs efficiently by either
abstracting from low-level nodes not impacting the analysis or introducing “fast lanes” into the
graph:

Definition 23 (Optimization: Graph Refinement) For all adjacent high-level components, such
as machine or host, connected though a sub-graph with low-level components with degree
smaller than three, we replace the subgraph by edges maintaining the same connectivity. Simi-
larly, “fast lanes” added to the graph allow the solver back-ends to reach other segments of the
graph with fewer steps.

The graph refinement maintains analysis generality if the pruned node types do neither occur in
attack states nor in intruder or topology transformation rules/clauses.
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4.5.2 Strategy Amendment
Graph Traversal A major part of the solver’s strategy will depend on how the graph traversal
is modeled, which we express by connected() facts derived from the edge() facts:

edge(A,B)⇒ edge(A,B).connected(A,B).connected(B,A)

edge(A,B).connected(B,C)
⇒ edge(A,B).connected(B,C).connected(A,C)

Observe that this formulation to compute the connected() relation does not change the graph,
i.e., edge() facts are neither introduced or removed by these rules. While this is a necessity for
all evaluations of the graph in the dynamic case, in the static case, we can formalize evaluation
procedures that do change the graph, for instance rules that remove edges from the graph as
soon as they were visited by the evaluation. Our benchmarks show that such changes can
improve the performance of our zone isolation example, however only slightly. Moreover, such
“graph-consuming” strategies are helpful for formalizing some advanced properties below.

We propose an additional translation, which reduces the state complexity significantly. In
this case, we imagine an intruder tries to traverse the topology from some start-point and “ob-
tain” nodes he has access to. This avoids the binary fact connected and instead uses a unary
fact intruderHas to represent all members of the largest connected subgraph that contains the
intruder start point.

The transition rules are as follows:

intruderHas(A).edge(A,B).not(intruderHas(B))
⇒ intruderHas(A).intruderHas(B).edge(A,B)
intruderHas(A).edge(B,A).not(intruderHas(B))
⇒ intruderHas(A).intruderHas(B).edge(B,A)

For large graphs, the restriction of analyzing such chunks rather than the full connected-relation
means substantial savings: roughly speaking, the number of derivable facts is in the worst case
linear for the intruderHas strategy, while the number of connected facts is quadratic. This
optimization requires, however, that we have to select one start point for the intruderHas()
computation and thus get the verification of isolation from other zones only for that selected
start point. In case a connected(A,B) fact is used in a security goal, we can translate it to
intruderHas(A).intruderHas(B) for certain goals (e.g. zone isolation).

Depending on the used solver or back-end, the evaluation which nodes the intruder can
obtain can either be expressed by a means of transition rules (as above) or as first-order Horn
clauses (omitting the not(intruderHas(B)) condition on the left-hand sides).

Dynamic Problems In addition to the graph analysis model, we need to introduce intruder
rules for the dynamic analysis to model his capabilities to modify the infrastructure. They are
highly dependent on the scenario, but can easily be modeled by introducing new facts as well as
transition rules or Horn clauses. We exemplify this by modeling the secure migration problem
in Section 4.6.

Encoding Static Problems into FOL In case of static problems, such as zone isolation, we
do not need to consider transition systems but can rather encode the problem into “static” for-
malisms like first-order logic (FOL) and alternation-free least fixed point logic (ALFP) for
which mature tools exists. We now show that we can effectively use such tools as an alterna-
tive to the model-checking approach in the static case. We study the use of the SuccintSolver
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for (ALFP) [NNS02], the FOL theorem prover SPASS [WDF+09] and the protocol verifier
ProVerif [Bla01].

The example of zone isolation can be expressed as an initial set of facts representing the
graph structure, a set of Horn clauses expressing the graph traversal as shown previously, and a
predicate that an intruder can reach a machine in another different security zone.

The SuccintSolver [NNS02] is an effective tool for computing the least fixedpoint (i.e., all
facts that are derivable by the ALFP clauses from the given facts) of an ALFP specification.
(This fixedpoint is in our case always finite.)

The next tool we use is the generic first-order theorem prover SPASS [WDF+09] which is
based on resolution. The problem is here that we want a Herbrand model of the symbols (e.g.,
different constants always represent different elements) which cannot be enforced directly. We
thus formulate as a proof goal that an isolation breach can be reached; such a proof exists if and
only if this is true in the Herbrand model. For the inequality of zones, we need to specify this
as axioms for zones to properly handle the negation w.r.t. the “Herbrand-trick”.

We finally consider the ProVerif tool [Bla01] which is also based on resolution but dedicated
to security problems formulated by Horn clauses, and therefore often faster than SPASS. Like
in SPASS, we have to axiomatically introduce here the inequality of zones, albeit using an
uninterpreted predicate symbol (because negation is not possible in ProVerif).

Static Problems beyond FOL We now discuss static problems that are beyond the expres-
siveness of FOL. Consider the goal of the absence of single point of failures for network links,
i.e., that a network contains sufficient redundancies, so that failure of a single node does not
disrupt communication.10 More formally, let us consider a network and the dependability con-
straint depend(n1, n2) between two nodes n1 and n2. Then we require that there is are at least
two disjoint paths (using disjoint nodes) in the network from n1 to n2. Even in the static case
(when the network topology cannot change) this problem is beyond the expressiveness of first-
order logic (as a consequence of the Löwenheim-Skolem theorem, see e.g. [HR04]).

As a consequence, we cannot use the solvers SPASS, ProVerif, and Succinct Solver. Also,
the standard approach to specify the security property as a set of VALID or ASLan goals (even
using Horn clauses to evaluate the graph) is not applicable, because that would also be FOL
expressible relations. However, we can specify a transition system in ASLan to express a game
that has a solution (expressed as a set of goal states) if and only if there exists no single point of
failure.

We demonstrate this game for the absence of single point of failure in Section 4.6.

4.6 Model-Checking a Virtualized Infrastructure

In this section, we study three example problems, namely zone isolation, secure migration, and
absence of single point of failure, and demonstrate how these problems can be analyzed using
model-checking. We apply model-checking on small infrastructure examples to demonstrate
the approach, and we will analyze a large-scale infrastructure with regard to zone isolation in
Section 4.7.

We structure this section analogously to the architecture Section 4.1.2 where for each exam-
ple problem, we first specify the desired state in VALID or ASLan goals along with the required

10[BG11] considers another goal for single point of failure that can be expressed as a goal state: when a node
depends on a particular resource, then it is connected to more than one node to provide that resource.
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language primitives. Second, we introduce the actual state, that is the infrastructure examples
we analyze. Third, we discuss specialties of compiling the corresponding problem instance, the
problem solvers employed and their output for the analysis.

4.6.1 Zone Isolation
We consider the following scenario to illustrate the zone isolation security goal: an enterprise
network consists of three security zones, namely a high security zone containing confidential
information, a base security zone for regular IT infrastructure, and a test security zone. Any
machine in one zone should not be able to communicate with a machine from a different zone,
and network isolation is realized using VLANs.

Desired State To have the solvers check violations of zone isolation, we define an attack state
isolation breach, which asks the question whether any two machines of any two different
security zones are connected.

Definition 24 (Goal: Zone Isolation) The isolation breach attack state matches if any two dis-
joint zones ZA and ZB contain machines MA and MB respectively, and in which there exists an
information flow path between these two machines. It is determined as information flow goal
by the graph type info.

goal isolation_breach(info;ZA,ZB,MA,MB):=
contains(ZA,MA).contains(ZB,MB).

connected(MA,MB) & not(equal(ZA,ZB))

Furthermore, the VALID policy requires a specification of the membership of machines to
specific zones. For example, contains(high, vm1) denotes that vm1 is part of the high security
zone.

Actual State As discussed in Section 4.2, SAVE discovers the given infrastructure and cap-
tures all low-level configuration details and resource associations. SAVE performs an infor-
mation flow analysis with the different security zones as information sources and produces an
information flow graph for the infrastructure.

Model-Checking Based on the actual state provided by SAVE, our compiler will generate a
representation of the (potentially refined) information flow graph in edge() facts and node con-
stants. Since we are dealing with a static problem, we use the efficient intruderHas modeling
for graph traversal, and transform the goal accordingly. The output is ASLan for OFMC and a
variety of first-order logic languages used by the static problem solvers.

Suppose the VLAN identifier of a machine vm2 in the test zone was misconfigured and is
identical to the VLAN ID of a machine vm1 from the high security zone. OFMC will provide
us with such an attack state (reduced for brevity) indicating a zone isolation breach:
SUMMARY

UNSAFE
PROTOCOL

z o n e i s o l a t i o n . i f
GOAL

i s o l a t i o n b r e a c h

% conta ins ( zone ( high ) , node ( machine (vm1) ) )
% conta ins ( zone ( t e s t ) , node ( machine (vm2) ) )
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% int ruderHas ( node ( machine (vm1) ) , i )
% in t ruderHas ( node ( machine (vm2) ) , i )

4.6.2 Secure Migration

Secure migration is a problem often encountered in practice which was also highlighted by
Oberheide et al. [OCJ08]. Secure Migration is an interesting problem as its very nature requires
a dynamic modeling. However, we do not claim to solve it completely with this work, as is
a complex endeavor in which many factors (network and storage connections, VLAN associa-
tions, correct configuration of VMs, machine contracts, etc.) need to be considered. Still, we
want to demonstrate the principles of dynamic analysis with a simplified example of this prob-
lem class. We leave a full-scale analysis of secure migration of a production system for future
work.

We consider the topology depicted in Figure 4.2 for our scenario: five hosts, where one is
controlled by a malicious administrator, are connected to two networks. The malicious admin-
istrator can migrate virtual machines between hosts as indicated by the migrate edges. There is
one VM running on host HostA.

NetAHostA

HostB

NetB

HostC

HostD HostE

VMA

migrate
migrate

migrate
migrate

Figure 4.2: Migration Scenario Topology

Desired State We study two exemplary instantiations of the problem of secure migration.
The attack state vm breach asks whether the intruder can migrate a virtual machine from a
secure environment to a physical host to which he has root access (in order to perform attacks
demonstrated by Rocha et al. [RC11]). The attack state insecure migration asks whether an
intruder can migrate a VM through an insecure network in order to manipulate the VM (cf.
attacks demonstrated by Oberheide et al. [OCJ08]).

We define these goals in VALID, for which we introduce the unary facts intruderAccess()
and root(), and the binary fact migrate(). These model the intruder’s access capability set of
root access (typically to a given host) and machine migration between two hosts. These facts
have the following signature:

intruderAccess : fact→ fact
migrate : host ∗ host→ fact
root : node→ fact

The fact intruderAccess() models the set of all access rights the intruder has, that is, it has the
semantic that any term enclosed by the fact belongs to the intruder’s access capabilities. The
fact root() models administrator rights on the enclosed node.

We model virtual machine migration in the following way.
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Definition 25 (Migration) The capability of migrating a VM MA from host HA to HB is ex-
pressed as Horn clause canMig that incorporates the intruder access to migrate between these
two hosts, that both hosts are connected to the same network NA, and one host is running the
VM.

Migration is a transition rule that removes the association of a VM MA to a host HA, and
adds an association to a new host HB in case fact canMig matches.

canMig(MA,HA,HB,NA) :− edge(HA,MA).edge(HA,NA)
.edge(HB,NA).intruderAccess(migrate(HA,HB))

edge(MA,HA).canMig(MA,HA,HB)⇒ edge(MA,HB)

The goals are defined in VALID in the following way:

Definition 26 (Goal: VM Security) The VM breach attack state matches if there is a root()
fact on a host HA in the intruder’s access capability set and a VM MA being connected to the
host.

goal vm_breach(real;HA,MA):=
intruderAccess(root(HA)).
edge(MA, HA)

Definition 27 (Goal: Secure Migration) The attack state for insecure migration is the follow-
ing. The intruder can migrate a VM MA from host HA to HB, and he has root access to a host
HC that is connected to the same network.

goal insecure_migration(net;HA,HB,HC,MA,NA):=
canMig(MA, HA, HB).
intruderAccess(root(HC)).
edge(HA, NA).edge(HB, NA).edge(HC, NA)

Actual State We model the access capabilities of the intruder for our scenario in the following
way.

• intruderAccess(root(hostC))
• intruderAccess(migrate(hostA,hostB))
• intruderAccess(migrate(hostA,hostD))
• intruderAccess(migrate(hostB,hostC))
• intruderAccess(migrate(hostD,hostE))

The network information flow graph for the scenario is generated by SAVE.

Model-Checking Unlike in the previous static example, we had to explicitly model the dy-
namic behavior of the intruder, i.e., machine migration, and its effects on the infrastructure.
We modeled that as transition rules with restrictions based on access privileges of the intruder.
Since we are dealing with a dynamic problem, we have to use a tool from the AVANTSSAR
tool chain, for instance OFMC.

OFMC found the following attack states (reduced for brevity) for our scenario.
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INPUT
mig ra t i on . i f

SUMMARY
ATTACK FOUND

GOAL: vm breach

% Reached State :
%
% int ruderAccess ( roo t ( node ( host ( hostC ) ) ) , i )
% edge ( node ( machine (vma) ) . node ( host ( hostC ) ) , i )

OFMC finds this attack state for vm breach due to the migration of VMA to HostB, and then to
HostC.

INPUT
mig ra t i on . i f

SUMMARY
ATTACK FOUND

GOAL: insecu re m ig ra t i on

% Reached State :
%
% canMig ( node ( machine (vma) ) . node ( host ( hostD ) ) . node ( host ( hostE ) ) , i )
% in t ruderAccess ( roo t ( node ( host (mc) ) ) , i )
% edge ( node ( host ( hostD ) ) . node ( network ( netB ) ) , i )
% edge ( node ( host ( hostE ) ) . node ( network ( netB ) ) , i )
% edge ( node ( host ( hostC ) ) . node ( network ( netB ) ) , i )

This attack state for insecure migration is reached by the migration of VMA to HostD, then to
HostE and intercepted by HostC due to the connection to the same network NetB.

4.6.3 Absence of Single Point of Failure
We consider the topology illustrated in Figure 4.3 for our scenario to demonstrate the absence
of single points of failure for network links. We have two hosts that are depended on each other
and connected through a combination of three networks.

HostA

NetA

NetB

NetC HostB

Figure 4.3: Single Point of Failure Scenario Topology

Desired State The goal of the absence of single point of failure for network links is not
expressible in FOL, or VALID or ASLan goals. Therefore, we construct a game using transitions
in ASLan that has a solution if and only if there exists no single point of failure.

This game works as follows for a single dependency constraint depend(n1, n2) (if there are
several such constraints, one must start each as a separate game). We have two phases in which
sets S1 and S2 of nodes are collected. In the first phase we start with S1 = {n1} and non-
deterministically follow edges from a member of S1 to a non-member that we then add, until
we have reached n2 and start the second phase. We begin similarly with S2 = {n1} and non-
deterministically follow an edge from a member of S2 to a node that is not part of either S1

and S2 that we add to S2 until we have reached n2. Then S1 and S2 represent nodes for two
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disjoint (except for start and end nodes) paths from n1 to n2. Since the transition system allows
to non-deterministically choose the edge to follow, the goal state n2 ∈ S2 is reachable if and
only if such disjoint paths exist.

In the following are the transition rules modeling this game. The first one starts the first
phase, the second one traverses nodes in the first phase, and the third one terminates the first
phase and starts the second phase. The fourth rule traverses nodes in the second phase.

not(round1).not(round2).depend(A,B)
⇒ round1.depend(A,B).inS1(A)

round1.depend(A,B).inS1(X).edge(X,Y).not(inS1(Y))
.not(equal(Y,B))
⇒ round1.depend(A,B).inS1(X).inS1(Y)

round1.depend(A,B).inS1(X).edge(X,B)
⇒ round2.depend(A,B).inS1(X).inS1(B).inS2(A)

round2.depend(A,B).inS2(X).edge(X,Y).not(inS1(Y))
.not(inS2(Y)).not(equal(Y,B))
⇒ round2.depend(A,B).inS2(X).inS2(Y)

Here we use special facts round1 and round2 to separate the different phases and inS1 and
inS2 to denote the members of S1 and S2.

The following goal is reached when the second phase terminates, and thereby identified a
second disjoint path between A and B.
section goals:

attack_state spof_absence (A,B,X) :=
round2.depend(A,B).inS2(X).edge(X,B)

Edge symmetry is not handled by the previously shown transitions and the goal, and has to be
modeled explicitly with another set of transitions and a goal.

For our scenario, we also have to specify the dependency between HostA and HostB using
the depend term.

Actual State The network information flow graph for the scenario is generated by SAVE.

Model-Checking Since we are dealing with a static problem that cannot be encoded in first-
order logic, we modeled this goal in such a way that an attack state is actually a satisfaction
of the goal, namely there are no single point of failures. This is contrary to the previous two
examples, where an attack state always denoted a breach of a security goal.

For our scenario, the model-checker OFMC will not reach an “attack state”, therefore the in-
frastructure contains a single point of failure. Now we consider connecting HostB also to NetB,
therefore we get a second disjoint path from HostA to HostB. OFMC produces the following
output showing the two disjoint paths (reduced to inS1 and inS2 facts, and re-ordered):
INPUT

spof . i f
SUMMARY

ATTACK FOUND
GOAL: spof absence

% Reached State :
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%
% inS1 ( node ( host ( hostA ) ) , i )
% inS1 ( node ( network ( netB ) ) , i )
% inS1 ( node ( host ( hostB ) ) , i )
% inS2 ( node ( host ( hostA ) ) , i )
% inS2 ( node ( network ( netA ) ) , i )
% inS2 ( node ( network ( netC ) ) , i )

4.7 Case Study for Zone Isolation

In this section, we analyze a real and large-scale production environment of a global financial
institution. The infrastructure consists of approximately 1,300 VMs and its realization model
modeling all networking and storage resources consists of approximately 25,000 nodes and
30,000 edges. The infrastructure is divided into several security zones, each containing multiple
clusters, and models networking up to Layer 2 separation on VLANs and storage providers up
to separation on file level. We have already analyzed this virtualized infrastructure extensively
with specialized tools and know which attack states to expect. Given the large initial size of the
actual state, this case study provides a suitable test environment for the subsequent performance
analysis.

Whereas our compiler translates the problem instances to the different static and dynamic
problem solvers introduced in Section 4.1.2, we focus the performance evaluation on three
tools SPASS and ProVerif for the static case and OFMC for both the static and dynamic case.
We have also performed initial experiments with SAT-MC, CL-AtSe, and SuccintSolver, but
could not apply them to the large case study. We analyze various optimization and modeling
techniques introduced in Section 4.5 to establish their effects in practice. We are focusing in this
evaluation on two specific clusters (we call them Cluster1 and Cluster2) and their corresponding
information flow graphs, for which we know that Cluster1 has an isolation problem and Cluster2
is safe.

Graph Refinement We first measure the simplification of the information flow graphs for the
different clusters in terms of the number of edges and nodes. The information flow graph of
Cluster1 consists of 14386 nodes and 17817 edges. We achieve a reduction of the graph by
13428 nodes and 16860 edges, resulting in a graph with only 958 nodes and 957 edges. The
algorithm performs this simplification in 0.18 seconds. Cluster2 has a smaller information flow
graph with 6218 nodes and 7543 edges. The graph reduction completes within 0.06 seconds
and results in a graph with 359 nodes and 358 edges.

Zone Isolation We are now evaluating the analysis of the zone isolation goal for the large-
scale infrastructure. For our evaluation, we consider all analysis cases for the following param-
eters: attack/safe, simplified/non-simplified graph, and different graph traversal models. Attack
denotes an isolation breach and Safe denotes secure isolation.

For the graph traversal modeling using connected() in form of Horn clauses or transi-
tion rules, all tools we are evaluating either run out of memory (OFMC) or do not terminate
within our time limit of 4 hours. We therefore focus our detailed performance analysis on our
intruderHas graph traversal model with the following analysis cases.

• Simplified Graph: Attack 1, Safe 2
• Non-Simplified: Attack 3, Safe 4
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The time measurements of the analysis cases for the different tools are depicted in Figure 4.7.
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Figure 4.4: Time measurements (on logarithmic scale) for analysis cases of zone isolation.

The measurements show that ProVerif is only able to analyze the Safe configuration, because
in the other case it does not terminate within our time frame of 4 hours. Since ProVerif is based
similarly on resolution as SPASS (which terminates within the time limit for all problems), we
suspect that the pre-processing of rules in ProVerif may be the cause.

