
D2.4.2
Initial Component Integration, Final API

Specification, and First Reference Platform
Project number: 257243

Project acronym: TClouds

Project title:
Trustworthy Clouds - Privacy and Re-
silience for Internet-scale Critical Infras-
tructure

Start date of the project: 1st October, 2010

Duration: 36 months

Programme: FP7 IP

Deliverable type: Deliverable

Deliverable reference number: ICT-257243 / D2.4.2 / 1.1
Activity and Work package contributing
to deliverable: Activity 2 / WP 2.4

Due date: September 2012 – M24

Actual submission date: 30th October, 2012

Responsible organisation: POL

Editor: Roberto Sassu

Dissemination level: Public

Revision: 1.1

Abstract:

This deliverable includes and reports three
prototypes, outcome of the first round
of integration of subsystems developed
within the other Activity 2 workpackages.

Keywords:

Legal and application requirements,
subsystems, prototypes, trustworthy in-
frastructure, private and public clouds,
TClouds native and commodity clouds

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Editor

Roberto Sassu (POL)

Contributors

Roberto Sassu, Paolo Smiraglia, Gianluca Ramunno (POL)

Alexander Buerger, Norbert Schirmer (SRX)

Alysson Bessani, Marcel Henrique dos Santos (FFCUL)

Sören Bleikertz, Zoltan Nagy (IBM)

Imad M. Abbadi, Anbang Ruad (OXFD)

Johannes Behl, Klaus Stengel (TUBS)

Sven Bugiel, Hugo Hideler, Stefan Nürnberger (TUDA)

Ninja Marnau (ULD)

Mina Deng, Zheyi Rong (PHI)

Miguel Areias, Nuno Emanuel Pereira (EDP)

Paulo Santos (EFACEC ENG)

Disclaimer
This work was partially supported by the European Commission through the FP7-ICT program
under project TClouds, number 257243.

The information in this document is provided as is, and no warranty is given or implied that the
information is fit for any particular purpose.

The user thereof uses the information at its sole risk and liability. The opinions expressed in this
deliverable are those of the authors. They do not necessarily represent the views of all TClouds
partners.

TClouds D2.4.2 I

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Executive Summary

Cloud computing is an emerging technology devoted to outsource IT infrastructures, from SME
needs to large-scale computing and storage. However, organizations hosting critical infrastruc-
tures internally are cautious with regards to moving them to clouds, because the latter still
experience security and privacy breaches.

The TClouds project aims at facilitating the shift of computing paradigm also for critical
infrastructures by increasing the robustness of Infrastructure as a Service (IaaS) cloud platforms
through subsystems that can be combined and used in different scenarios: private or public
clouds, commodity or native TClouds clouds, or mixed scenarios.

This deliverable is a compendium of the work done in workpackages 2.1, 2.2. and 2.3 of
the TClouds project. A subset of the subsystems conceived, designed, and developed in those
workpackages, has been integrated into three different prototypes. Therefore, the prototypes
documented in this deliverable represent the first round of integration that took place during
the second year. A more comprehensive integration will be performed during the third year of
the project. However, this deliverable already gives an overall view of how the project results
can be used can be by combining the presented prototypes. In particular, a mixed scenario of
private-public clouds is presented as subject of the demonstration for the second year review.
The private cloud is a TClouds native cloud that can be implemented either using existing
cloud platforms properly enhanced for security (e.g. the prototype Trustworthy OpenStack) or
a platform developed with native support for security (e.g., the prototype TrustedInfrastructure
Cloud). The public clouds are commodity clouds used together to guarantee the availability and
integrity of data through the Cloud-of-Clouds prototype.

Subsystems and their integration in prototypes have the objective to satisfy the requirements
set by European and national laws on data protection (WP1.1) and by two benchmark applica-
tion scenarios, health-care (WP3.1) and energy related (WP3.2) applications. This deliverable
reports such requirements and how TClouds subsystems and prototypes satisfy them.

This deliverable is organized in three parts. Part I describes the three prototypes that will be
demonstrated as the result of the second year, also including the test plans and results. Part II
includes the documentation of the prototypes and subsystems being part of this deliverable.
Finally, Part III describes the TClouds Infrastructure for testing and delivering the subsystems
being part of Trustworthy OpenStack prototype, the code availability for all subsystems and
shows some screenshots of the enhanced Dashboard of Trustworthy OpenStack.