OFMC yields good performance results and is very fast for analyzing such a large-scale
infrastructure. We noticed a problem in analyzing the vulnerable cluster with the non-simplified
graph, that is OFMC runs out of memory. SPASS terminates for all analysis cases and is faster
for case 1 as OFMC.

Discussion The analysis of a large-scale infrastructure with regard to the zone isolation goal
gave us insights into the efficiency of our modeling and the employed problem solvers. We
learned that our initial modeling of connected() facts using Horn clauses or transitions were
only applicable for small infrastructures and not for such real-world scenarios. Therefore, we
developed the more efficient modeling of using intruderHas() facts for graph traversal, which
made the analysis in a reasonable time frame possible. The complexity of this graph traversal
is only linear to the number of edges, whereas the graph traversal using connected() yields a
quadratic complexity.

Furthermore, we learned that problem solvers were overwhelmed by the detailed modeling
of the infrastructure in form of our realization model. In case of security goals concerned with
graph connectivity, we developed a graph refinement algorithm that simplifies the realization
graph, but preserves its connectivity properties. The combination of efficient graph traversal
modeling and graph simplification yielded results in the order of seconds for the analysis of our
scenario infrastructure.

In terms of employed problem solvers, SPASS and OFMC performed best for our scenario.

4.8 Related Work

Virtual systems introduce several new security challenges [GR05]. Two important drivers that
inspired our work is the increase of scale as well as the transient nature of configurations that
render continuous validation with a variety of security goals more important.
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Narain et al. [NCPT06] analyze network infrastructures with regard to single point of failure
using a formal modeling language. In contrast, our approach focuses on a variety of high-level
security goals, among them the absence of single point of failure, that can be evaluated using
general-purpose model-checkers. Previous work has also analyzed network reachability in an
automated way using specialized tools, for example, [XZM+04] for IP networks, [KSS+09] for
VLANs, and [BSP+10a] for Amazon cloud configurations. Narain [Nar05] proposes modeling
a network configuration using a formal language and do automated reasoning on this formal
model. We are extending this concept by considering the entire virtualization infrastructure, not
just networking resources. Ritchey et al. [RA00] employ model-checkers to check for vulnera-
bilities in networks.

The main differentiation of our work to previous ones is two-fold. First, we have a generic
way to specify and verify security goals for virtualized infrastructures rather than specialized
analysis. Second, our framework includes the modeling of a dynamic infrastructure, in partic-
ular one where the intruder can influence the topology (for instance by migrating machines)
to mount an attack. This work is the first to formally verify security properties of virtualized
infrastructures with this dynamic behavior.

4.9 Conclusion and Future Work
In this work we demonstrated our novel approach for the automated verification of virtualized
infrastructures. We are able to specify a variety of security goals in a formal language and
validate heterogeneous infrastructure against them. We are the first to employ general-purpose
model-checker and theorem provers for this matter.

We studied three examples of static and dynamic problems, namely zone isolation, secure
migration, and single point of failure. For each problem, we showed how to specify goals in
the formal languages and proposed efficient modeling strategies. We successfully demonstrated
the automated verification of these examples against small infrastructures. Finally, we also
validated a large-scale infrastructure against the zone isolation secure goal and showed the
practical feasibility of our approach.

Future work includes the further study of dynamic problems in virtualized infrastructure and
their efficient analysis on large-scale infrastructures.
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Chapter 5

Design and Architecture of Distributed Se-
curity Management

Chapter Authors:
Imad M. Abbadi, Andrew Martin, Anbang Ruan (OXFD),
Alexander Bürger, Michael Gröne, Norbert Schirmer (SRX),
Johannes Behl, Rüdiger Kapitza, Klaus Stengel (TUBS)

Cloud computing today is shaped by the involvement of a large number of entities with diverse
trust relationships and large-scale and complex systems. Security management, in particular
also in a distributed way, is essential for achieving a trusted cloud service that fulfills the re-
quirements of high availability, fault tolerance, and scalability.

Section 5.1 approaches the security and management concerns of Cloud providers as well
as users that stem from the dynamic nature of clouds. For example how can Cloud providers
assure users that: (a.) dependent applications running on different VMs (Virtual Machines)
are hosted within physical proximity (performance reasons); (b.) mutually exclusive VMs are
not hosted at the same physical server (e.g. availability and security reasons); and (c.) when
migrating VMs the new allocated physical servers satisfy users application requirements and
security and privacy criteria. We propose a framework, which at this foundation stage focuses
on providing secure environment for the management of Clouds’ virtual layer. It also helps in
establishing trust in Cloud’s operational management.

Section 5.2 discusses the logical separation of security and cloud management, while pro-
viding the necessary and required integration. We propose an architecture that integrates Public-
Key-Infrastructure (PKI) management with OpenStack.

Section 5.3 presents DQMP, a decentralized, fault-tolerant, and scalable quota-enforcement
protocol. It allows customers to buy a fixed amount of resources (e. g., CPU cycles) that can
be used flexibly within the cloud. DQMP utilizes the concept of diffusion to equally balance
unused resource quotas over all processes running applications of the same customer. This
enables the enforcement of upper bounds while being highly adaptive to all kinds of resource-
demand changes.

5.1 Secure Virtual Layer Management in Clouds

5.1.1 Introduction

NIST defines Cloud as ‘a model for enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications, and
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services) that can be rapidly provisioned and released with minimal management effort or ser-
vice provider interaction’[MG09]. Cloud support three main deployment types Software-as-
a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS) [JNL10,
MG09]. IaaS provides the most flexible type for Cloud users who prefer to have the greatest
control over their resources, while SaaS provides the most restrictive type for Cloud users where
Cloud providers have full control over the virtual resources.

Organizations when outsourcing their applications (or part of their applications) at IaaS
Cloud would typically do the following (as discussed in [Abb11a, Abb11c]): The organization
must first decide on the application that will be outsourced on the Cloud. The application nature,
organization policy, and legislation factors would play an important role in this decision. For
example, organization policy makers might reject to host applications, which process financial
data, e.g. for legislative reasons. After the organization decides on the applications to be out-
sourced, it defines application requirements, which we refer to as User Properties. In potential
Cloud User Properties would include the following:

Technical Requirements — For potential Cloud, in IaaS the organization enterprise archi-
tects team would provide an architecture for the outsourced infrastructure based on application
requirements. This includes VMs, storage and network specifications. Enterprise architects
could also provide the properties of outsourced applications, e.g. DBMS instances that require
high availability with no single point of failure, middle-tier web servers that can tolerate fail-
ures, and the application nature is highly computational. Realizing these would enable Cloud
providers to identify the best resources that can meet user requirements [Abb11a].

Service Level Agreement (SLA) — SLA specifies quality control measures and other legal
and operational requirements. For example, these define system availability, reliability, scala-
bility (in upper/lower bound limits), and performance metrics.

User-Centric Security and Privacy Requirements — Examples of these include (i.) users
need stringent assurance that their data is not being abused or leaked; (ii.) users need to be
assured that Cloud providers properly isolate VMs that run in the same physical platform from
each other (i.e. problems of multi-tenant architecture [RTSS09b]); and (iii.) users might need
to enforce geographical location restrictions on the processing and storage of their data.

Finally, for potential Cloud the organization would provide the above user properties via a
set of APIs. The APIs would be supplied by the Cloud provider, which would then create virtual
resources considering the provided user properties. Cloud provider manages the organizational
outsourced resources based on the agreed user properties. In turn the organization pay Cloud
provider on a pay-per-use model.

Current Cloud providers have full control over all hosted services in their infrastructure; e.g.
Cloud provider controls who can access VMs (e.g. internal Cloud employees, contractors, etc)
and where user data can be hosted (e.g. server type and location) [CGJ+09, JNL10]. Cloud
users have very limited control over the deployment of their services, have no control over
the exact location of the provided services, and have no option but to trust Cloud provider to
uphold the guarantees provided in the SLA. Potential Cloud which is expected to be used by
critical applications must provide strong assurance to Cloud users that their requirements are
continually enforced. Cloud users should be capable of attesting to the Cloud provider assurance
level at any time. This is one of the top challenges in Cloud environment which is difficult to
deal with considering Cloud’s infrastructure complexity and dynamic nature [Abb11c, AL11,
AFG+09, BSP+10b, CGJ+09, JNL10, KM10a, Mic09, RTSS09b].
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5.1.1.1 Objectives and Limitations

In this work we focus on an important angle in the above direction. Specifically, our objective is
to propose a framework that helps Cloud providers to securely manage the allocation of physi-
cal resources to users’ virtual resources based on user properties and infrastructure properties.
Simultaneously, we also propose a possible approach to assure users that their virtual resources
are managed based on their defined requirements. It is important to stress that we do not claim
that this work addresses all identified problems for establishing the framework — we mainly
propose a framework architecture, propose the mechanisms for securely managing the frame-
work, and identify challenges. For example, we do not discuss issues related to providing users
the capabilities to control their own resources and management keys, which are planned future
research.

5.1.2 Cloud Management

In this section we start by briefly outlining a conceptual model of the Cloud focusing on infras-
tructure management and relationships amongst components (detailed discussion of the model
associated with real life deployment scenarios can be found at [Abb11a]).

5.1.2.1 Cloud Structure

A Cloud infrastructure is analogous to a 3-D cylinder, which can be sliced horizontally and/or
vertically (see Figure 5.1). We refer to each slice using the keyword “layer”. A layer represents
Cloud’s resources that share common characteristics. Layering concept helps in understanding
the relations and interactions amongst Cloud resources. We use the nature of the resource (i.e.
physical, virtual, or application) as the key characteristic for horizontal slicing of the Cloud. For
vertical slicing, on the other hand, we use the function of the resource (i.e. server, network, or
storage) as the key characteristic for vertical slicing. Based on these key characteristics a Cloud
is composed of three horizontal layers (Physical Layer, Virtual Layer, and Application Layer)
and three vertical layers (Server Layer, Network Layer, and Storage Layer).

In the context of this work we mainly focus on Horizontal Layer. We identify a Horizontal
Layer to be the parent of physical, virtual or application layers. Each Horizontal Layer contains
Domains; i.e. we have Physical Domains, Virtual Domains and Application Domains. A Do-
main represents related resources which enforce a Domain defined policy. Domains at physical
layer are related to Cloud infrastructure and, therefore, are associated with infrastructure proper-
ties and policies. Domains at virtual and application layers are Cloud user specific and therefore
are associated with Cloud user properties. Domains that need to interact amongst themselves
within a horizontal layer join a Collaborating Domain, which controls the interaction among
members using a defined policy.

Domains and Collaborating Domains help in managing Cloud infrastructure, resource dis-
tribution and coordination in normal operations as well as during incidents such as hardware
failures. The management of resources, including their relationships and interactions, is gov-
erned by polices. Such policies are established based on several factors including: infrastructure
and user properties. Infrastructure properties are associated with Physical Layer Domains and
Collaborating Domains, while user properties are associated with Virtual and Application Lay-
ers’ Domains and Collaborating Domains.

An Application Domain is composed of the components of a single application. A Virtual
Domain is then created to serve the needs of an Application Domain. Each Virtual Domain is
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Figure 5.1: Cloud Taxonomy (source [Abb11a])

composed of groups of virtual resources. A group would typically run and manage a specific
component within an Application Domain. Also, each group is associated with user properties
which are related to the application component that is served by the group. Cloud providers use
such properties to manage the group. For example, such user properties help Clouds to decide
on i) Vertical Scalability of VMs within the group (i.e. minimum and maximum resources al-
located to a VM based on current load), ii) Horizontal Scalability of the group (i.e. minimum
and maximum number of VMs that can be allocated and deallocated within a group based on
load/incidents), iii) deciding on the right Physical Domain that can serve the needs of the ap-
plication (e.g. highly transactional application, DBMS that should provide no single point of
failure, etc), and iv) helps management services, on incidents, to react based on user require-
ments (e.g. if Physical Domain fails then all groups served by the Physical Domain should
transparently failover to another Physical Domain which is associated with properties that can
serve the group requirements).

The above simplified taxonomy of the Cloud helps in realizing the challenges involved in
managing and providing self-managed services (partially identified in [Abb11c]). This taxon-
omy does not contradict or even replace previously proposed ones (see, for example, [YBS08])
which mainly focus on different angle from ours. It is rather the opposite, as our taxonomy
completes the picture of such work which considers the physical layer as a black-box and also
does not discuss the management of Cloud infrastructure.

5.1.2.2 Illustrative Example

Figure 5.2 illustrates the above terms using a simplified multi-tier example deployed at a Cloud
(see [Abb11a] for detailed discussion). The Application Layer has an Application Domain
which is composed of two parts of a multi-tier application: middle-tier application and back-
end DBMS. The user provides his requirements on each application component (e.g. backend
DBMS should provide no single point of failure, minimum/maximum resources’ scalability
values for each component, physical location restrictions on data storage/processing, etc). The
Physical Layer, as illustrated in Figure 5.2, is composed of two Physical Domains: Physi-
cal Domain-1 which is physically configured and optimized by Cloud provider to host DBMS
applications that can provide no single point of failure (e.g. configured to support Real Ap-
plication Cluster [Ora11]); while Physical Domain-2 is physically configured and optimized
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Figure 5.2: Multi-tier example using the provided Cloud structure

to host lightweight type of applications (e.g. middle-tier applications which mainly runs web-
application servers).

The Virtual Layer creates a Virtual Domain, which has two Groups of virtual resources:
application DBMS group runs application backend component and is hosted using Physical
Domain-1, while the second group (i.e. application middle-tier group) runs application middle-
tier component and is hosted using Physical Domain-2. As we discussed above, the hosting
decision of a Virtual Domain’s Group at a Physical Domain would be based on the Physical
Domain infrastructure properties that best fit with user properties.

The concept of Collaborating Virtual Domains represents different applications which de-
pend on each other. For example, an organization might have multiple applications sharing
the same database. This means, for performance reasons, such applications need to run within
physical proximity to the database. We propose for managing application dependencies to join
all related Virtual Domains within a single Collaborating Virtual Domain. This collaborating
domain is associated with policies defined by user governing the way Cloud should manage its
member domains.

The concept of Collaborating Physical Domains can be realized by having redundant Phys-
ical Domains which have similar infrastructural properties. In this case the members of the
Collaborating Physical Domains (based on defined policy) can automatically act as a backup
of each other when any member Physical Domain has an emergency; e.g. has a failure, get
overloaded or in maintenance window.

5.1.2.3 Virtual Control Centre

In this section we outline part of Cloud’s virtual resource management, detailed discussion of
which can be found in previous work [Abb11a, Abb11c]. Currently there are many tools for
managing Cloud’s virtual resources, e.g. vCenter [VMw10] and OpenStack [Ope10b]. For
convenience we call such tools using a common name Virtual Control Centre (VCC), which
is a Cloud specific device that manages virtual resources and their interactions with physical
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resources using a set of software agents. Currently available VCC software agents have many
security vulnerabilities and only provide limited automated management services (what we refer
to as self-managed services). For example, the management of Collaborating Virtual Domain
and Collaborating Physical Domain is controlled manually by Cloud employees using VCC.
VCC manages the infrastructure by establishes communication channels with physical servers
to manage Cloud’s Virtual Machines (VMs). VCC establishes such channels by communicating
with Virtual Machine Manager (VMM) running on each server. Such management helps in
maintaining the agreed SLA and Quality of Service (QoS) with customers. VCC will play a
major role in providing Cloud’s automated self-managed services, which are mostly provided
manually at the time of writing. For potential Clouds the factors which affect decisions made
by VCC self-managed services are summarized as follows.

Infrastructure Properties — Clouds’ physical infrastructure are very well organized and
managed. Enterprise architects, for example, build the infrastructure to provide certain services,
and they are aware about physical infrastructure properties for each infrastructural component
and groups of components. Examples of such properties include: components reliability and
connectivity, components distribution across Cloud infrastructure, redundancy types, servers
clustering and grouping, and network speed.

User Properties — Exactly as discussed in section 5.1.1.
Changes and Incidents — These represent changes in: user properties (e.g. security/pri-

vacy settings), infrastructure properties (e.g. components reliability, components distribution
across the infrastructure and redundancy type), infrastructure policy, and other changes (in-
crease/decrease system load, component failure and network failure).

Self-managed services for potential Cloud should automatically and continually manage
Cloud environment with minimal human intervention. It should always enforce Cloud user
properties; e.g. ensure that user resources are always hosted using physical resources which
have properties enabling such physical resources to provide the services as defined in user prop-
erties.

5.1.3 Management Framework Requirements
Our proposed framework forms the foundation which helps in establishing trust in the operation
of the Cloud. In previous sections we discussed Cloud structure and self-managed services. In
this work we are mainly concerned about two aspects of such management services: i) support
self-managed services with secure environments which enable them to securely manage virtual
layer resources at physical layer resources (i.e. VM creation and migration) based on both user
properties and infrastructure properties; and ii) propose mechanisms to enable users to assess
the trustworthiness of such management services. Point (i) requires establishing trustworthy and
secure infrastructure across Clouds’ distributed entities, while point (ii) involves establishing a
chain of trust between Cloud users and the Cloud infrastructural resources (see the blue-dash
arrow in Figure 5.3).

One of the key features of Cloud is providing transparent infrastructure management. There-
fore, the chain of trust needs to be established at two stages: 1) a chain of trust between users
and VCC management agents, and 2) a chain of trust between VCC management agents and
Cloud’s infrastructural resources. We now ‘informally’ discuss the requirements to achieve
these objective. Users need to establish trust in VCC, for example, by attesting to the trust-
worthiness of its management agents. Also, VCC management agents need to establish trust in
the infrastructural resources. This requires the following: (1.) VCC and VMMs should attest
to each other execution environment; (2.) VCC and VMMs need to have management agents
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Figure 5.3: The proposed framework — focusing on chain of trust

that are trusted to behave as expected. Such agents should have mechanisms to ascertain their
trustworthiness to remote parties; (3.) VCC and VMMs should provide protected storage func-
tions; (4.) VCC and VMMs should be able to exchange each other identification certificates in a
secure and authentic way; (5.) VCC needs to be resilient and scalable to provide distributed and
coordinated services; and (6.) VCC should provide hardware trustworthiness mechanisms to
prevent infrastructure single point of failure. In this work we do not discuss the last two points
and leave them for planned future research.

The provision of secure and trustworthy infrastructure for the operation of self-managed
services would require the following: (1.) A mechanism to attest to VMM trustworthiness to
ensure that it would enforce user properties; (2.) A mechanism to communicate user proper-
ties across Cloud related components, and ensuring the properties are not tampered with whilst
being transferred/executed/stored; (3.) Providing secure information sharing across Cloud com-
ponents in the same layer and across multiple layers; (4.) Mitigating insider threats as discussed
in next paragraph; (5.) Standardization — Most technologies, which are used in Cloud, are not
new; however, the Cloud heterogeneous nature requires reconsidering many issues, as in the
case of standardization. For example, different software and hardware providers need to pro-
vide standard interfaces enabling cross communication between Cloud components; and (6.)
Interoperability — this requirement is not only to avoid vendor lock-in, but also to enable
collaborative efforts. For example, hypervisor and VMM interoperability enables VMs from
different suppliers to work on hypervisors from different manufacturers. This in turn helps in
supporting self-managed services. In this work we do not discuss points 5–6.

The Cloud infrastructure must be capable of protecting the integrity, confidentiality and
availability of Cloud’s management data from insiders. This covers all types of data and com-
munication messages whether directly related to Cloud users or used to manage internal re-
sources, e.g. data stored inside VCC, VMM, and exchanged across Cloud entities. Our pro-
posed mechanism in this work partially mitigate the risks of Clouds’ insiders — we do not
consider insiders attacks at hypervisor and hardware levels.
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5.1.4 Device Properties

We require that devices are commercial off-the-shelf hardware enhanced with trusted comput-
ing technology that incorporates a Trusted Platform Module (TPM), as defined by the Trusted
Computing Group (TCG) specifications [Tru07b]. Trusted computing systems are platforms
whose state can be remotely tested, and which can be trusted to store security-sensitive data
in ways testable by a remote party. Trusted computing technology can enforce access control
policies associated with a resource in such a way that a user cannot bypass these policies, whilst
maintaining access to the resource. TCG compliant trusted platforms (TP) are not expensive,
and are currently available from a range of PC manufacturers, including Dell, Fujitsu, HP, Intel
and Toshiba. We now provide a very brief overview of the main entities in TCG compliant
platforms, which are required in the proposed scheme. TCG is a wide subject and has been
discussed by many researchers; we will not address the details of TCG specifications in this
work for space limitations.

The TCG specifications require each TP to include an additional inexpensive hardware com-
ponent to establish trust in that platform. This component is referred to as the Trusted Platform
Module (TPM), which has protected storage and protected capabilities. Once a TPM has been
assigned an owner, it generates a new Storage Root Key pair (SRK), which is used to protect
all TPM keys. The private part of the SRK is stored permanently inside the TPM. Other TPM
objects (key objects or data objects) are protected using keys that are ultimately protected by
the SRK in a tree hierarchy structure. The entries of a TPM platform configuration registers
(PCRs), where integrity measurements are stored, are used in the protected storage mechanism.
This is achieved by comparing the current PCR values with the intended PCR values stored with
the data object. If the two values are consistent, access is then granted and data is unsealed1.
Storage and retrieval are carried out by the TPM. Therefore, if a software process relies on the
use of secrets, it cannot operate unless it and its software environment are correct.

A TPM can generate two types of keys, known as migratable and non-migratable keys.
Migratable keys can be transmitted to other TPs if authorised by both a selected trusted authority
and the TPM owner. A non-migratable key is bound to the TP that created it. The TP associates
the current platform software state, which is stored in PCRs, with the non-migratable key, and
then protects them using the SRK. Stored secrets are only released after the platform’s PCRs
have been compared with the values associated with the stored key. Data encrypted using a
non-migratable key can leave the TP if and only if the software agent (whose execution status
matches the one associated with the non-migratable key, i.e. is authorised to read data encrypted
using the non-migratable) authorises the release of the data to other platforms.

Establishing trust in a TP is based on the mechanism that is used for measuring, reporting
and verifying platform integrity metrics. TP measurements are performed using the RTM (Root
of Trust for Measurement), which measures software components running on a TP. The RTS
(Root of Trust for Storage) stores these measurements inside TPM shielded locations (i.e. the
PCR). Next, the RTR (Root of Trust for Reporting) mechanism allows TP measurements to be
reliably communicated to an external entity in the form of an integrity report. The integrity
report is signed using an AIK2 (Attestation Identity Key) private key, and is sent with the ap-
propriate identity credential. This enables a Verifier to be sure that an integrity report is bound
to a genuine TPM.

1
Seal/unseal are TCG terms used for encrypting/decrypting a data object. Seal binds a data object with an integrity measurement that must match the platform PCR value when unsealing

the object. Also, a data object must be unsealed on the same TPM that sealed the object.
2

AIKs are signature key pairs function as aliases for the TP; they are generated by the TPM, and the public part is included in a certificate known as an Identity Credential, signed by
a trusted third party called a privacy certification authority (privacy CA). The identity credential asserts that the (public part of the) AIK belongs to a TP with specified properties, without
revealing which TP the key belongs to.
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Figure 5.4: Framework Domain Architecture

5.1.5 Framework Architecture

In this section we propose a framework which forms the foundation to help in addressing the
identified requirements in section 5.1.3. The framework uses the dynamic domain concept
proposed in [AA08b]. We start by defining the dynamic domain concept, and then discuss the
adaptation of such concept to architect the framework.

5.1.5.1 Dynamic Domain Concept

Definition 5.1.1 A Dynamic Domain represents a group of devices that need to share a pool
of content. Each dynamic domain has a unique identifier iD, a shared unique symmetric key
kD and a specific PKLd composed of all devices in the dynamic domain. kD is shared by all
authorized devices in a dynamic domain and is used to protect the dynamic domain content
whilst in transit. This key is only available to devices that are member of the domain. Thus
only such devices can access the pool of content bound to the domain. Each device is required
to securely generate for each dynamic domain a symmetric key kC, which is used to protect the
dynamic domain content when stored in the device.

A device can join multiple dynamic domains to access content bound to these domains.
Devices not member of the domain do not possess a copy of kD, and hence cannot decrypt
domain-specific content.

5.1.5.2 Proposed Architecture

Our proposed framework architecture is composed of the following (see Figure 5.4): Cloud
provider Management Domain (MD), Cloud provider Collaborating Management Domain (CMD),
User Outsourced Domain (OD), and User Collaborating Outsourced Domain (COD).

We now map the above domains using the Cloud infrastructure taxonomy concept, which is
summarized in section 5.1.2. A Cloud provider MD and CMD represents a Physical Domain
and Collaborating Physical Domain at Cloud Infrastructure Physical Layer. User OD and COD
represents a Virtual Domain and Collaborating Virtual Domain at the Virtual Layer. We do not
consider Application Layer Domains, which is outside the scope of this work to discuss and are
planned future work.
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Definition 5.1.2 Management Domain: MD represents a group of devices at Physical Layer.
The capabilities of devices member of MD and their interconnection reflect the overall prop-
erties of MD. Such properties enable MD to serve the part of user requirements related to
physical layer (e.g. geographical location restrictions, restrictions on dependent VMs to run
within physical proximity or not to run in the same physical platform, etc).

An MD has a specific policy defined by Cloud architect to manage the behaviour of MD
members in normal operations and on incidents when providing services to OD and/or COD.
Such policy, which is controlled by VCC, helps in providing Cloud properties (e.g. availability
and resilience) as reflected at virtual resources hosted by MD (i.e. OD/COD). Each MD is
also associated with infrastructure properties enable the MD to serve certain category of user
requirements, as we discussed earlier. Each MD has a specific credentials consisting of a unique
identifier imd, a unique symmetric key kmd, and a public key list (PKLmd). These are defined as
follows.

Definition 5.1.3 MD identifier imd is a unique number that we use to identify an MD. It is
securely generated and protected by the TPM of VCC.

Definition 5.1.4 MD key kmd is used to protect management data that controls the behaviours
of MD. kmd is a symmetric key that is securely generated and protected by the TPM of VCC.
kmd is not available in the clear even to Cloud administrators, it is shared between all devices
member of MD, and it can only be transferred from VCC to a device when the device joins the
MD.

Definition 5.1.5 MD’s public key list (PKLmd) is an MD-specific list that is composed of the
public keys of all devices of MD. Enterprise architects assign devices to each MD by providing
each device public key to VCC in a form of PKL. The PKLmd is securely protected and managed
by VCC.

Definition 5.1.6 Collaborating Management Domain: CMD represents groups of MDs that
have similar infrastructural properties. Such grouping enables all MDs member of CMD to
serve as a backup of each other, such as on MD failure, maintenance window, or overloaded
resources. This operation is controlled by a defined policy at VCC. Such policy considers user
properties and infrastructure properties. For example, before OD can migrate from MD1 to
MD2 both MDs must be within the same CMD and user requirements must be validated against
MD2 properties, e.g. users might have restrictions when migrating across different legal juris-
dictions, or even when migrating a resource across long distant data centres user might require
migrating all COD members for performance reasons.

Definition 5.1.7 Outsourced Domain: OD consists of the virtual machines which host user
outsourced applications at the Cloud. As outlined in section 5.1.2.3 the VCC establishes and
manages OD membership (i.e. it creates/migrates/controls the hosting if virtual resources at
MD and CMD) based on User Properties and Infrastructure Properties. As in the case of MD,
OD has a unique identifier iod, a shared unique key kod and a specific PKLod composed of all
devices in the OD. kod is used to protect OD content that is needed to be shared between OD
devices. This key is only available to devices that are members of OD. OD credentials have sim-
ilar definitions provided in def 5.1.3, 5.1.4, and 5.1.5, but managed by the user and not VCC. It
is outside the scope of this work to discuss user application deployment issues and key manage-
ment at OD and COD, as our focus is on providing secure virtual layer management at physical
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layer. Future work will focus on mechanism for providing users with full control over the se-
curity of their deployed data inside OD and COD without getting involved into infrastructural
complexities.

Definition 5.1.8 Collaborating Outsourced Domain: COD Consists of groups of related ODs
that share common policy. For example, the policy could state that i) COD members should be
hosted within physical proximity for performance reason, and ii) COD members should not be
hosted in the same MD as in the case of a primary and standby DBMS. Such a policy is defined
based on user properties but controlled by VCC.

In section 5.1.9 we discuss the benefits of the proposed domain structure.

5.1.6 Required Software Agents
The proposed framework architecture has two types of software agents (as illustrated in Figure
5.4): Cloud server agent and Cloud client agent. These software agents run on trusted devices
that must have all TP properties, as outlined in section 5.1.4. Cloud server agent runs in VCC,
while Cloud client agent runs at physical devices member of MD. Other software agents might
be required to run inside VMs member of OD and possibly controlled by Cloud users, which is
outside the scope of this work to discuss and is planned future work. The way the functions of
these agents are implemented is described in section 5.1.7. For convenience, herein we use the
word content to mean infrastructure management data.

Assumption 5.1.9 We assume the identified software agents are designed in such a way that
they do not reveal domain credentials in the clear, do not transfer domain protection keys to
others, and do not transfer sensitive domain content unprotected to others. Although, this is a
strong assumption; however, recent research shows promises in the direction of satisfying such
an assumption [MLQ+10]. TCG compliant hardware using the sealing mechanism alone is
not enough to address such an assumption. Trustvisor ([MLQ+10]) moves one step forward
and focuses on protecting content encryption key utilizing recent development in processors
technology (e.g. Intel TXT); however, this does not protect clear text data once decrypted and
more work is required in this direction. Formal security analysis of such work and others in this
direction is very important to the success of our framework, which is a planned future work.

5.1.6.1 Cloud Server Agent Functions

The Cloud server agent has the following functions:
(a.) Create and manage MDs. This includes the following: (i.) Securely generating and

storing MDs protection keys; (ii.) Attesting to the execution environment status of devices
whilst being added to the MD and ensuring they are trusted to execute as expected; hence trusted
to securely store the MD key and to protect MD content; (iii.) Adding and removing devices to
MD by releasing the domain-specific key to devices joining the MD; and (iv.) Backing up and
recovering MD-specific credentials.

(b.) Manage policies, and ensure protected content is only accessible to authorized devices.
These covers the collaboration between related MDs forming a CMD.

(c.) Installs and manages Cloud client agent at devices member of MD.
(d.) As outlined in section 5.1.2.3, Cloud server agent manages the policy of hosting each

OD at appropriate MD within a specific CMD, and also manages the policy of hosting COD
members. This is by matching user properties with Clouds infrastructural properties, which
continually considers changes and incidents.
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5.1.6.2 Cloud Client Agent Functions

Cloud client agents have the following functions: (i.) Used by physical devices when interacting
with Cloud server agent for joining an MD, and (ii.) Manage and enforce MD/CMD policy
at individual physical devices as defined by Cloud server agent. This, for example, includes
managing the allocation of OD members on resilient architecture at an MD and across CMD
members. In addition, Cloud client agents are responsible of ensuring that access to exchanged
management data and policy of MD/CMD is granted only to authorized agents bound to specific
devices. Client agents access critical management data by communicating with client agents
running at devices member of MD/CMD.

5.1.6.3 Cloud Server Agent Initialization

This section describes the procedure of initializing the Cloud server agent discussed in section
5.1.6.1. The main objective of this procedure is to prepare the server agent to implement the
framework of the proposed scheme. This includes the following: (1.) System administrators
install the server agent on VCC — the installation of the server agent includes generating a
non-migratable key pair (Pr,Pu) to protect domain credentials; and (2.) The server agent could
also manage security administrator(s) credentials and securely stores them to be used whenever
administrator(s) need to authenticate themselves to the server agent.

The first time security administrators run the server agent it performs the following initial-
ization procedure (as described by algorithms 1). The objective of this algorithm is to initialize
the server agent. The server agent executes and sends a request to the VCC-specific TPM to
generate a non-migratable key pair, which is used to protect domain credentials. TPM then
generates this key and seals it to be used by the server agent when the hosting device execution
status is trusted.

The server agent then needs to ensure that only security administrators can use the server
agent. For this the server agent instructs security administrators to provide their authentication
credentials (e.g. password/PIN), as described by algorithm 2. The objective of this algorithm is
to enroll system administrators into the server agent. The server agent then requests the TPM
to store the authentication credentials of the security administrators associated with its trusted
execution environment state (i.e. the integrity measurement as stored in the TPM’s PCR) in the
VCC protected storage. We mean by storing data in a protected storage is ‘sealing data’ in TCG
terms, so that data can only be accessed by the trusted agent. The authentication credential is
used to authenticate security administrators before using the server agent; see algorithm 3.

Given the definitions and the assumptions above, the protocol is described by algorithms 1,
2, and 3. The objective of the protocol is installing the server agent at VCC, which generates the
non-migratable key to encrypt the domain credentials and securely store a copy of the security
administrators’ credentials. The protocol is used every time security administrators want to
manage the domains. Following are the notations used in the provided algorithms:

M is the software agent; TPM is the TPM on VCC; S is the platform state at release as stored
in the PCR inside the TPM; and (Pu, Pr) is a non-migratable key pair such that the private part
of the key Pr is bound to TPM, and to the platform state S. The following protocol functions
are defined in [Tru07b]: TPMCreateWrapKey, TPMLoadKey2, TPMSeal, and TPMUnseal.
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Algorithm 1 Server Agent Initialization
1. M → TPM: TPMCreateWrapKey .

2. TPM: generates a non-migratable key pair (Pu, Pr).

Pr is bound to TPM, and to the required platform state S at release, as stored in the PCR inside the TPM.

3. TPM→ M: TPM KEY12[Pu, Encrypted Pr, TPM KEY STORAGE, tpmProof=TPM (NON-MIGRATABLE), S, Auth data]

Algorithm 2 Administrators Registration
1. M → Administrators: Request for system administrators authentication credentials.

2. M → TPM: TPMLoadKey2(Pr).

Loads the private key Pr in the TPM trusted environment, after verifying the current PCR value matches the one associated with Pr (i.e. S). If the PCR value does not match S, M
returns an appropriate error message.

3. M → TPM: TPMSeal(Authentication Credential).

Algorithm 3 Authentication Verification
1. M → Administrators: Request for authentication credentials.

2. M → TPM: TPMLoadKey2(Pr). TPM on M loads the private key Pr in the TPM trusted environment, after verifying the current PCR value matches the one associated with Pr
(i.e. S). If the PCR value does not match S, M agent returns an appropriate error message.

3. M → TPM: TPMUnseal(Authentication Credential).

4. TPM: Decrypts the string Authentication Credential and passes the result to M.

5. M: Authenticates the administrators using the recovered authentication credentials. If authentication fails, M returns an appropriate error message.

5.1.6.4 Cloud Client Agent Initialization

This section describes the procedure of initializing Cloud client agents. The goal of this pro-
cedure is to prepare devices to join an MD and to collaborate within CMD, which includes
installing the client agents at physical devices. This covers generating a non-migratable key to
protect domain credentials.

The protocol of initializing client agent is described by algorithm 4. The objective of this
algorithm is to install at each device a copy of the client agent, which generates a non-migratable
key to protect MD credentials. Following are the notations used in the provided algorithm: D
is the client agent running on a client device; TPM, S and (Pu, Pr) have the same meanings
provided earlier.

Algorithm 4 Client Agent Initialization
1. D→ TPMD: TPMCreateWrapKey .

2. TPM: generates a non-migratable key pair (Pu, Pr).

2. TPM→ D: TPM KEY12[Pu, Encrypted Pr, TPM KEY STORAGE, tpmProof=TPM (NON-MIGRATABLE), S, Auth data]

5.1.7 Framework Workflow
This section discusses a possible workflow of the proposed system framework. At this early
stage of our work we propose a set of protocols as a proof of concept without providing any
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formal analysis. This is to clarify how the framework components could possibly be managed.
Once we proceed in this work and address the identified challenges, we then need to provide a
formal analysis in which the proposed protocols will likely be updated.

5.1.7.1 MD and CMD Establishment

In this section we discuss the procedure of establishing an MD and joining related MDs to
collaborate within a CMD, which are managed by the Cloud server agent. In the provided
protocol we use the same notations described earlier (note that M resembles the Cloud server
software agent running on VCC).

In this subsection we require that the Cloud server agent has already been installed on VCC,
exactly as described earlier in section 5.1.6.3. This includes installing the server agent, which
interacts with the TPM to generate a non-migratable key pair that can be only used by the server
agent. This key pair is used to protect MD credentials.

Domain establishment begins when the Cloud administrators wants to add a new domain
to the Cloud infrastructure. Administrators instruct the server agent to create a new MD. The
server agent authenticates administrators as described in algorithm 3. If authentication succeeds
the server agent interacts with the TPM to securely generates MD specific secret key kmd and
identifier imd, as described by algorithm 5.

At the successful completion of this protocol MD credentials are initialized at VCC, which
include the MD key, MD identifier and an empty PKL. These are protected by VCC, which
manages MD membership.

Cloud employees assign devices to MD based on the required overall MD properties. They
also join related MDs in an CMD using policies which consider COD policy. Such policies
control the migration of OD resources within a single MD resources and across CMD members.

Algorithm 5 Management Domain Establishment
1. M → TPM: TPMGetRandom .

TPM generates a random number to be used as a MD domain key kmd .

2. TPM→ M: kmd

3. M → TPM: TPMGetRandom .

M generates a unique number to be used as MD domain identifier imd .

4. TPM→ M: imd

5. The MD domain credentials kmd , imd , and an empty PKLmd are stored in VCC protected storage, and sealed to the server agent so that only the server agent can access these
credentials when its execution status is trusted. This is achieved as follows.

M → TPM: TPMLoadKey2(Pr);

Loads the private key Pr in the TPM trusted environment to be used in the Sealing function, after verifying the current PCR value matches the one associated with Pr (i.e. S). If
the PCR value does not match S, M returns an appropriate error message.

M → TPM: TPMSeal(kmd||imd||PKLmd ).

TPM securely stores the string kmd||imd||PKLmd using the platform protected storage, such that they can only be decrypted on the current platform by M, and only if the platform
runs as expected (when the platform PCR values matches the ones associated with Pr, i.e. S).

5.1.7.2 Adding Devices to MD and CMD

This section describes the process for adding a device to a MD, and joining MDs to a CMD
(the process could also be applied to adding devices to OD, which is outside the scope of this
work to discuss as it involves substantial further work on supporting users with mechanisms to
have ultimate control over key management of their OD’s content protection keys). Following
notations are used in the provided protocol.

TClouds D2.3.2 Page 73 of 123



D2.3.2 – Components and Architecture of Security Configuration and
Privacy Management

D is the client agent running on a device; M is the server agent running on VCC; TPMD

is the TPM on a client device; TPMM is the TPM on VCC; SD is the platform state at release
as stored in the PCR inside the TPMD; SM is the platform state at release as stored in the PCR
inside the TPMM; (PuD, PrD) is non-migratable key pairs such that the private part of the key
PrD is bound to TPMD and to the platform state SD; (PuM, PrM) is non-migratable key pairs
such that the private part of the key PrM is bound to TPMM and to the to the platform state SM;
i is the domain specific identifier, which is equal to imd for MD; PKL is the domain public key
list, which is equal to PKLmd for MD; k is the domain specific content protection key, which is
equal to kmd for MD; CertM is the VCC certificate; CertD is the joining device certificate; AM is
an identifier for the server agent device included in CertM; AD is an identifier for a client agent
device included in CertD; PrMAIK is the corresponding private key of the public key included
in CertM; PrDAIK is the corresponding private key of the public key included in CertD; N1 is a
randomly generated nonce; N2 is a randomly generated nonce; ePuD(Y) denotes the asymmetric
encryption of data Y using key PuD, and where we assume that the encryption primitive in use
provides non-malleability, as described in [Int06]; and SHA1 is a one way hash function.

The client agent on the device sends a join domain request to the server agent to install the
domain specific key k. This request includes the domain specific identifier i this is achieved as
follow.

D→ M: Join Domain

Two algorithms are then initiated to add the device to the domain. The first algorithm
involves the server agent and the client agent to mutually authenticate each other conforming
to the three-pass mutual authentication protocol [Int98]. The server agent sends an attestation
request to the client agent to prove its trustworthiness then the client agent sends the attestation
outcome to the server agent. These steps are achieved using algorithm 6.

Adding a device into a domain uses the second algorithm 7, which starts upon successful
completion of algorithm 6. The objective of algorithm 7 is to securely transfer the key k to
client agent D. k is sealed on D, so that it is only released to client agent when its execution
environment is as expected. If D execution status is trusted, the server agent checks if the
device’s public key is included in the public key list of the domain. If so, it securely releases
the domain specific key k to D using algorithm 7. The key are sealed on D, so that they are only
released to client agent when its execution environment is as expected.

Upon the successful completion of the above algorithms the client agent and the server
agent establish a trusted secure communication channel that is used to transfer the domain key
to the client agent. This channel is also used to transfer MD policies which cover the following:
i) MD-specific resource management policy, ii) related MDs’ identifier which form a CMD,
and iii) CMD management policy. The established secure channel provides the assurance to
the server agent about the client agent state, and, also, forces the future use of the transferred
key to the agent on specific trusted state. The device hosting D is now part of the domain,
as it possesses a copy of the key k, and its public key matches the one stored in the server
agent. Member devices of the domain can access the domain associated content, and hence
such content are now shared by all devices member of the domain.
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Algorithm 6 Client and Server Agents Mutual Authentication
1. M → TPMM : TPMGetRandom .

2. TPMM → M: Generates a random number to be used as a nonce N1 .

3. M → TPMM : TPMLoadKey2(PrMAIK );

Loads the server agent hosting device AIK in the TPM trusted environment, after verifying the current PCR value matches the one associated with PrMAIK .

4. M → TPMM : TPMSign(N1).

5. TPMM → M → D: N1||CertM ||SignM(N1).

6. D: verifies CertM , extracts the signature verification key of M from CertM , and checks that it has not been revoked, e.g. by querying an OCSP service [MAM+99]. D then verifies
message signature. If the verifications fail, D returns an appropriate error message.

7. D→ TPMD: TPMGetRandom .

8. TPMD → D: Generates a random number N2 that is used as a nonce.

9. D→ TPMD: TPMLoadKey2(PrDAIK );

Loads the private key PrDAIK in the TPM trusted environment, after verifying the current PCR value matches the one associated with PrDAIK .

10. D→ TPMD: TPMCertifyKey(SHA1(N2||N1||AM ||i),PuD). TPMD attests to its execution status by generating a certificate for the key PuD .

11. TPMD → D: N2||N1||AM ||PuD||SD||i|| SignD(N2||N1||AM ||i||PuD||SD).

12. D→ M: N2||N1||AM ||PuD||SD||i||CertD|| SignD(N2||N1||AM ||i||PuD||SD).

13. M verifies CertD , extracts the signature verification key of D from the certificate, and checks that it has not been revoked, e.g. by querying an OCSP service. M then verifies
message signature, message freshness by verifying the value of N1 , and then verifies it is the intended recipient by checking the value of AM . M determines if D is executing as
expected by comparing the platform state given in SD with the predicted platform integrity metric. If these validations fail, then M returns back an appropriate error message.

Algorithm 7 Sealing Domain Key to Client Agent
1. M → TPMM : TPMLoadKey2(PrM ).

TPM on M loads the private key PrM in the TPM trusted environment, after verifying the current PCR value matches the one associated with PrM (i.e. SM ). If the PCR value does
not match SM , the server agent returns an appropriate error message.

2. M → TPMM : TPMUnseal(k||i||PKL).

3. TPMM → M: decrypts the string k||i||PKL and passes the result to M.

4. M verifies i matches the recovered domain identifier and PuD is included in the PKL. If so M encrypts k using the key PuD as follows ePuD (k).

5. M → TPMM : TPMCertifyKey(SHA1(N2||AD||ePuD (k)),PuM ).

6. TPMM → M: attests to its execution status by generating a certificate for the key PuM , and sends the result to M.

7. M → D: N2||AD||PuM ||SM || ePuD (k)||SignM(N2||AD||ePuD (k)|| PuM ||SM ).

8. The device D verifies message signature, it is the intended recipient by checking the value of AD , and verifies message freshness by checking the value of N1 . If verifications
succeed, D stores the string ePuD (k)) in its storage.

5.1.7.3 OD and COD Establishment

In section 5.1.1 we discuss the general steps that organizations (as Cloud users) would follow,
when deciding to outsource part of (or the whole of) their infrastructure to the Cloud. In this
section we assume that the Cloud user has chosen the applications to be outsourced on the
Cloud, defined their requirements (i.e. user properties, as identified in section 5.1.1), and nego-
tiated the SLA with the Cloud. We now mainly focus on establishing an OD and joining related
ODs within an COD based on user technical requirements, which is part of user properties.

The user first would need to communicate with the Cloud provider supplied APIs to create
virtual resources considering the defined user properties. For simplicity we assume that the
server agent running on VCC is the entity that also serves such APIs (this assumption can
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be easily changed, but we do not want to get into discussing secure communications between
different software components inside the Cloud, which is outside the scope of this work).

The work on dynamic domain [AA08a] has provided a protocol for establishing trusted
secure channels between collaborating organizations’ endpoints. The trusted secure channel
provides ‘offline’ assurance to such endpoints about each other execution environment is trusted
to behave as expected. Establishing such a channel requires the Cloud to provide an authentic
copy of its certificate to the Cloud user. A Cloud provider could provide his certificate in
different means, e.g. sign the certificate using a reputable PKI authority and publish it on the
Cloud website.

The trusted secure channel establishes a secure and trustworthy communication between the
Cloud user device and the Cloud server agent running on VCC. As discussed in section 5.1.7.2,
Cloud server agent and client agent have already established trusted secure channels. Such
secure channels assure users that the channel from user device to VCC, and then from VCC to
physical devices are trusted. The following steps are then followed:

(1.) The user sends, via supplied APIs, a request to the Cloud server agent to establish IaaS
virtual resources. The request includes the user technical requirements. Such require-
ments should be specified using a standard language or submitted via defined online form,
which is outside our scope to discuss.

(2.) The Cloud server agent validates user properties. If validation succeeds, the Cloud server
agent identifies CMD that can serve user properties. Such identification would mainly be
based on the infrastructure properties of MDs’ member of the CMD.

(3.) Based on user properties and the identified CMD, the Cloud server agent establishes user-
specific processes and policies. These define how CMD would manage OD, for example,
it defines for each OD the primary MD and backup MDs which should be member in
the same CMD. Such processes and policies enable the primary MD to instantiate and
control the user OD virtual resources. It also contains management decisions related to
other ODs member in the same COD.

(4.) The Cloud server agent coordinates with the client agents at the primary MD to create
user VMs.

(5.) Cloud client agents coordinate amongst themselves and create VMs, as defined in the user
requirements.

(6.) Cloud server agent sends the details of the newly created VMs (PKL, IP addresses, and
default authentication details) to the user.

(7.) The user can now interacts with his new OD. Future work will focus on providing mech-
anisms enabling Cloud users to have full control over OD credentials.

Section 5.1.9 discusses the advantages of the above steps on establishing a chain of trust
between Cloud users and providers, and on establishing secure management infrastructure.

5.1.8 Planned Implementation Layout
In this section we briefly outline part of our implementation architecture, which we are working
on as part of TClouds project3. We use OpenStack Compute as management framework to

3
http://www.TClouds-project.eu
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Figure 5.5: OpenStack Components (Source [Ope11])

represent VCC. OpenStack Compute is composed of many components as illustrated in Figure
5.5. For space limitations we only discuss the ones related to our framework (see [Ope11] for
detailed discussion about OpenStack components): nova-api intermediates the communications
between OpenStack and Cloud users, nova-database is the central repository for OpenStack
management data, nova-schedule manages the hosting of VMs at Clouds physical layer, and
nova-compute creates and terminates VMs.

In our prototype we plan to use nova-database to securely store user properties and the
structure of the Cloud (following the taxonomy discussed in section 5.1.2). We build a rela-
tional database to hold, for example, the following: i) physical layer components, their infras-
tructural properties, their membership in MD, and the policy governing them; ii) virtual layer
components, their membership within ODs, associated user properties; and iii) CMD and COD
policies.

We are planning to provide two interfaces to interact with nova-database via nova-api: the
first is related to managing users’ properties and the second is for managing Clouds infrastruc-
tural properties and policies. At this stage the infrastructure properties would be provided by
administrators. These data should only be accessed and managed using Cloud server agent. Fu-
ture implementation will consider the utilization of Cloud client agents to collect such properties
and securely push them to nova-database.

Nova-schedule is the central component of our scheme which controls the hosting of VMs at
physical resources. Current implementations of nova-schedule do not consider the entire cloud
Infrastructure neither they consider the overall user and infrastructure properties.

Once we finish from the above, we are planning to extend the proposed scheme framework
from providing secure and trustworthy distributed environment to provide policy management
(using the server agent) by proposing mechanisms which matches user properties with infras-
tructure properties). In this case the policy enforcement will be enforced by client agents.

5.1.9 Discussion and Analysis

In this section we discuss the advantages of the proposed framework architecture and how it
achieves our objectives identified in section 5.1.3.
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5.1.9.1 Benefits of Using Trusted Computing

We use the ‘remote attestation’ concept in trusted computing, which provides the ability to
remotely attest to the execution environment of running software agents (i.e. server and client
agents). It also binds the release of domain credentials to the attested trusted environment. This
provides an ‘offline’ assurance that agents are behaving as expected. Such assurance establishes
a chain of trust between Cloud users and Cloud providers as follows: 1) Cloud user trusts Cloud
server agent to enforce user properties; and 2) Cloud server agent trusts Cloud client agent to
enforce both user properties and infrastructure properties. These assure users that Cloud client
agents can enforce user properties at the infrastructural level, without getting involved into
infrastructural complexities. As we indicated in section 5.1.3 and our assumption (provided in
5.1.9), at this stage we do not consider attacks at physical or hypervisor levels and are a planned
future research.

5.1.9.2 Benefits of the Framework Architecture

The proposed framework architecture adds the following benefits: (a.) Cloud server agent del-
egates MD/CMD policy enforcement (which manages the hosting of OD/COD) to Cloud client
agents. If all resources must be fully managed all the time by a centralized management unit
(i.e. VCC) this could be subject to single point of failure and would also raise performance
concerns; (b.) The proposed framework supports domains with special properties (e.g. expand-
ability, changeability of member devices, and collaboration with other domains). As the Cloud
environment is dynamic and complex, this feature will be extremely helpful in satisfying Cloud
properties and management requirements defined earlier; and (c.) Secure domains enable con-
trolled and secure sharing of management data between members of MD, CMD, OD and COD.
This helps in mitigating insider threats as described in next subsection.

5.1.9.3 Mitigating Insider Threats

Protecting Cloud management data from Cloud insiders is achieved as follows (as we discussed
earlier we do not focus on hypervisor security threats and physical security threats in this work
– also see scheme limitations at the end). If an authorized or unauthorized insider sends content
from a device member of MD/CMD to unauthorized user the content stay protected and the
unauthorized user will not be able to access content on any device not member of MD/CMD.
This is because client agents are trusted to not reveal protected content to others. Thus, if an
insider transfers protected content to another device not member of MD, the receiver will not
be able to access the protected content as the receiver does not possess a copy of the content
decryption key.

If an insider attempts to send a copy of the MD key to unauthorized users they will fail to do
so. This is because the server and client agents are the only entities authorized to access the key
after verifying the execution environment state of the device matches the one associated with
the keys. In other words these keys are sealed to be only used by a trusted application, which is
implemented to not reveal the keys in the clear even to system administrators.

If an insider attempts to add unauthorized device (e.g. less secure) to MD they will fail to
do so. This is because system administrators explicitly identify member devices of a domain
by adding their public keys in a domain-specific public key list. This means only predefined
devices can join a domain. Therefore, unauthorized devises will fail to join a domain as their
public keys are not listed in the PKL and, so, they will not be able to get a copy of the domain
key.
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From the above we can see that the proposed scheme enables controlled transfer of man-
agement data between devices. Simultaneously, such data can only be accessed by devices,
which are authorized by security administrators. The same discussion applies to all other types
of domains, but to address different security threats. For example, an insider might add an in-
secure MD to CMD, migrates OD resources to the insecure MD, and then leaks content. Our
scheme addresses such threat by controlling the members of CMD using user-specific policy as
discussed earlier.

5.1.9.4 Limitations

Our framework relies on trusting the administrators to implement and manage the proposed
scheme; e.g. manage public key list. For this point we have the following comments: (a.)
In our scheme we decrease the need to trust all employees, to the need to trust a very small
and specific group of employees, which could be selected senior administrators. (b) As long
as the administrators are the only party who are allowed to manage the scheme, and secure
auditing mechanisms are in place, these will act as deterrent measures. This is because if any
breach happens administrators will be the first to be asked, and their detection will be easier;
and (c.) We have to acknowledge that in any scheme there should be a starting point of trust,
which eventually should go to trusting humans. In our scheme we could add restrictions on
the administrators which lessen their privileges (e.g require the presence of N out of M of
administrators to perform any administrative activity).

5.1.10 Related Work
Many researches on Cloud focus on independent structural components. Research on Cloud’s
structural components and their security existed long-time ago before the term ‘Cloud Comput-
ing’ and are well established research areas; however, such areas still have unresolved problems
which are inherited to the Cloud [Abb11c]. The work on [BSP+10b], for example, focuses on
auditing firewall rules for multi-tier architectural components to assure users that their environ-
ment is protected; however such work still does not provide Cloud users the ability to control
their own resources at the Cloud neither it assures them about the trustworthiness of Cloud
environment.

The issue of establishing trust in the Cloud has been discussed by many authors (e.g.
[Aba09, HRM10, HNB11, KM10b, SMV+10]). Much of the discussion has been cantered
around reasons to “trust the Cloud” or not to. Khan and Malluhi [KM10b] discusses factors
that affect consumer’s trust in the Cloud and some of the emerging technologies that could be
used to establish trust in the Cloud including enabling more jurisdiction over the consumers’
data through provision of remote access control, transparency in the security capabilities of the
providers, independent certification of Cloud services for security properties and capabilities
and the use of private enclaves. The issue with jurisdiction is echoed by Hay et al [HNB11],
who further suggest some technical mechanisms including encrypted communication channels
and computation on encrypted data as ways of addressing some of the trust challenges. Schiff-
man et al [SMV+10] propose the use of hardware-based attestation mechanisms to improve
transparency into the enforcement of critical security properties. The work in [Aba09, HRM10]
focus on identifying the properties for establishing trust in the Cloud; however, these only con-
siders partial operational services properties and they do not consider how trust values could be
established.

In addition to the above, OpenStack discusses the importance of providing management
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services that can automatically manage the allocation of VMs at physical layer considering the
properties of the whole Cloud infrastructure. This work do not discuss the issue of trust estab-
lishment, neither they discuss the provision of assurance of the enforcement of the management
services rules at physical resource. Moreover, this work still not developed yet by OpenStack
community.

Our work differs from previous research in that we define a Cloud management framework
and identify the requirements which form the foundation for providing Cloud users with the
capabilities to control their resources and establishing trust in the operation of the Cloud without
getting user to be involved into infrastructure management.

5.1.11 Conclusion
This work discusses an important topic in Clouds computing which has not yet received con-
siderable attention. It proposes a framework for establishing trust in Cloud’s operational man-
agement. The objectives of the framework is to establish the foundation for future work in
providing trustworthy self-managed services that can automatically and with minimal human
intervention manage Clouds users resources at physical resources based on user and infrastruc-
ture properties. In this work we specifically focus on providing protocols for the secure and
trustworthy management of Clouds components. In addition we discussed how Cloud users can
establish an ‘offline’ chain of trust in the operation of the Cloud infrastructure.

5.2 PKI Management for OpenStack via TrustedObjectsMan-
ager

OpenStack already comprehends interfaces allowing SSL encrypted communication for

1. the transfer of commands from an OpenStack Controller to other OpenStack Nodes and

2. the envisaged live time migration of virtual machine instances from one node to another

although any communication is unencrypted by default. In the latter case, the transfer of the vir-
tual machine image itself is currently not encrypted. Furthermore, the compute nodes directly
exchange plain libvirt commands in order to steer the virtual machines. The main PKI man-
agement component for OpenStack is envisaged to be the TrustedObjectsManager (TOM). It
provides the central Public-Key-Infrastructure (PKI), serves as the main Certification Authority
and manages all OpenStack nodes in terms of authenticity and accessibility. This chapter de-
scribes the envisaged functionality of the PKI applied to the TOM and the impact to an existing
OpenStack infrastructure.

5.2.1 PKI management for an OpenStack installation by the TOM
In principle, all security related information (keys, certificates and probably configuration set-
tings) are exchanged via the TrustedChannel, which itself is a secured connection between the
TOM and an OpenStack instance (Figure 5.6). Initially, this is the only connection a newly
setup OpenStack node is allowed to establish. This newly installed OpenStack-instance has to
be pre-registered, based upon a platform-identifier (P-ID), at the TOM’s management interface.
In case the platform owns a Trusted Platform module (TPM) this identifier is created by and
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Figure 5.6: TrustedObjectsManager acting as PKI management component for OpenStack
nodes
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Figure 5.7: Public Key and Platform ID sent to the TOM, Signing-CA-Certificate and Node-
Certificate sent back via the TrustedChannel

stored within the TPM. Otherwise, a software based platform identifier is calculated, using the
nodes MAC- and IP-address, hostname or similar as input.

Once the node is pre-registered at the TOM, and the platform-ID matches the one sent by the
node, the TrustedChannel connection will be established. After that, a public-private keypair
will be generated on the node. The key’s public part is sent to the TOM, where it will be signed
by the Certification Authority. The signed certificate along with the Signing-CA-Certificate of
the TOM is sent back to the node via the TrustedChannel. Both certificates will persist on the
nodes’ harddisk, allowing a secure connection between this node and the TOM. See figure 5.7

Thus, distributing the TOM-signed certificates to the nodes within the OpenStack landscape
allows a secure communication between them without interacting with the TOM again.

This mechanism can be used to ensure a private communication between any OpenStack
Controller and other OpenStack nodes via the RabbitMQ (or other AMPQ-solution). Further-
more, the secure live time migration of virtual machine instances as stated in 1. could be
realized.

Since all OpenStack components can potentially be distributed logically as well as physi-
cally, the mentioned platform identifier (keys and certificates) is not enough to isolate the com-
munication between virtual machines, belonging to different OpenStack projects . Therefore
the concept of TrustedVirtualDomains (TVD) is introduced. These allow the deployment of
isolated virtual infrastructures upon shared computing and networking resources. (See Chapter
D.2.3.1 Chapter 6.3)

By default, different TVDs are isolated from each other. Remote communication between
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components of the same TVD over an untrusted network is encrypted. The TOM provides a
logical object ”Company”, which allows to group and sort users, TVDs, virtual machines (com-
partments), appliances and their relationship in detail. Thus the TOM’s company-object reflects
almost all parts of an OpenStack project. A company and all of it’s ingredients (i.e TVDs) have
to be defined beforehand, in order to be recognized and finally used by the associated nodes.
When OpenStack facilitates a new project, and an enclosed new virtual machine, these infor-
mations can be mapped to a newly created company (=project) and a TVD, the virtual machine
belongs to.

Now, there are mainly two possibilities to synchronize the mapping.

• The project and virtual machine configuration has to be sent to the TOM after creation in
OpenStack. Therefore the involved OpenStack components could be hooked in that way,
that an https-request can be sent to the TOM, which applies the company (=project) and
the TVD. To avoid the https-request, the TrustedChannel can be extended with adminis-
trative capabilities, so that companies and involved TVDs can be created/deleted directly
on the TOM during the creation of projects and/or virtual machines within OpenStack.

• When any virtual machine is started via OpenStack, an additional OpenStack plugin on
the executing node queries the company/project and TVD informations from the TOM
and applies these on the virtual machine. The unique identification of the virtual machines
can be realized by the existing OpenStack-IDs.

5.2.2 Conclusion

Although the various underlying components of OpenStack support the usage of certificates
and encryption keys for ensuring authentication, confidentiality and integrity, the cryptography
is not enabled in the default installations of OpenStack. The main reason is that the manage-
ment and distribution of certificates and keys are missing. This leaves OpenStack vulnerable to
insider attacks where, for instance, rogue management operations can be injected into the cloud
infrastructure and virtual machines can be infected by malware while being migrated.

In this work we outlined a proposal for solving this shortcoming in OpenStack by integrating
an existing PKI solution, i.e., the TrustedObjectManager, in OpenStack. This forms the foun-
dation for implementing and enabling: i) confidentiality and integrity during virtual machine
migration; ii) authentication among compute nodes when issuing management operations in a
peer-to-peer fashion (e.g. for VM migration); iii) secure communication within the OpenStack
management infrastructure.

5.2.3 Future work

It is envisaged to extend the described one-to-one mapping from an OpenStack project to a
company, containing one virtual machine, which belongs to exactly one TVD. Since there are
imaginable scenarios, where the communication between virtual machines within the same pro-
ject/company should be segregated, an expansion to a multiple TVD/project concept will be
examined. Furthermore it is planned to integrate the web-interfaces provided by the TOM to
OpenStack or vice versa. Provision is made for establishing a virtual private network (VPN)
between virtual machines, belonging to the same TVD.
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5.3 Distributed Quota Enforcement

5.3.1 Introduction
Cloud computing is considered a fundamental paradigm shift in the delivery architecture of
information services, as it allows to move services, computation, and/or data off site to large
utility providers. This offers customers substantial cost reduction, as hard- and software infras-
tructure needs not to be owned and dimensioned for peak service demand. With Platform-as-
a-Service (PaaS) clouds like Windows Azure [Win] and Google App Engine [Goo] providing
a scalable computing platform, customers are able to directly deploy their service applications
in the cloud. In the ideal case, cloud customers only pay for the resources their applications
actually use; that is, “. . . pricing is based on direct storage use and/or the number of CPU cycles
expended. It frees service owners from coarser-grained pricing models based on the commit-
ment of whole servers or storage units.” [Cre09]

While it is very inviting to have virtually unlimited scalability and pay for it like electricity
and water, this freedom poses a serious risk to cloud customers: the use of vast amounts of
resources, caused, for example, by program errors, attacks, or careless use, may lead to high
financial losses. Imagine an unforeseen input leads to a livelock that consumes massive amounts
of CPU cycles. The costs for the resources used unintentionally could be tremendous and may
even exceed the estimated profits of running the service.

To address this problem, we propose to employ a quota-enforcement service that allows
cloud customers to specify global quotas for the resources (e. g., CPU, memory, network) used
by their applications. Such a service can be integrated with the cloud infrastructure in order to
ensure that the combined usage of all processes assigned to the same customer does not exceed
the upper bound defined for a particular resource.

In domains like grid computing, where application demands are predictable, enforcing
global quotas can be done statically during the deployment of an application [Sch04]. How-
ever, for user-accessed services in a dedicated utility computing infrastructure [RCAM06] like
a PaaS cloud, this problem needs to be solved at run time once previously unknown services
get dynamically deployed. Further, the quota-enforcement service must not impose any specific
usage restrictions: processes must be able to freely allocate resources on demand as long as
free quota is available. In this respect, the enforced global quota can be compared to a credit-
card limit, which protects the owner from overstepping his financial resources while not making
any assumptions on when and how the money is spent. All in all, dealing with a dynamically
varying number of processes with unknown resource usage patterns makes quota enforcement
a challenging task within clouds.

The straight-forward approach would be to set up a centralized service that manages all
quotas of a customer and grants resources to applications on demand. However, as shown in
our evaluation, such a service implementation does not scale for applications comprising a large
number of processes, which is a common scenario in the context of cloud computing. Moreover,
additional mechanisms like, for instance, state-machine replication had to be applied in order to
provide a fault-tolerant and highly available solution. Otherwise, the quota-enforcement service
would represent a single point of failure.

To avoid the shortcomings of a centralized approach, we devised a decentralized quota-
enforcement service including a novel protocol named Diffusive Quota Management Protocol,
short DQMP. DQMP is fault-tolerant and highly scalable by design, two properties that are
indispensable for cloud environments. Its basic idea is to use the concept of diffusion to balance
information about free quotas across all machines hosting a certain application of a customer.
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By distributing quota information, the permissions to allocate resources can be granted via local
calls. Our service offers a simple and lightweight interface that can be easily integrated to extend
existing infrastructures with quota-enforcement support. An evaluation of our prototype with
up to 1,000 processes residing on 40 machines shows that DQMP scales well and outperforms
a centralized solution.

The remainder of this chapter is structured as follows: Section 5.3.2 discusses related ap-
proaches, Section 5.3.3 presents the architectural components of our quota-enforcement service,
Section 5.3.4 outlines the concept of diffusive quota enforcement and presents the DQMP pro-
tocol, Section 5.3.5 presents results gained from an experimental evaluation of our prototype,
and Section 5.3.6 concludes.

5.3.2 Related Approaches

Whereas earlier work on diffusion algorithms and distributed averaging addressed various areas
such as dynamic load balancing [Cyb89, Boi90, CLZ99], distributing replicas in unstructured
peer-to-peer networks [UOI06], routing in multihop networks [TE90] and distributed sensor
fusion [XBL05], none of them handles quota enforcement. Karmon et al. [KLS08] proposed a
quota-enforcement protocol for grid environments that relies on a decentralized mechanism to
collect information about free resource quotas as soon as an application issues a demand. In
contrast, our protocol proactively balances such information over all machines serving a cus-
tomer, which allows granting most demands for free quota instantly. Furthermore, this chapter
goes beyond [KLS08] in extending fault tolerance and in discussing how to integrate with cloud
computing. Raghavan et al. [RVR+07] proposed an approach targeting distributed rate limiting
using a gossip inspired algorithm in cloud-computing environments. They specifically focus
on network bandwidth and neglect fault tolerance. Pollack et al. [PLG+07] proposed a micro-
cash–inspired approach for disk quotas that provides lower overhead and better scalability than
centralized quota-tracking services. A quota server acts as a bank that issues resource vouchers
to clients. Clients can spend fractions of vouchers to allocate resources on arbitrary nodes of a
cluster system. For good resource utilization and to prevent overload of the quota server bank,
this requires previous knowledge about the resource demand. Gardfjäll et al. [GEE+08] devel-
oped the SweGrid accounting system that manages resources via a virtual bank that handles
a hierarchical project namespace using branches. Based on an extended name service, each
branch can be hosted on a separate node. This approach requires explicit management to be
scalable and misses support for fault tolerance. Furthermore, there are distributed lock sys-
tems [HKS+08, Bur06] that provide fault-tolerant leases based on variants of the Paxos algo-
rithm. Contrary to the presented approach, they are dedicated to manage low volume resources
like specific files. As shown by the evaluation, our decentralized protocol scales above such
replicated service solutions.

5.3.3 Architecture

In this section, we present the key components of our quota-enforcement service which is real-
ized on basis of DQMP and explain how these components interact with existing cloud infras-
tructures.
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Figure 5.8: Basic architecture of a PaaS cloud host running DQMP to enforce resource quotas:
quota requests issued by applications of different customers are handled by different DQMP
daemons relying on a set of resource controllers (e. g., for memory usage (RCM), network trans-
fer volume (RCN), and CPU cycles (RCC)).

5.3.3.1 Host Architecture

DQMP uses a decentralized approach to manage the resource quota of customers. It distributes
information about free quota units across the machines running applications of the same cus-
tomer, providing each machine with a local quota. Quota enforcement in DQMP spans two
levels: (1) At the host level, a resource controller guarantees that the local resource usage of
an application process does not exceed the local quota. (2) At the global level, a network of
DQMP daemons enforces a global quota by guaranteeing that the sum of all local quotas does
not exceed the total quota for a particular resource, as specified by the customer.

Figure 5.8 shows the basic architecture of a PaaS cloud host that relies on our protocol to
enforce quota for two customers A and B. For each of them, a separate DQMP daemon is
running on the host. Each DQMP daemon is assigned a set of resource controllers (RC∗) which
are responsible for enforcing quotas for different resource types (e. g., memory, network, and
CPU).

Resource Controller In general, PaaS computing platforms provide means to monitor the
resource consumption of an application process [WB09]. For DQMP, we extend these mecha-
nisms with a set of resource controllers, one for each resource type. Each time an application
seeks to consume additional resources, the corresponding resource controller issues a resource
request to its local DQMP daemon and blocks until the daemon grants the demand.

DQMP Daemon A cloud host executes a separate DQMP daemon for every customer execut-
ing at least one application process on the host; that is, a DQMP daemon serving a certain cus-
tomer is only executed on a host when there actually runs a process that may demand resource
quota. The main task of a DQMP daemon is to fulfil the resource demands of its associated
resource controllers. To do so, the daemon is connected to a set of other DQMP daemons (as-
signed to the same customer) that run on different cloud hosts, forming a peer-to-peer network.
For the remainder of this chapter, we will refer to daemons connected in a DQMP network as
nodes. Moreover, the first node that joins the network is called quota manager. It serves as a
stable access point for the infrastructure, since the composition of a DQMP network is dynamic
as nodes join and leave depending on whether their local machines currently host processes for
the customer.
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Figure 5.9: Example scenario for diffusion-based quota balancing: (a) The local free quotas are
balanced across nodes. (b) Processes on nodes i and k demand resources → the diffusion of
quota starts. (c) The free quotas have been rebalanced.

5.3.3.2 Node Registry

In addition to the DQMP components running on the same hosts as the customer applications,
we provide a node-registry service that manages information about all nodes (i. e., DQMP dae-
mons) assigned to the same customer. We assume the node registry to be implemented as a
fault-tolerant service; for example, by using multiple registry instances. When a new node
joins the DQMP network, the registry sets up an entry for it. As each node periodically sends
a heartbeat message the registry is able to garbage collect entries of crashed nodes. When a
node leaves the DQMP network (e. g., due to the last local application process having been shut
down), the node instructs the registry to remove its entry.

5.3.4 The DQMP Protocol
This section presents the algorithms used by our decentralized quota-enforcement protocol
DQMP to enforce global resource quotas of customers. In addition to a description of the
basic protocol, we also discuss extensions for fault tolerance.

5.3.4.1 Diffusion-based Quota Balancing

We give a basic example scenario to outline how the general concept of diffusion is applied to
balance free global quota information. In this example, three machines have been selected to
host the application of a customer. For simplicity, we examine the diffusive balancing process
of a single resource quota.

Each node (i. e., DQMP daemon) in the DQMP network is connected to a set of neighbour
nodes (or just “neighbours”). Quota balancing is done by pairwise balancing the free local quota
of neighbours. As neighbour sets of different nodes overlap, a complete coverage is achieved.
In our example (see Figure 5.9), nodes i and j form a pair of neighbours, and nodes j and k
form another pair of neighbours. At start-up, the global quota of the customer (180 units in our
example) is balanced over all participating nodes (see Figure 5.9(a)).

When the application starts executing, the resource controller at node i demands 50 resource
units and the resource controller at node k demands 10 units. Figure 5.9(b) shows that nodes
i and k react by reducing the amount of locally available free quota q. Thus, both nodes can
grant their local resource demands immediately. Changing the amounts of free quota starts the
diffusive quota-balancing process and causes nodes i and k to exchange quota information with
other nodes; in this case node j. As the free quota of node j exceeds the free quota of node i
(i. e., qj > qi), dqj−qi

2
e quota units are migrated to i. The same applies to nodes j and k which,

again, leads to different amounts of free quota on nodes i and j. As a result, further balancing
processes are triggered and balancing continues until equilibrium is reached. The equilibrium
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def initial connect (nodes) :
for node in nodes:

if node.connect( self ) :
neighbors .append(node)
if level == None

or level > node.←↩
level :

level = node. level + ←↩
1

uplink = node

def connect(node):
if node not in neighbors :

neighbors .append(node)
return true

return false
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Figure 5.10: Connecting nodes Figure 5.11: Example tree in a DQMP network

(see Figure 5.9(c)) enables node i to be well prepared for future resource demands, as its amount
of free quota has risen to the global average of 40.

In case a resource controller issues a resource demand that exceeds q, a node obtains the
requested quota by successively reducing q after each balancing process. As soon as the node
has collected the full amount, it grants the resource demand to the resource controller.

Using discrete quota, there might be an imbalance of one unit between two neighbouring
nodes if mod(

∑
q, n) 6= 0 (n is the total number of nodes), causing balancing to never stop.

To avoid this, we restrict balancing to differences above one unit. As a result, this introduces
a potential system-wide gradient, which we cope with using probabilistic migration [DH04].
This strategy migrates small amounts of quota with a certain probability, even if the imbalance
is not reduced.

5.3.4.2 Basic Protocol

This section describes the basic DQMP protocol. We assume a fail-stop behaviour of nodes and
the reliable detection of node and connection failures.

Connection Process When a new application is deployed, our quota-enforcement service
starts local DQMP daemons on the corresponding hosts and selects one of these nodes to be

Field Description
level Level in the quota tree
neighbours List of neighbours, where each entry is a

triple of connection, counter, and level
quota Available local resource quota
consumed Consumed resource quota (see Sec-

tion 5.3.4.3)

Table 5.1: Data structures managed by a DQMP daemon
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def do balancing () :
for n in neighbors :

free = quota
# ask other node how to change my quota
quota += n.balance( free )

def balance( remote free ) :
free = quota
avg = ( free + remote free ) / 2
quota += avg − free
return −(avg − free)

Figure 5.12: Simplified quota balancing process
the quota manager (see Section 5.3.3.1) Then, our service supplies all nodes of this first set
with the addresses of all other nodes. Next, each node establishes a connection to some of the
other nodes, adding them to its neighbour set (see initial connect() in Figure 5.10 and
Table 5.1).

During this procedure, every node determines its level in a tree (see Figure 5.11) that is
formed as a by-product of the connection process. At first, only the quota manager (representing
the tree root) is part of the tree and is therefore assigned level zero. Next, all other nodes join
the tree using the following algorithm: (1) A node collects the level information of all of its
neighbours. (2) It selects the neighbour n that has the lowest level ln (i. e., the node with the
smallest distance to the tree root) to be its parent node in the tree. From now on, we refer to
the connection to n as the uplink; in Section 5.3.4.3, we investigate how the uplink is used to
provide fault tolerance. (3) The node sets its own level to ln + 1.

When a node has connected a predefined number of neighbours, it sends an announce-
ment including its contact details and level information to the node registry managing a list
of nodes assigned to the customer (see Section 5.3.3.2). In case the application of a customer
scales up capacity by starting processes on additional hosts, newcomers query the node reg-
istry for addresses of nodes in the DQMP network. This information is then used as input for
initial connect().

Quota Balancing When the set of initial nodes is connected, nodes can be provided with
quota by simply initializing the quota manager’s local free quota with the amount of globally
granted quota. In consequence, the diffusion process starts and every node balances its free
quota with all connected neighbours.

Figure 5.12 outlines the basic balancing process, organized in rounds, each comprising a
single call to do balancing(). During a round, for each neighbour, a node d determines
the amount of free quota and sends it to the neighbour via balance(). This method adjusts
the free quota at the neighbour and returns the amount by which to change the local free quota
of d. The round ends when d has balanced quota with each of its neighbours. Note that quota
balancing with a neighbour only takes a single message round-trip time.

If the local free quota has changed during a round of balancing, a node immediately starts
another round. Otherwise, the next round is triggered when the node receives a demand from a
local resource controller or when the quota exchange with another node modifies the local free
quota.

5.3.4.3 Extension for Fault Tolerance

In this section, we describe how to extend the basic protocol presented in Section 5.3.4.2 in
order to tolerate node failures.

General Approach To handle faults, every node maintains a counter for each neighbour link.
This link counter represents the net amount of free quota transferred to the neighbour and is
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def fix crashedNode(neighbor) :
quota += neighbor . counter
neighbors . remove(neighbor)
# check if uplink is concerned
replace crashedNode ()

Figure 5.13: Recovery after neighbour
crash

def do balancing () :
for n in neighbors :

free = quota
if n. level < level :

# pass the consumed quota
# up to the root
n. counter += consumed
result = n.balance( id , free ,

consumed)[0]
consumed = 0

else :
# receive consumed quota
# from lower nodes
(remote consumed, result ) =

n.balance( id , free )
n. counter −= remote consumed
consumed += remote consumed

n. counter −= result
quota += result

def balance( id , remote free ,
remote consumed = 0):

neighbor = neighbors [ id ]
free = quota
avg = ( free + remote free ) / 2

# handle the consumed quota
if neighbor . level < level :

remote consumed = consumed
neighbor . counter += remote consumed
consumed = 0

else :
neighbor . counter −= remote consumed
consumed += remote consumed

# balance the remaining quota
if remote free < 0 and free < 0:

# nothing left on both sides
return (remote consumed, 0)

elif remote free < 0 or free < 0:
# take care of negative quotas
# [...]

else : # free quota on both sides
quota += avg − free
neighbor . counter −= avg − free
return (remote consumed,

−(avg − free) )

Figure 5.14: Issuing a balancing request Figure 5.15: Responding to a balancing request

updated on each quota exchange via the corresponding link: if a node passes free quota to a
neighbour, it increments the local link counter by the amount transferred; the neighbour decre-
ments its counter by the same amount. A negative counter value indicates that a node has
received more free quota over that link than the node has passed to the neighbour.

When a node crashes, all connected neighbours detect the crash: each neighbour removes
the crashed node from its neighbour set and adds the counter value of the failed link to its
local amount of free quota (see Figure 5.13). This way, the free quota originally held by the
crashed node is reconstructed by all neighbours, requiring no further coordination. Note that
such a recovery may temporarily leave single nodes with negative local free quota. However,
the DQMP network compensates this by quickly balancing quota among remaining nodes.

Consumed Quota So far, this approach is only suitable for refundable quota like disk space,
since link counters are unaware that non-refundable quota, like CPU cycles, transferred to a
node may have been consumed by a local application process. Thus, neighbours would reassign
more free quota than the crashed node actually had. To address this, nodes gather and distribute
information about consumed quota, and adjust their link counters to prevent its reassignment.

For each resource, a node maintains a consumed counter (see Table 5.1) that is updated
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whenever a local application process consumes quota. Each node periodically reports the value
of its consumed counter to its uplink, which in turn passes it to its own uplink, and so on, all
up to the quota manager. Having reported the consumed quota, a node increments its uplink link
counter by the amount announced; the uplink in turn decrements its link counter by the same
value, similar to the modifications triggered during quota balancing. As a result, link counters
are adjusted to reflect the reduced global free quota. Figures 5.14 and 5.15 show updated listings
of the balancing process presented in Figure 5.12.

Handling Cluster Node Failures Link counters are an easy and lightweight mean to com-
pensate link crashes and single node failures. They also allow tolerating multiple crashes of
directly connected nodes, because adjacent nodes can be seen as one large node with many
neighbours. In case a node set is separated from the rest of the network, the node set that is
not part of the quota-manager partition eventually runs out of quota, since free quota is always
restored in the direction of its origin (i. e., the quota manager). However, after reconnection, the
balancing process re-distributes the free quota, enabling the application processes on all nodes
to make progress again. To avoid permanent partitions within the network, the protocol makes
use of the level information. When a node except the quota manager and its direct neighbours
loses the connection to its uplink, it has to select a node with a lower level than its own as new
uplink. Preferably, the node uses one of its current neighbours for that purpose; however, it can
also query the node registry (see Section 5.3.3.2) for possible candidates. If a suitable uplink
cannot be found, the node is shut down properly.

Handling Crashes of the Quota Manager If the quota manager crashes, its neighbours do
not consolidate their link counters. If they did, all global quota of a customer would vanish as it
has been originally injected via the quota manager. Instead, all links to the quota manager are
marked initial links and are therefore ignored during failure handling, allowing the network to
proceed execution.

However, we assume a timely recovery of the quota manager as an application cannot be
provided with additional quota while this node is down. We therefore assume that its state can
be restored (e. g., using a snapshot). Note that the state of the quota manager to be saved is
small: it only includes the set of neighbour addresses as well as the quota, consumed, and
counter values (see Table 5.1) for every managed resource, making frequent snapshots and a
fast recovery feasible.

At restart, the quota manager reconnects all level-one nodes. In case of one or more of them
having crashed in the meantime, it starts the regular failure handling. At this point, we cannot
tolerate network partitions between the quota manager and its neighbours, as this would lead to
a duplication of free quota.

5.3.5 Evaluation
We evaluate DQMP on basis of a prototype implemented in Java. The tests are performed on
40 hosts, all equipped with 2.4 GHz quad-core CPU, 8 GB RAM, and connected over switched
Gigabit Ethernet. Each host executes up to three Java virtual machines (JVMs) to support the
simulation of larger networks. In this set-up, raw ping times range from 0.2 to 0.5 ms and
simple Java RMI method calls take between 0.7 and 1.0 ms. On top of the physical network,
two DQMP networks, consisting of 100 and 1,000 nodes, are simulated, with the maximum
number of neighbours set to 6. Comparison measurements show, that simulating up to nine
nodes within a single JVM has no significant impact on the results.
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Figure 5.16: Response times for single de-
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Figure 5.17: Response times of a single test
run with 100 constantly requesting nodes and
a crash of 25 nodes at t = 0

Test runs are performed as follows: After the DQMP network is built up, a quota amount
of 50,000 units per node is injected. When the initial equilibrium is established, all nodes are
instructed to begin with the execution of the actual test. After a test has finished, the local results
of the nodes are collected. Except time charts, all presented results are the average of at least
three test runs.

5.3.5.1 Response Time Behavior of DQMP

Single Demands In the first test, we examine the response times of DQMP for single demands
within the small network containing 100 nodes. In this scenario, a subset of nodes orders a
predefined amount of quota at the same time. The proportion of demanding nodes is raised
stepwise from 1% to 100% and the overall amount of quota requested by this proportion is
varied between 25% and 100%. This means that in one case, for instance, a single node requests
the entire quota available and in another case, each of 100 nodes requests 1% of it.

From the results, as depicted in Figure 5.16, it can be inferred that the decisive factor for the
performance of our protocol is the ratio between the free local quota held by each node and the
size of the local demand: the smaller the demand compared to the local quota, the faster it can
be satisfied. Since DQMP aims to an even distribution of free quota over all nodes, the demand
size can be put into relation to the globally free quota: if demands of single nodes exceed the
average size of free quota held by each node to a great extent, it is likely that quota has to be
transferred not only from nearer nodes but also from farther ones to satisfy the demand. For
instance, if a single node asks for the entire available quota, every quota unit in the network has
to reach the same destination. With our settings, this takes about 7.8 seconds and 770 balancing
rounds per node. However, this case is not realistic as only such nodes participate in DQMP
networks that are actually used by processes demanding quota. If 50 nodes request 95% of
the overall quota, the provisioning time already drops below 30 ms. Here, it takes about 45
balancing rounds per node until the request is fulfilled and until the network comes to a rest,
that is, until no messages are transmitted anymore. Moreover, if only a small amount of the
overall quota is needed or a large demand is split between many nodes, DQMP can provide
extremely low response times. When a demand of a node can be fulfilled by its local quota, the
DQMP daemon is even able to instantly grant the demanded amount, turning the assignment of
global quota within a distributed system into a local operation.

TClouds D2.3.2 Page 91 of 123



D2.3.2 – Components and Architecture of Security Configuration and
Privacy Management

Crashes of Nodes After this first evaluation, we now examine how our protocol behaves in
the presence of node crashes, since fault tolerance was a primary objective for the design of
DQMP. As basis for this evaluation, we choose a scenario in which nodes demand and release
quota constantly. In detail, each node performs the following in a loop: It adds a randomly
chosen delta d, with −10, 000 ≤ d ≤ +10, 000, to its previous quota demand. It ensures that
the new demand does not exceed the upper bound b of 50, 000 units, which limits the demand
of all nodes combined to 100% of the overall quota injected into the system. According to the
calculated value, the node issues a request either demanding new or releasing already granted
quota. Subsequently, it waits until the request is fulfilled. Then it sleeps for a randomly chosen
time between 25 and 75 ms to simulate fluctuating resource requirements.

Figure 5.17 shows the course of response times from a single test run with 100 requesting
nodes, issuing a total of approximately 14,000 requests within 8 seconds, and an induced crash
of 25 nodes at t = 0. The first outcome of this test is, that under the given scenario, which
simulates the distribution of a large demand over all available nodes, almost all quota requests
can be fulfilled locally, leading to a standard response time below 0.2 ms. For the same reason,
the processing of most requests is hardly affected by crashes of neighbours. Quota releases
are inherently not affected at all anyway. Consequently, despite the crash of 25% of the nodes,
there are only 4 requests for which it took between 10 and 30 ms to process them and 8 requests
that lie in the range between 1 and 10 ms. Thus, the balancing process of DQMP is able to
compensate node crashes very quickly by redistributing the quota over all remaining nodes.

5.3.5.2 Comparison of Different Architectures

Next, we compare DQMP to other architectures addressing quota enforcement in distributed
systems. For this purpose, we implemented a RMI-based quota server and a passively repli-
cated variant of it by means of the group communication framework JGroups4. During test
runs, the quota server as well as each replica is executed by a dedicated machine. In the fol-
lowing, the term “node” is not confined to DQMP daemons; it also denotes clients in the other
architectures.5

As scenario for the comparison serves an extended variant of the scenario used for examin-
ing the behaviour of DQMP in the presence of nodes crashes (see Section 5.3.5.1). Different to
the previous scenario, here, a network of 1,000 nodes is used and the proportion p of requesting
nodes is varied between 1% and 100%. Further, the combined demand of all requesting nodes is
limited to 75% of the overall injected quota in one case and to 100% in another. This is achieved
by setting the maximum demand of a single node b to b75% = 37.500

p and b100% = 50.000
p , respec-

tively. The delta d for every simulated demand change is randomly chosen between −0.2b and
+0.2b quota units.

Single-cluster Network For a first comparison, all network connections have similar laten-
cies, just as in the previous tests and just as found within a local area network, for instance
within a single data centre of a cloud provider. The results of this scenario are depicted in
Figure 5.18(a). Since response times of the central quota server and its replicated variant are

4http://www.jgroups.org/
5We also implemented a quota-enforcement service based on the coordination service Apache ZooKeeper

(http://zookeeper.apache.org/). However, the optimistic lock approach of ZooKeeper is not suitable
for the high number of concurrent writes needed in such systems, resulting in some orders of magnitude higher
response times.
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Figure 5.18: DQMP compared to other architectures regarding response times

only dependent on the number of quota requests that have to be processed, and particularly are
independent of quota amounts, only a single set of results is reported for these architectures.

This test reveals the deficiencies of not completely decentralized systems in terms of scal-
ability: Due to limited resources such as CPU power, memory and bandwidth and due to the
contention arising from the shared usage of such resources, these systems have a limited rate
they can process requests at. In our settings, for instance, all quota-server–based systems are
able to process the requests of a smaller number of requesting nodes within less than 2 ms on
average. However, in the presence of 1,000 requesting nodes, a single quota server already re-
quires about 28 ms. Using a more reliable replicated server system makes this even worse. The
increased communication overhead leads to an average response time of over 40 ms.

In contrary, using DQMP response times decrease when demands are split up between more
nodes. DQMP is able to fulfil requests within an average of 1 ms, and is thus faster than the
server systems when the proportion of requesting nodes exceeds 25%. Beyond 50% the re-
sponse time drops constantly below 0.2 ms. Since the total demand was fixed to either 75%
or 100% of the globally injected quota, single demands get smaller with an increasing number
of requesting nodes, leading to a higher chance that requests can be fulfilled through the local
quotas of the nodes. That is the reason why, as shown by our results, DQMP is even able to out-
perform a non-saturated central quota server in terms of average response times when demands
are distributed over multiple nodes.

Clustered Network Normally, cloud providers do not maintain only a single data centre but
multiple ones, spread all over the world. These data centres form a clustered network, a network
in which groups of well-connected nodes can only communicate among each other over rela-
tively slow connections. To simulate such an environment, respectively wide area networks in
general, we assign each out of 1,000 nodes to one of 10 clusters and artificially delay message
exchange between nodes from different clusters by 20 ms.

The results, as presented in Figure 5.18(b), suggest the conclusion that a central quota server
is not well suited for the scenario described here. The server is located in one of the 10 clusters,
which entails that 90% of all nodes experience prolonged delays while communicating with it.
Thus, in 90% of all quota requests, demands or releases, the delay of 20 ms is fully added as
an offset to the processing time. In case of DQMP, nodes can exchange quota with all of their
neighbours in parallel, mitigating the effects of slower connections. Furthermore, all requests
that can be fulfilled locally, including all releases, are not affected at all by communication
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delays. These are the reasons, why DQMP is able to provide better response times than a quota
server in this scenario already when only 10% of the nodes demand and release quota.

Protocol Overhead Concerning the protocol overhead of DQMP regarding network transfers,
it can be observed that DQMP has completely different characteristics than a traditional quota
server. If a quota server is used, each quota request leads to the exchange of two messages,
a request message and its reply. In our implementation, the two messages require about 100
bytes. With DQMP instead, requests have only an indirect influence on the balancing process
and hence, on the number of messages transferred. For the unrealistic case (see above) that
relatively large demands are infrequently issued by a single node, causing, in the worst case,
continuous balancing processes all over the network, the ratio between number of requests
and messages transferred is unfavorable. With an increasing number of requests, however, the
ratio gets more appropriate. In the scenario of 1,000 constantly requesting nodes our protocol
requires about 3 kilobytes per request in average. Although this is still more than needed by
the quota-server system, it has to be noted, that DQMP provides fault-tolerant operation while
a central quota server does not and that network traffic between hosts of the same data centre
is usually not billed by cloud providers, hence, using DQMP would not generate additional
transfer costs for cloud customers.

5.3.6 Conclusion
In this chapter, we presented DQMP, a decentralized quota-enforcement protocol that provides
the fault tolerance and scalability required by cloud-computing environments. DQMP can help
customers of platform services, to prevent themselves from financial losses due to errors, at-
tacks, or careless use causing involuntary resource usage. The utilized diffusion-based balanc-
ing of free quota enables customers to enforce global limits on resource usage while retain-
ing flexibility and adaptability regarding the actual local demands within their deployments.
Nonetheless, DQMP is not confined to this application. Cloud providers can employ it, for
example, to restrict customers of their platform or infrastructure services on a global level by
enforcing quota for virtual machines. As the evaluation of our prototype implementation shows,
DQMP is able to provide better response times than a centralized service in a setting with 1,000
nodes. Moreover, our protocol is well suited for clustered networks as formed by interconnected
data centres. Both is important since traditional, not fully decentralized solutions might soon
reach their limit as distributed systems get larger and larger.
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Chapter 6

Trust Anchors in Management Tasks

Chapter Authors:
Imad M. Abbadi, Andrew Martin, Anbang Ruan (OXFD)

Managing the allocation of Clouds virtual machines at physical resources is a key requirement
for the success of Clouds. Current implementations of Cloud schedulers do not consider the
entire Cloud infrastructure neither they consider the overall user and infrastructure properties.
This results in a major security, privacy and resilience concerns. In this chapter we propose a
novel Cloud scheduler which considers both users’ requirements and infrastructure properties.
We focus on assuring users that their virtual resources are hosted using physical resources that
match their properties without getting users involved into understating the details of the Cloud
infrastructure. As a proof-of-concept we present our prototype which is built on OpenStack.
The provided prototype implements not only the proposed Cloud scheduler; however, it does
also provide an implementation of our previous related works on Clouds’ trust management
which provide the scheduler with trustworthy input about the state of trust in the distributed
Cloud infrastructure

6.1 Introduction

Cloud infrastructure is complex and heterogeneous in nature, with numerous components pro-
vided by different vendors [Abb11c]. Applications deployed at the Cloud might need to interact
amongst themselves and, in some cases, depend on other deployed applications. The complex-
ity of the infrastructure and application dependencies create an environment which requires
careful management and raises security and privacy concerns [AFG+09, RTSS09b]. The cen-
tral component that manages the allocation of virtual resources at physical resources at the
Cloud infrastructure is known as Cloud scheduler [Ope10b]. Currently available schedulers do
not consider users security and privacy requirements, neither they consider the properties of
the entire Cloud infrastructure. For examples a Cloud schedulers should consider application
performance requirements (e.g. the physical hosting of interdependent application components
need to be within physical proximity), a scheduler should consider user privacy requirements,
and a scheduler should manage the problem of the multi-tenant architecture [RTSS09b] and the
trust status of the hosting components.

This work presents a “trustworthy scheduling algorithm” that can automatically manage the
Cloud infrastructure by considering both user requirements and infrastructure properties and
policies. The work also develops the required trustworthy software agents which automatically
manage the collection of the properties of physical resources. Having a trustworthy and timely
copy of the infrastructure properties and user requirements is critical for the correct operation of

TClouds D2.3.2 Page 95 of 123



D2.3.2 – Components and Architecture of Security Configuration and
Privacy Management

the scheduler. This is a difficult problem to deal with, i.e. provide the scheduler with trustworthy
input enabling it to take the right action. In this work we specifically focuss on providing the
scheduler with trustworthy input about the trust status of the Cloud infrastructure. This work
establishes the foundations of a planned future work to cover other properties.

OpenStack refers to the Cloud scheduler component using the name nova-scheduler [Ope11].
Openstack identifies nova-scheduler as the most complex component to develop, and lots of ef-
forts are still remaining to have an appropriate nova-scheduler. A key requirement to develop
the trustworthy scheduler component, in our opinion, is to have a critical understanding of how
Clouds are managed and how they work in practice, which we have covered in our previous
work [Abb11a, Abb11b]. In the previous work we concluded that establishing trust in Clouds
requires two mutually dependent elements: a) supporting Cloud infrastructure with trustworthy
mechanisms and tools helping Cloud providers to automate the process of managing, main-
taining, and securing the infrastructure; and b) developing methods helping Cloud users and
providers to establish trust in the operation of the infrastructure. Point (a) includes (but not lim-
ited to) supporting the Cloud infrastructure with trustworthy self-managed services which au-
tomatically manage Cloud infrastructure [Abb11a, Abb11c]. Automated self-managed services
should provide Cloud computing with exceptional capabilities and new features. For example,
scale per use, hiding the complexity of infrastructure, automated higher reliability, availability,
scalability, dependability, and resilience that consider users’ security and privacy requirements
by design [Abb11a]. The proposed Cloud scheduler belongs to point (a) which is our first step in
providing trustworthy self-managed services. Our previous work in [Abb11a, Abb12] partially
covers point (b), which we also prototype and integrate to the proposed scheduler to present a
coherent solution.

6.1.1 Organization
The chapter is organized as follows. Section 6.2 provides essential foundations which cover
Cloud structure and management services. Section 6.3 discusses the Clouds compositional
chains of trust. Section 6.4 presents our framework architecture and Section 6.5 presents our
prototype. Section 6.6 discusses related work. We conclude in Section 6.7.

6.2 Background

In this section we briefly summarize previous work which this work builds on. Specifically, we
highlight Cloud structure and management services.

6.2.1 Cloud Structure Overview
In this section we briefly highlight part of Cloud taxonomy (see [Abb11a] for further details).
Cloud environment is composed of enormous resources, which are categorized based on their
types and deployment across Cloud infrastructure. A resource is a conceptual entity that pro-
vides services to other entities. Cloud environment conceptually consists of multiple intersect-
ing layers as follows: i) Physical Layer — This layer represents the physical resources and
their interactions, which constitute Cloud physical infrastructure. Examples of these resources
include server, storage, and network resources. The physical layer resources are consolidated to
serve the Virtual Layer. ii) Virtual Layer — This layer represents the virtual resources, which
are hosted by the Physical Layer. Examples of these resources include virtual machine (VM),
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Figure 6.1: Cloud Computing — Layering Conceptual Model

virtual network, and virtual storage. Cloud customers in IaaS Cloud type interact directly with
the resources of the Virtual Layer as it hosts the application of Clouds’ customers. iii) Appli-
cation Layer — This layer runs the applications of Cloud’s customer. These are hosted using
Virtual Layer resources. Cloud customers using PaaS type deploy their applications at virtual
layer resources, while the customers of Cloud SaaS type access a deployed application via the
Internet.

Figure 6.1 provides a conceptual model in which we identify an entity Layer as the parent
of the three Cloud layers (i.e. the physical, virtual, and application layers). From an abstract
level the Layer contains Resources which join Domains (i.e. we have physical domain, virtual
domain, and application domain). A Domain resembles a container which consists of related re-
sources. Domain’s resources are managed following Domain defined policy. Domains that need
to interact amongst themselves within a layer join a Collaborating Domain (i.e. we have physi-
cal collaborating domain, virtual collaborating domain, and application collaborating domain).
A Collaborating Domain controls the interaction between Domain members of the Collaborat-
ing Domain using a defined policy.

The nature of Resources, Domains, Collaborating Domains, and their policies are layer
specific. Domain and Collaborating Domains concepts help in managing Cloud infrastructure,
and managing resources distribution and coordination in normal operations and in incidents.
Collaborating Domains communicate across Cloud layers to serve a collaborative customer
application needs. Domains communicates horizontally within a layer-specific Collaborative
Domain, and/or vertically across multiple layers’ Collaborative Domains. Each of the identified
Cloud entities has a root of trust which helps in establishing trust in Clouds. Subsequent sections
clarify the roots of trust in more details.

6.2.2 Virtual Control Center
Currently there are many tools for managing Cloud’s virtual resources, e.g. vCenter [VMw10]
and OpenStack [Ope10b]. For convenience we call such tools using a common name Virtual
Control Centre (VCC), which is a Cloud device1 that manages virtual resources and their in-
teractions with physical resources using a set of software agents. VCC will play a major role

1VCC (as the case of OpenStack) could be deployed at a set of dedicated and collaborating devices
that share a common database to support resilience, scalability and performance.
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in providing Cloud’s automated self-managed services, which are mostly provided manually at
the time of writing. Self-managed services should automatically and continually manage Cloud
environment with minimal human intervention. It should always enforce Cloud user properties;
e.g. ensure that user resources are always hosted using physical resources which have proper-
ties enabling such physical resources to provide the services as defined in user properties. The
proposed Cloud scheduler covers a key component of such management services.

In previous work ([AAM11]) Abbadi et. al. proposed a framework for establishing trust
in the operational management of Clouds. The framework identifies the challenges, require-
ments, and addresses the ones related to establishing secure and trustworthy environment at the
infrastructure level. This includes the establishment of offline chains of trust amongst Clouds’
entities. This work uses the framework for providing secure environment for collecting the in-
frastructure properties and enforcing the scheduler policies at client devices. The functions of
the framework are provided using two types of software agents: a server software agent that
runs at VCC and a client agent that runs at Cloud’s physical resources. We refer to the server
software agent of VCC as (Domain Controller Server Side, DC-S), and we refer to the client
software agent as (Domain Controller Client Side, DC-C). DC-C is in charge of enforcing the
DC-S policies at physical resources. DC-S establishes chains-of-trust with each DC-C as fol-
lows: the DC-S verifies each DC-C trustworthiness to continually enforce the domain policies
and to only access the domain credentials when the resource execution status is as expected. In
turn, DC-C provides assurance to DC-S about the trustworthiness of its hosting resource’s exe-
cution environment when managing the domain and enforces the domain policies. This provides
the assurance that only resources with a trustworthy DC-C can be member of a domain. See
([AAM11]) for detailed discussion of how offline chains of trust are established and assured.

6.3 Clouds Compositional Chains of Trust

One of the key properties of a Cloud infrastructure is its trustworthiness to manage users’ vir-
tual resources at physical resources as agreed in service level agreement (SLA). This is not only
beneficial to Cloud users, but also help Cloud providers to understand how their infrastruc-
ture is operated and managed. However, assessing the trustworthiness of the Cloud infrastruc-
ture is a difficult problem to deal with considering its dynamic nature and enormous resources
[Abb11c, AN11, AFG+09, BSP+10b, CGJ+09, JNL10, Mic09, RTSS09b]. As we discussed
in section 6.6 some of the proposed schemes in this direction focus on measuring the trustwor-
thiness of the overall Cloud infrastructure and others attempt to establish a chain of trust with
a specific resource at a specific point in time. Abbadi ([Abb12]) analyzed this problem, and
argues that it is impractical to measure the trustworthiness of the overall Cloud infrastructure
(considering its complexity), neither we should measure the trustworthiness of a single compo-
nent (as Cloud dynamism breaks any established chain of trust). Abbadi’s method is based on
segmenting the infrastructure and measuring the trustworthiness of each segment independently.
The boundaries of each segment is based on how the infrastructure is managed in practice, as
we discuss it earlier (i.e. a segment covers a domain entities). The domain and collaborating
domain concepts enables the control of where an entity in layer (n) could possibly be hosted at
layer (n-1). For example, a virtual machine can only be hosted within a collaborating physical
domain boundaries.

Abbadi ([Abb12]) proposed the concept of compositional chains of trust, which provides
a single chain of trust representing a group of entities, as many entities exist as a composition
of multiple entities (e.g. a cluster of physical servers, clusters of load balanced application
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and database servers). Members of such grouping may have identical or different chains of
trust. However, to an entity depending on this grouping, they should see a single chain of trust
representing the trust they have in the grouping. In other words, relying entities will see a single
entity, even though that entity will be a grouping representing multiple entities. Moreover, the
functions proposed to calculate the compositional chains of trust provide different levels of
transparency based on the Cloud user type (i.e. IaaS, PaaS, or SaaS). Abbadi’s paper do not
provide a prototype. Our proposed scheduler uses his methods to measure the trustworthiness
of the Cloud infrastructure, and as a result we provide a prototype of the related part of Abbadi’s
compositional chains of trust. This section covers the part which is only related to physical layer
(other parts are not covered as our scheduler is not related to the application layer).

6.3.1 Types of Chains of Trust
A Chain of Trust (CoT) is composed of a set of elements primarily used to establish the
trust status of an object. The first element of the CoT (also called the root of trust) should
be established from a trusted entity or an entity that is assumed to be trusted, e.g. trusted
third party, a tamper-evident hardware chip (as in the case of Trusted Platform Module (TPM)
[Tru07a, Tru07b, Tru07c]). The trust status of the second element in the CoT is measured by
the root of trust (i.e. the first element in the CoT). If the verifier trusts the root of trust, then
the verifier must also trust the root of trust measurement of the second element. The second
element then measures the trust status of the third element in the CoT. If the second element is
trusted, and the second element measures the third element trust status, then the verifier trusts
the measurements of the third element. This process is a simplified example of how a CoT
could possibly be built.

Clouds have two types of CoT: a single resource CoT, and a compositional CoT representing
multiple entities (i.e. domains and collaborating domains). A verifier is mainly interested in
evaluating compositional CoTs without the need to get involved in understanding the details of
Cloud infrastructure. The compositional CoT would be built on resources CoT. As a result this
section defines both types of CoTs, which includes defining the nature of their roots of trust.

6.3.2 A Resource Chain of Trust
As stated earlier, a resource is a conceptual entity that provides services to other entities. There-
fore, we begin the discussion by defining the CoT for a single resource (RCoT) as a triple
comprising an initial trust function (itf), a set of trust functions (stf) and a sequence of elements
in the chain (sq. < x0, x1, .., xn >) where x is an element representing any component (software,
hardware, etc.) that contributes to the chain of trust. RCoT requires the following:

1. The initial function evaluates to trusted or assumed to be trusted when applied to the first
element of the sequence, and

2. Every function in the set of trust functions evaluates to true when applied to any two
consecutive elements of the sequence.

This is formally defined as follows:

RCoT = (
itf , stf , sq. < x0, x1, .., xn >|
itf (x0) ∈ {trusted, assumed trusted},
∀ i : [1..n] • ∀ f : stf • f (xi−1, xi) == true)
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Figure 6.2: Example of a part of physical resource’s RCoT

The nature of the root of trust (i.e. the first element in the sequence, x0) is based on
the type of the entity and its location within Cloud layers. We now discuss a single resource
root of trust and subsequent part of this section covers compositional entities root of trust.
We now clarifies RCoT in context of TCG specifications, as we require each resource within
the physical layer to be TCG compliant fitted with a TPM which is physically bound to that
resource. A TPM must be tamper-evident; i.e. provides a limited degree of protection against
physical attack. TPM helps in providing three roots of trust: Root of Trust for Measurement
(RTM), Root of Trust for Storage (RTS), and Root of Trust for Reporting (RTR). The RTM is a
computing engine capable of making reliable measurements of Trusted Platform (TP) running
components, which is known as an integrity measurement. Integrity Measurement is a crypto-
graphic digest or hash of a TP component; i.e. a piece of software executing on a TP [PEC05].
The RTS is a collection of capabilities, which must be trusted if the storage of data in a TP is
to be trusted [Pea02]. The RTS uses TPM components to achieve its functions. The RTR is
a collection of capabilities that must be trusted if reports of integrity metrics are to be trusted
(platform attestation) [Pea02]. The RTR works in conjunction with the RTM and the RTS for
the implementation of platform attestation. The RTR enables a TPM to reliably report informa-
tion about its identity and the current state of the TPM host platform. This is achieved using set
of keys and certificates, which are signed by a variety of third parties that must be trusted if the
state of the platform is to be trusted. In TCG the RCoT starts from the Core Root of Trust of
Measurement (CRTM) which should be stored in protected location such as the TPM (currently
it is protected by the BIOS). Once CRTM measures the initial environment state it stores the
result in a protected registers inside the TPM (referred to as PCR). The CRTM represents the
root of trust, x0, and the Set.(trust functions) contains RTM, RTS, RTR, and other functions.
The initial trust function is the one that measures the CRTM itself and stores the result inside
the TPM’s PCR. Figure 6.2 illustrates these relations.

Unlike the RCoT at the physical layer, an RCoT at the virtual and application layers have
different treatments when discussing a specific resource roots of trust. This is becuase physical
resources are the foundation of virtual resources roots of trust, which in turn forms the foun-
dation of application resources roots of trust. In other words, the virtual and application layers
RCoT in Clouds context, considering its dynamisms, should build on a compositional CoTs and
not a specific RCoT. It is out side the scope of this work to discuss these any further; detailed
discussion of which can be found in [Abb12].
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We now defined two operations over RCoTs: i) extend(RCoT1, < elements >): concate-
nates < elements > to sq.RCoT1; and ii) combine(RCoT1,RCoT2): returns a set of elements,
each represent the input CoT. In such an operation we should properly check for cycles in the
trust relation — but our context cannot allow this, and so we do not concern ourselves with a
detailed discussion of that aspect of the model. The combine operation is of course idempotent,
commutative, and associative, so we will allow ourselves to use terms such as combine(X,Y,Z)
since these are unambiguous.

6.3.3 Physical Layer DCoT and CDCoT
We now define how trust is composed from the members in a particular grouping in Clouds. Un-
derstanding compositional chains of trust is a vital requirement for establishing trust in Clouds.
This is because Cloud resources at upper layers are served by collaborating set of resources
rather than a specific resource. We identify two types of domain configurations: homogeneous
and heterogeneous. In a homogeneous setting all resources are configured uniformly result-
ing in identical CoTs. Example of this is the resources within a physical domain or a virtual
domain. Each resources member of a physical domain are identical and carefully selected, in-
terconnected and positioned to achieve the domain properties. Similarly, resources of a virtual
domain are identical as they represent (as a result of horizontal scalability) a replication of VMs
hosting an instance of an application resource. Application domains, on the other hand, are
heterogeneous as they are composed of resources having different CoTs. Collaborating do-
mains follow the same concept as domains. For example, collaborating domain of the physical
layer are homogeneous as they should serve as backup of each other. Virtual and application
layer collaborating domains, on the other hand, are heterogeneous as they serve to identify the
interdependencies between domains rather than as backup of each other.

We identify two types of compositional CoT, namely: the domains chain of trust
(DCoT) and collaborating domains chain of trust (CDCoT). These CoTs
are composed of two entities: a root of trust and the combination of all CoT of the entities
member of the domain/collaborating domains. Unlike a RCoT, the root of trust of DCoT/CD-
CoT attests to the trustworthiness of the way the domain or collaborating domain is managed
and operated. We need a root of trust that satisfies two main properties: i) its trustworthi-
ness can be measured and assessed at all times, and ii) can provide strong assurance about the
trustworthiness of the way the domain or collaborating domain are managed and operated.

The DCoT at the physical layer, DCoT(DPhysical), is composed of two entities: i) the first is
the combination of all RCoTs member of the physical domain. The physical domain is homo-
geneous, and as a result all RCoTs member of the domain are identical. Combining identical
chains of trust is equal to either chain of trust (as discussed in section 6.3.2). ii) The second el-
ement is the root of trust of the domain. As explained in section 6.2.2, each physical resource
member of a domain would run a trustworthy copy of DC-C, and VCC would run a trustwor-
thy copy of DC-S. DC-S measures the trustworthiness of the DC-C running at each resource,
and also provides the assurance that DC-C can only operate in a domain’s device if the device
is running in a specific state. A verifier can independently acquire VCC’s CoT and assess its
trustworthiness as outlines in 6.2.2 and explained in [AAM11]. These satisfy our two stated
properties of the root of trust of DCoT and CDCoT. Therefore, we propose the VCC’s chain
of trust (RCoT(VCC)) to act as the root of trust of physical DCoT.

Assume a homogeneous physical domain, DPhysical, consists of resources R0, R1, .., Rn such
that ∀ i, j : [0..n] • RCoT(Ri) == RCoT(Rj). The DCoT(DPhysical) is then defined as follows.

DCoT(DPhysical) = combine(RCoT(VCC),RCoT(R0))
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DC-S, which is part of RCoT(VCC), vouches and attests to the trustworthiness of the mem-
bers of DPhysical, i.e. DC-S attests to the trustworthiness of each RCoT including DC-C. DC-S
also provides the assurance that DC-C can only operate and be member of a domain when its
serving host has a specific RCoT. Therefore, a verifier only needs to attest to the trustworthi-
ness of RCoT(VCC) and DC-C, i.e. an extended CoT starts from RCoT(VCC) and extends
to DC-C (DC-S measures and attests to DC-C — see [AAM11]). All physical domain re-
sources have identical values of DC-C when it runs as expected. As a result we can redefine the
DCoT(DPhysical) as follows

DCoT(DPhysical) = extend(RCoT(VCC),DC − C)

After discussing DCoT we move to CDCoT at the physical layer. DC-S and DC-C man-
ages both physical domains and physical collaborating domains. As a result, an appropriate
root of trust of CDCoT is the same as the root of trust of DCoT. The root of trust of CD-
CoT is already included in DCoT, thus we can exclude it from the physical CDCoT. DCoTs
member of a physical collaborating domains would typically have identical DCoT (this is
a result of Cloud properties ,e.g. resilience and availability, which are achieved by having
identical physical domains to join a collaborating domain(s). Suppose a collaborating domain
CDPhysical is composed of domains: DP0,DP1, ..,DPx such that ∀ i, j : [0..x] • DCoT(DPi) ==
DCoT(DPj)). The CDPhysical is then defined as follows.

CDCoT(CDPhysical) = DCoT(DP0)

By substituting the value of DCoT(DP0) from DCoT(DPhysical), we then have the following

CDCoT(CDPhysical) = extend(RCoT(VCC),DC − C)

The above shows that physical CDCoT is mainly based on VCC and DC-C. VCC trustwor-
thiness can be measured by a verifier, and DC-C trustworthiness can be verified by VCC. This
is the foundation of the root of trust of physical layer which acts as a foundation for the layer
above it (i.e. virtual layer), as discussed in [Abb12].

6.4 High Level Architecture
Having defined the Cloud taxonomy, relationship between Cloud components, and the com-
positional chains of trust which help in assessing Cloud trustworthiness we can now cover the
scheme framework; subsequent section provides a prototype of the discussed framework. We
use OpenStack Compute ([Ope11]) as a management framework to represent the VCC. Open-
Stack is an open source tool for managing Cloud infrastructure which is still under continuous
development.

Figure 6.3 presents a high level architecture which illustrates the main entities and the gen-
eral layout of our scheme framework. We use OpenStack controller node (i.e. VCC) and Open-
Stack nova-compute (i.e. a computing node at the physical layer). The computing node runs
a hypervisor which manages a set of VMs. VCC receives two main inputs: user requirements
and infrastructure properties. VCC manages user virtual resources based on such input. In
this section we focus on our introduced components and, in addition, we cover the changes we
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Figure 6.3: High level architecture

introduced at the following components of OpenStack (further details about other components
can be found at [Ope11]): nova-api, nova-database, nova-scheduler, and nova-compute. We
update some of the functions of those components and introduce new functions.

6.4.1 Nova-api
Nova-api is a set of command lines and graphical interfaces which are used by Cloud cus-
tomers when managing their resources at the Cloud, and are also used by Cloud administrators
when managing the Cloud virtual infrastructure. We updated nova-api library to consider the
following: i) Infrastructure Properties — Clouds’ physical infrastructure are very well or-
ganized and managed, and its organization and management associates its components with
infrastructure properties. Examples of such properties include: RCoT, components reliabil-
ity and connectivity, components distribution across Cloud infrastructure, redundancy types,
servers clustering and grouping, and network speed. ii) User Requirements — These include
technical requirements, service level agreement, and user-centric security and privacy require-
ments. And iii) Changes — These represent changes in: user properties (e.g. security/privacy
settings), infrastructure properties (e.g. components reliability, components distribution across
the infrastructure and redundancy type), and infrastructure policy.

The main changes which we introduced at Nova-api includes the following: i) add an op-
tion to enable users to manage their requirements which include but not limited to security and
privacy aspects (adding, updating, listing and removing user requirements), ii) add an option
which enable administrators to manage Clouds infrastructure properties and policies, e.g. asso-
ciate computing nodes to their domains and collaborating domains, and iii) provide an interface
which enable automated collection of the properties of the physical resources through trust-
worthy channels — at this stage we specifically focuss on collecting resources’ chains of trust,
RCoT. These data are stored on Nova-database and are used by our proposed scheduler.

6.4.2 Nova-database
Nova-database is composed of many tables holding the details of the Cloud components. It also
holds users, projects and security details. We extended nova-database in different directions to
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realize the taxonomy of Clouds, user security requirements, and infrastructure properties which
include the compositional chains of trust. Figure 6.4 illustrates our proposed modification of
nova-database in bold format which are as follows.

Compute nodes is an existing nova-database table that holds records reflecting a computing
resource at the physical layer. We updated this table by adding the following additional fields:
i) physical resource chain of trust, RCoT(Physical), ii) security properties that holds a list of se-
curity details of the computing resource, and iii) a foreign key establishing the relation between
the physical resource with its physical domain as exists in Physical Layer Domain table.

Physical Layer Domain. We added this table to hold the records of the Cloud physical
domains, to define the relationship amongst resources, and to hold physical domains’ metadata.
The domain metadata includes the domain capabilities, DCoT, and a foreign key pointing to the
table which identifies the relative location of the physical domain within Clouds infrastructure.

Location and Location Distances. The aim of those two tables is to identify all possible
locations at the Cloud infrastructure. It also defines relative distance between pairs of all the
identified locations. How the two tables are bound is as follows: the compute node table is
bound to the physical layer domain table, and the physical layer domain table is bound to a
specific location identifier in the Location table. The latter is bound with location distances
table which specifies all distances between a location identifier and all other location identifiers.
In this we assume the resources of a physical domain are within close physical proximity which
reflects current deployment scenarios in practical life.

Collaborating PL Domain. We added this table which establishes the concept of col-
laborating physical domains. Each record in the Collaborating PL Domain table identifies
a specific collaborating domain (i.e. a backup domain) for each physical source domain with
a priority value. A source domain can have many backup domains. The value of the priority
identifies the order by which physical backup domains could possibly be allocated to serve a
source domain needs. Backup domains are used in maintenance windows, emergencies, load
balancing, etc. For example, a virtual resource of a failed source domain can be hosted at an
available backup domain that is associated with highest priority flag. Backup domains of a spe-
cific source domain should have the same capabilities and DCoT as the source physical domain
itself.

Instances is an existing OpenStack table representing the running instances at computing
nodes. We updated the table by adding the following fields: i) virtual resource chain of trust
RCoT(Virtual), ii) application resource chain of trust RCoT(Application) and iii) two foreign
keys which establish a relationship with the instance’s virtual and application domain tables, as
defined in the Virtual Layer Domain and Application Layer Domain tables, respectively. It
is outside the scope of this work to cover the details of those tables as we mainly focusing on
the scheduler requirements.

Services table is an existing OpenStack table which binds the virtual layer resources to their
hosting resources at physical layer. We did not modify this table.

Other tables. Openstack has many more tables and we also added more tables which is
outside the scope of this work to discuss.

Most of the records in the nova-database are uploaded automatically using: i) the proposed
software agents, ii) the modified nova-api, and/or iii) via OpenStack management tools. Ideally
such records should be securely protected, collected and managed via trustworthy processes. At
this stage our focus is on providing high level architecture design, providing a running Cloud
scheduler, and providing software agents that can attests to the trustworthiness of Openstack
components and then push the result to to nova-database. Full automation of Cloud management
services is our planned long term objective.
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Figure 6.4: Updates on nova-database to include part of the identified Clouds relations

6.4.3 Nova-scheduler
In OpenStack, Nova-scheduler controls the hosting of VMs at physical resources considering
user requirements and infrastructure properties. Current implementations of nova-scheduler do
not consider the entire Cloud infrastructure neither they consider the overall user and infrastruc-
ture properties. According to OpenStack documentation, nova-scheduler is still immature and
great efforts are still required to improve nova-scheduler. We implemented a new scheduler al-
gorithm (referred to as ACaaS (Access Control as a Service)) that performs the following main
functions: i) considers the discussed Cloud taxonomy when allocating a virtual resource to be
hosted at a physical resource, for example, it enforces domains and collaborating domains poli-
cies when managing the life-cycle of virtual resources, ii) selects a physical domain’s resource
which has physical infrastructure properties that can best match user properties, and iii) ensures
that the user requirements are continually maintained.

ACaaS collaborates with the following software agents (see Figure 6.3).

• Cloud client agent, DC-C runs at computing nodes and it does the following main func-
tions: calculates the computing node chain of trust, RCoT, and passes the result over to
DC-S, continually assess the status of the computing node, manage the domain and col-
laborating domains members based on policies distributed by DC-S (e.g. a VM can only
operate with a known value of a chain of trust and when the hosting physical collaborating
domains have a specific value of CDCoT(Physical) as defined by user properties).

• Cloud server agent, DC-S runs at OpenStack node controller (i.e. VCC) and it does the
following main functions: maintains and manages OpenStack components (including the
nova-scheduler) by ensuring they operate the Cloud only when they are trusted to behave
as expected, manages the membership of the physical and virtual domains, and attests
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to DC-C trustworthiness when its computing node joins a physical domain. DC-S also
intermediates the communication between DC-C and nova-scheduler, attests to DC-C’s
computing-node trustworthiness, collects the computing node RCoT, and then calculates
DCoT, CDCoT, and stores the the result in an appropriate field in nova-database.

Next section discusses our prototype and how these components collaborate to establish
trust in Clouds.

6.5 Prototype
Having defined a high level architecture of our scheme, this section describes our prototype.
As we discussed earlier, at this stage we focus on a trustworthy collection of resources’ RCoT,
calculate DCoT and CDCoT, and then using the ACaaS scheduler to match user properties with
the infrastructure properties. Other infrastructure properties, at this stage, are either collected
automatically (such as physical resources capabilities) or entered manually (such as physical
location of joining computing nodes). However, such values could be altered by system admin-
istrators. Planned future work will focus on extending our framework to establish trustworthy
collection/calculation of the other properties. The trust measurements performed by DC-C iden-
tifies the building up of a resource’s RCoT and its integrity measurements. In this section we
discuss the functionalities we implement at OpenStack controller node (i.e. the VCC) and com-
puting node, which covers trust establishment building on both remote attestations and secure
scheduling.

6.5.1 Trust Attestation via DC-C
Our implementation is based on open source trusted computing infrastructure. The open source
is built on a Linux operating system and it helps in building an RCoT on a computing node.
Such RCoT, as discussed earlier, starts from the computing node TPM and move up to the DC-
C, as illustrated in Figure 6.5. In this section we cover the details of this. The workflow starts by
the platform bootstrapping procedure in which the trusted BIOS initializes the TPM. Once this
is done, the trusted BIOS measures and then loads the trusted bootloader [Trud]. The trusted
bootloader is the Trusted Grub in our case, which measures and loads the Linux kernel.

The Linux kernel is updated ensuring that the IBM Integrity Measurement Architecture
(IMA) [SZJvD04] is enabled by default. The IMA measures all critical components before
loading them, which includes kernel modules, user applications, and associated configuration
files. The values of such measurements are irreversibly stored inside the Platform Configuration
Registers (PCRs) which are protected by the TPM. By default the IMA implementations use
PCR #10 to store such measurements.

The TPM driver and the Trusted Core Service Daemon (TCSD) [Trub] expose the Trusted
Computing Services (TCS) to applications. These components constitute the part of DC-C for
collecting and reporting the trust measurement of a resource. An RCoT is, hence, constructed
from the CRTM [Truc], which itself resides and protected by the Trusted BIOS.

Table 6.1 lists the IMA measurement log which illustrates part of the records of the boot-
strapping process for our prototype. The IMA measurement log is the source for generating
Integrity Reports (IR). IR is used, as we discuss latter, to determine the genuine properties of
a target system during the remote attestation process. We now discuss the IMA measurement
log in further details. The first column, in Table 6.1, shows the value of PCR10 after load-
ing the components of the third column. The second column records the hash value of the
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Figure 6.5: Compute Node Architecture

Table 6.1: Compute node bootstrapping measurement log

PCR10 HASH Loaded Component
pVal0 hVal0 boot aggregate
pVal1 hVal1 /init
pVal2 hVal2 ld-linux-x86-64.so.2
pVal3 hVal3 libc.so.6

. . . . . . . . .
pVali hVali nova-compute.conf
. . . . . . . . .

pValj hValj python
. . . . . . . . .

pValk hValk nova-compute
pValk+1 hValk+1 libssl.so.1.0.0

. . . . . . . . .
pVall hVall nova.conf
. . . . . . . . .

loaded component. The first record, in Table 6.1, holds the value of the boot aggregate. The
boot aggregate is the combined hash value of PCR0 − PCR7; i.e. it possesses the measure-
ment of the Trusted Computing Base (TCB) of a computing node, including the Trusted BIOS,
Trusted Bootloader and the image of the Linux Kernel together with its initial ram-disk and
kernel arguments. Whenever a software component is loaded, the IMA module of the kernel
generates a hash value of the binary code of the loaded component. The hash value (e.g. hVali)
is then extended into PCR10 by invoking the TPM Extend command [Tru07c]. Such command
updates PCR10 to reflect the loaded component as follows: pVali = hash(pVali−1, hVali).

Subsequent rows in Table 6.1 present the measurement logs for the bootstrapping workflow
at the adopted operating system, Ubuntu 11.04. Other OpenStack components, as illustrated
in the table, are then measured which includes nova-compute.conf init script, python program,
nova-compute, supporting libraries, and critical configuration files.

To reduce the complexity of the system and to focus on practical Cloud deployment cases,
our prototype turns off all unnecessary services at the base system. As a result, the value of
PCR10 do not get changed by default except if a new software module (e.g. user program,
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kernel modules, or shared libraries) is forced to be loaded on the computing node (could be
either a good one (e.g. security patching) or a malicious one (e.g. loading attacking codes)).
In such a case, the new software module will be measured and added to the log records. This
would change the value of PCR10, reflecting the changes in system state.

Our prototype intentionally filters out the IMA measurements of VMs, i.e. the QEMU pro-
gram in our prototype. This is because, as explained in this work, VMs chain of trust should be
built on compositional chains of trust and not a single resource chain of trust, i.e. they should
not be considered part of the TCB of a computing node. Most importantly, measurements of
VMs should be controlled by IaaS Cloud users and not Cloud providers as such measurements
will likely to raise user’s privacy concerns and, in addition, such measurements would signifi-
cantly increase the complexity of trust management. If an exploited VM runs on a computing
node, for example, to perform malicious behaviour to other components and application, e.g.
by side-channel attacks or exploiting hypervisor vulnerabilities, the properties of the computing
node would change once the exploited VM starts to affect the TCB components, as we discussed
earlier. In such a case, DC-C will stop to operate, i.e. it evicts itself from the physical domain
and VMs will be forced to migrate to heathy computing node.

Finally, DC-C collects the integrity measurement logs as recorded by the IMA and generates
an IR following the specifications of the Platform Trust Service interface (PTS) [Tru06]. The
DC-C, as we discuss in the next section, sends the IR report and the signed PCR values to DC-S
on request. In our prototype, this component is implemented by integrating the PTSC module
from the OpenPTS [Tru11].

6.5.2 Trust management by DC-S
This section starts by summarizing high level steps of the implemented part of the system work-
flow and then moves into the prototyping details related to DC-S, as follows (our previous work
[Abb11a] provides detailed discussion of some of these steps supported by cryptographic pro-
tocols, our prototype discussed in subsequent subsections explains how we implemented these
steps).

1. Cloud security administrators could either create a new physical domain or use an existing
domain. The creation process involves deciding on domain capabilities, location, and
defining its collaborating domains. As discussed in Section 6.4, we updated nova-api to
enable administrators to manage this process.

2. Cloud security administrators then install DC-C and nova-compute at all new physical
computing nodes that are planned to join the domain.

3. DC-C joins the Cloud physical domain by communicating with DC-S. DC-S attests to
DC-C trustworthiness and establishes offline chain of trust with DC-C (using sealing
and remote attestation concepts as proposed by TCG specifications). DC-C calculates
RCoT(Physical), as described in our prototype. DC-C then passes the results to DC-S.

4. DC-S stores the RCoT(Physical) at the compute nodes table. DC-S ensures that all de-
vices in each domain have the same capabilities. The sealing mechanism, which is estab-
lished in previous steps, assures DC-S that DC-C can only operate with the same value
of the reported RCoT(Physical). If this value changes (e.g. hacked) DC-C will not oper-
ate. This prevents VMs from starting at hacked device and rather get migrated to other
computing nodes member of the same physical domain.
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5. Users, using nova-api command, deploy their VMs and associate them with certain prop-
erties. Such properties include, for example, the required CDCoT(Physical), and the
multi-tenancy restrictions which control the sharing of computing nodes with other users.

6. The ACaaS scheduler allocates an appropriate physical domain to host the user VM. The
properties of the physical domain and its member devices should satisfy users require-
ments.

The remaining part of this section covers the implementation of the remote attestation pro-
cess and the secure scheduling.

6.5.2.1 Remote attestation

Our prototype implements remote attestations using the OpenPTS [Tru11]. OpenPTS is con-
trolled by DC-S which runs on VCC. OpenPTS sends an attestation request to each computing
node to retrieve their IR and the PCR values. When a computing node sends their results,
OpenPTS examines the consistency of the IR and the PCR values [Truc], and then examines the
security properties by matching the reported IR with the expected measurement from a white-
list database [Truc]. White-list represent sets of measurements which are stored in a database,
each set of measurements is calculated based on a carefully selected “good” platform configu-
ration state. The calculation is performed in a form of hash values for each pre-loaded software
components on the “good” platform. For the purpose of our prototype, we used two newly
installed Ubuntu 11.04 servers that each has a default configurations. Such configurations are
composed of the minimal required environment for a computing node to perform its planned
functions. The hash values of the software stack of any computing node at the Cloud infrastruc-
ture should exist within the white-list database. If not, we consider the computing node to be
untrusted. The “good” configurations (or any set of white-lists) can be extended or changed by
adding or updating the entries of the corresponding database.

We now discuss the attestation protocol in more details. Every computing node (Ci) is
identified by its AIK (Attestation Identity Key), and the Cloud controller VCC (M) serves as the
Privacy-CA [Truc, Trua] for certifying and managing all these AIKs. When a new computing
node is added to the Cloud infrastructure, it must first register at the VCC and certify a specific
AIK. Only registered computing nodes can connect to the VCC as their certified AIKs cannot
be forged and, importantly, AIKs can only be used inside the genuine TPM which generates
them. The protocol 8 outlines the registration steps of Ci at M.

Whenever a computing node sends a request to connect to the VCC, e.g. after the registration
or a after reboot, a trust establishment protocol is established, which is listed in Protocol 9.

The configurations of computing nodes could possibly be altered after an attestation ses-
sion, e.g. loading a new application. In such cases, the computing node attestation properties
(as maintained by the VCC) would be violated. Addressing this require establishing a trusted
channel [GSS+07] to seal [Truc] the communication key with the verified PCR values. The
sealing process provides the assurance that the communication key is protected by the TPM and
can only be loaded when the values of the platform PCRs have the expected attested values.
Whenever a computing node’s configurations change, the DC-S will not be able to load the
key and, hence, any future communication between the computing node and the VCC will be
discarded. This in turn would trigger a new attestation from the VCC to the computing node.

When the sealed keys are loaded into memory, the implementation of the trusted channel
requires a very small TCB enforcing strict access to the memory area storing the keys. Having
large TCB, could results in the tampered system to be capable of retrieving the key from the
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Protocol 8 Computing node registration protocol.

Ci sends a registration request to M as follows. First, Ci sends a request to its TPM to create an AIK key
pair using the command TPM CreateAIK. The TPM then generates an AIK key pair. The generated
private part of the key pair never leaves the TPM, and the corresponding public part of the key pair is
signed by the TPM Endorsement Key (EK)[Truc]. The EK is protected by the TPM, and never leave it.
Ci then sends a registration request to M. The request is associated with EK certificates and the AIK
public key, and other parameters.

Ci → M : Cert(KEKi), {KAIKi}K−1
EKi

(8.1)

M certifies AIKi as follows. M verifies Cert(EKi). If the verification succeeds, M generates a specific-
AIK certificate for Ci, and it also generates a unique ID, CIDi, to and sends them over to Ci.

M → Ci : {Cert(KAIKi),CIDi}K−1
M
,Cert(KM) (8.2)

Protocol 9 Trust establishment protocol.

M sends an attestation request to Ci. M first sends a nonce Na to Ci.

Ci then reports an attestation ticket to M as follows. Ci sends its PCR values, and the measurement log
IR back to M, together with Na. These are signed by Ci’s AIK.

Ci → M : {Na, {PCR}, IR}K−1
AIKi

(9.1)

M then verifies the message sent by Ci as follows. M verifies the AIKi signature, and Na value matches
the sent nonce. If succeed it examines the consistency of PCR and IR, and then determine the properties
of Ci based on the value of IR.
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memory and pretend to be on a trusted state. However, small TCB is not a trivial task to im-
plement and lots of efforts are required in this direction, especially, considering the complexity
and scalability of the hosting Cloud system (we leave this important subject as a planned future
research). As an attempt to lessen the effect of this threat in our prototype we require a periodic
attestation which keeps the security properties of a computing node up to date. We implemented
this by associating a timer with each computing node. Re-attestation is enforced whenever the
timer expires. Discovered un-trusted computing nodes will be immediately removed from the
database and they would need to re-enroll into the system. In addition, VMs running on un-
trusted computing nodes will be forced to migrate to other computing nodes that are member of
the same physical domain.

6.5.2.2 Secure scheduling

As we discussed in previous sections, computing nodes are organized into physical domains.
Such organization would be based on the properties of each computing node (i.e. security, pri-
vacy and other properties) which enable it serve the needs of the domain. Users can specify
the expected properties that could host their VMs. Some of these properties could be repre-
sented by a set of PCR values. However, PCR values are hard to pre-calculate and manage
considering that they represent aggregated hash values of software components when loaded
in a specific order. In our proposed prototype users do not really need to specify PCR values,
rather they could select their expected hosting environment based a provided sets of white-lists
(as discussed earlier). Whilst enrolling a computing node into a domain, the administrators
compose and specify the white-list of the computing node, in accordance with its properties.
The computing node is then periodically attested based on this assigned white-list. Whenever a
computing node’s white-list change, it will be immediately remove from the domain. However,
a genuine updates on the properties of a computing node, e.g. applying security patch, require
administrators to adjust the corresponding entries in the white-list database. This is much sim-
pler in comparison with the need to manage a huge set of possible “good” PCR values. In our
prototype, users would identify part of their required properties in a form of a white-list, ACaaS
scheduler would then deploy the user VMs on nodes having same properties as requested by the
user. ACaaS with collaboration with DC-S and DC-C periodically examine the consistency of
such properties.

6.5.3 Preliminary Performance Evaluation
For preliminary evaluations, we measure the overheads introduced by TCG trusted computing
infrastructure. Our assessments focus on the critical operations which include: PCR Quote
instruction, PCR verification instruction, and a full remote attestation procedure. In addition,
we assess the additional time which is required when extending RCoT on a Compute node
during the bootstrapping process, as discussed earlier. Table 6.2 shows the performance metrics
for these operations. Each value in the table represents averaging 15 execution times of every
corresponding operation. We also included the standard deviations.

We found that a full attestation requires around 10 seconds. This includes, on the com-
puting node, quoting the PCR values and generating the IRs, and on the VCC, verifying the
PCR values and analysing the IRs. As we discussed earlier, our prototype performs off-line
attestation. As a result, the attestation values are stored in the database and queried only when
necessary. Hence, the impacts on the execution flows of the Clouds management facilities are
negligible. For example, the Cloud scheduler when making a scheduling decision could directly
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Table 6.2: Trusted computing operations overheads

Avg Time (sec.) StDv (sec.)
Full Attestation 10 0.8

PCR Quote 0.759 0.007
Verify Quote 0.0021 0.0006
Trusted Boot 213 5
Regular Boot 56 2

fetch a previously stored attestation results from the database instead of performing an on-line
attestation that requires, based on our measurements, around 10 seconds.

An important point to consider is the trade-off between security and performance. Specifi-
cally, in our prototype a full attestation required 10 seconds; the longer the gap we leave between
attestations the better the performance we got, and the less assurance on changes of device sta-
tus. Analogously, the more frequent an full attestation is performed the worse performance we
got, and the more assurance on changes of device status. In other words, the delays between
successive attestations determine the required time for the violation detection. Even if the delay
between successive attestations is zero, there is still a 10 seconds time interval where a violation
could happen. Within this period, the state of a target computing node could have been changed
without reflecting such a change to its security properties as stored in the database.

When we carefully check the constitution of a full remote attestation procedure we find that
the consumed time when quoting and verifying the values of PCR is much less than the con-
sumed time for generating and verifying the IRs. However, handling the IRs is only necessary
when the state of a computing node get changed, i.e. the security properties of the computing
node can safely be assumed identical as long as the subsequent measurements of PCR values
are identical, and as a result, having identical PCR values eliminate the need to do further exam-
ining the IRs. Hence, the attestations to a computing node can be optimised by first compare the
PCR values with the previous ones. Only when these values do not match the computing node
generates IR and the VCC verifies it. In practice, platforms’ state rarely get changed [LM09];
for example, a computing node configurations only changes when it loads new privileged ex-
ecutable, e.g. loading new security modules, applying patches or launching malicious attacks.
Most of the time, the attestation delay can be reduced by only generating and verifying PCR
values, which, as shown in 6.2, is less than 0.8 seconds.

Finally, an inevitable bootstrapping delay will be incurred for extending the RCoT, as all
software components prior loading should first get measured and extended to the TPM. As
illustrated in Table 6.2, this process is 3 times longer than booting a general system. This is not
a major issue in Clouds, as in practice computing nodes do not get rebooted frequently. Hence,
the bootstrapping delay is negligible.

6.6 Related Work

The issue of establishing trust in the Cloud has been discussed by many authors (e.g. [Aba09,
HRM10, HNB11, KM10b, SMV+10]). Much of the discussion has been centered around rea-
sons to “trust the Cloud” or not to. Khan and Malluhi [KM10b] discusses factors that affect
consumer’s trust in the Cloud and some of the emerging technologies that could be used to es-
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tablish trust in the Cloud including enabling more jurisdiction over the consumers’ data through
provision of remote access control, transparency in the security capabilities of the providers, in-
dependent certification of Cloud services for security properties and capabilities and the use
of private enclaves. The issue with jurisdiction is echoed by Hay et al [HNB11], who further
suggest some technical mechanisms including encrypted communication channels and compu-
tation on encrypted data as ways of addressing some of the trust challenges. Schiffman et al
[SMV+10] propose the use of hardware-based attestation mechanisms to improve transparency
into the enforcement of critical security properties. The work in [Aba09, HRM10] focus on
identifying the properties for establishing trust in the Cloud.

Few papers propose the usage of TPM in Clouds for remote attestation (e.g. [RM11, SGR09,
SMV+10]). The work in [RM11] proposes a remote attestation mechanism based upon repu-
tation systems and TCG remote attestation concept. This work requires resources, when inter-
acting with other resources, to attest to their trustworthiness, keep a copy of the measured trust
values, and to share it with other resources. The trust measurements are associated with times-
tamp and would need to be revalidated after it expires. The dissemination of such measurements
between resources form a web-of trust. We identify the following weaknesses in the scheme: i)
the relation between entities in Clouds are identified mainly based on the dynamic behaviour of
the entities (i.e. a relationship between entity A and B is established when A exchanges messages
with B), and ii) the entities of the web-of-trust (consists of a large and replicated database of
trust measurements) that expire and require frequent re-evaluation. Establishing trust between
entities based on entities’ dynamic behaviour (i.e. point i) is not accurate and might affect Cloud
availability and resilience. For example, entities at the physical layer forming a collaborating
domain do not communicate frequently, and sometimes never communicate directly. If a phys-
ical domain fails then all its hosted resources must start-up immediately at another physical
domain. Establishing a chain of trust at this critical stage would affect the timing of service
recovery. In addition, point (ii) is time consuming and, by considering the enormous number of
resources in Clouds, it is not practical to keep revalidating the trust measurements.

The work on ([SGR09, SMV+10]) provide remote attestation for either the entire Cloud
infrastructure or for the the physical resources hosting a specific VMs. However, we argue that
it is not practical to attest to the entire Cloud infrastructure considering its huge and distributed
resources, neither it is practical to attest to a specific set of physical resources considering
the dynamic nature of Clouds where VMs can move between different physical resources. In
addition, these papers require users to understand to some extent the Cloud infrastructure, i.e.
they do not provide transparent Cloud’s infrastructure.

Cloud scheduler is proposed and implemented by industry body such VMWare in their
VCenter product [VMw10] and open source tools such as Openstack and OpenNebula [Ope10b,
Ope10a]. A scheduler decisions could be based on various factors at the physical layer such as
memory, CPU, and load. Currently the main implemented scheduling algorithms are: i) chance:
in this method, a computing node is chosen randomly, ii) availability zone: similar to chance,
but the computing node is chosen randomly from within a specified availability zone, and iii)
simple: in this method, a computing node whose load is the least is chosen to run an instance.
Such algorithms are still basic; i.e. they do not consider the entire Cloud infrastructure neither
they consider wide users’ requirements.

Our scheme is different from the above as it is based on practical understanding of how
Clouds work. We explicitly identified the Cloud infrastructure and user properties. We also
considers Cloud taxonomy, dynamic nature and the practical relationships between Cloud en-
tities. Understanding these help us in providing a novel Cloud scheduler that matches user
properties with infrastructure properties ensuring user requirements are continuously met fol-
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lowing pre-agreed SLA. In addition, we developed software agents running on computing nodes
to enforce the scheduler decision and also to provide trustworthy report about the computing
node trust level. Moreover, we assess the trustworthiness of the infrastructure using the com-
positional chains of trust scheme, which considers both Cloud dynamic nature and way Cloud
infrastructure is managed.

6.7 Conclusion
Cloud infrastructure is expected to be able to support Internet scale critical applications (e.g.
hospital systems and smart grid systems). Critical infrastructure services and organizations
alike will not outsource their critical applications to a public Cloud without strong assurances
that their requirements will be enforced. This is a challenging problem to address, which we
have been working on as part of TClouds project. A key point for addressing such a problem is
providing a trustworthy Cloud scheduler supported by trustworthy data enabling the scheduler
to take the right decision. Such trustworthy source of data is related to both user requirements
and infrastructure properties. User requirements and infrastructure properties are enormous,
and assuring their trustworthiness is our long term objective. This work covers one of the most
important properties which is about measuring the trust status of the Cloud infrastructure, and
enabling users to define their minimal acceptable level of trust. We presented our prototype
which does not only cover the proposed scheduler but it also covers our related previous work
focussing on Clouds trust measurements. The key advantage of our prototype is that it considers
critical factors that have not been considered in commercial schedulers, such as: considering the
overall Clouds infrastructure and computing nodes’ trustworthiness. In addition, our prototype
enables users to identify their expected trust level at physical resources hosting their virtual
resources without the need for users to get involved into infrastructure complexity. We also
prototyped client agents which enforces the scheduler decisions across the wide scale Cloud
infrastructure.

This work presents a core component of our long term objective of establishing Clouds’
trustworthy self-managed services. We identified different areas of research to expand this
work, which we are planning to work on in the near future.
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Kouchnarenko, Jacopo Mantovani, Sebastian Mödersheim, David von Oheimb,
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