TClouds D2.4.2 II

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Contents

1 Introduction 1
1.1 TClouds — Trustworthy Clouds . 1
1.2 Activity 2 — Trustworthy Internet-scale Computing Platform 1
1.3 Workpackage 2.4 — Architecture and Integrated Platform 2
1.4 Deliverable 2.4.2 — Initial Component Integration, Final API Specification,

and First Reference Platform . 3

I TClouds Year 2 Demo 6

2 TClouds Infrastructure Requirements 7
2.1 Legal Requirements . 7
2.2 Application Requirements . 8

2.2.1 Healthcare Application . 8
2.2.2 Smart Lighting Application . 10

3 Prototypes 11
3.1 Trustworthy OpenStack Prototype . 12

3.1.1 Overview . 14
3.1.2 Demo Storyline . 16

3.2 TrustedInfrastructure Cloud Prototype . 32
3.2.1 Architecture Overview . 33
3.2.2 Demo Storyline . 34

3.3 Cloud-of-Clouds Prototype . 35
3.3.1 Architecture overview . 36
3.3.2 Demo storyline . 37

3.4 Other Prototypes . 39
3.4.1 Security Assurance of Virtualized Environments (SAVE) 40
3.4.2 Ontology-based reasoner: Libvirt With Trusted Virtual Domains 41

3.5 Mapping legal and application requirements to subsystems and prototypes . . . 46

4 Tests Plan and Results Report 58
4.1 Introduction . 58
4.2 A model for testing . 58
4.3 Master test plan . 59

4.3.1 Testing environment . 60
4.3.2 Testing levels . 60
4.3.3 Testing activities workflow . 61
4.3.4 Test results evaluation and exit criteria 62

4.4 Test plans for subsystems/prototypes . 65
4.4.1 TrustedInfrastructure Cloud . 65

TClouds D2.4.2 III

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

4.4.2 Security Assurance of Virtualized Environments (SAVE) 69
4.4.3 Resource-efficient BFT (CheapBFT) 70
4.4.4 Secure Block Storage . 74
4.4.5 Access Control as a Service (ACaaS) 76
4.4.6 BFT-SMaRt . 78
4.4.7 Resilient Object Storage (DepSky) . 81
4.4.8 LogService . 84
4.4.9 Remote Attestation Service . 87

4.5 Jenkins server . 90
4.5.1 Subsystem setup . 90

4.6 Tests Results . 91
4.6.1 Trustworthy OpenStack Prototype . 91
4.6.2 TrustedInfrastructure Cloud Prototype 95
4.6.3 Cloud-of-Clouds Prototype . 96
4.6.4 SAVE Subsystem . 96

II Prototypes Documentation 98

5 Trustworthy OpenStack Prototype 99
5.1 LogService . 100

5.1.1 Platform Setup . 100
5.1.2 LogService Subcomponents . 100

5.2 Remote Attestation Service . 102
5.2.1 Operating Environment Setup . 102
5.2.2 Prototype Build and Installation Instructions 103
5.2.3 Prototype Execution Instructions . 105

5.3 Access Control as a Service . 106
5.3.1 Platform Setup . 106
5.3.2 Management Console . 110

5.4 Cryptography-as-a-Service (Caas) . 112
5.4.1 Operating Environment Setup . 112
5.4.2 Prototype Execution Instructions . 113

5.5 Resource-efficient BFT (CheapBFT) . 114
5.5.1 Operating Environment Setup . 114
5.5.2 Prototype Execution Instructions . 116

6 TrustedInfrastructure Cloud Prototype 117
6.1 TrustedObjectsManager setup . 117

6.1.1 Using the management console . 117
6.1.2 Creating a company . 117
6.1.3 Creating a location . 117
6.1.4 Adding users . 119
6.1.5 Network configuration . 119
6.1.6 Creating and configuring VPNs . 121
6.1.7 Attaching appliances . 121
6.1.8 Creating TrustedVirtualDomains . 123
6.1.9 Adding compartments to TVDs . 123

TClouds D2.4.2 IV

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

6.1.10 Connecting everything together . 124

7 Cloud-of-Clouds Prototype 128
7.1 BFT-SMaRt . 128

7.1.1 Download instructions . 128
7.1.2 How to install . 128

7.2 Resilient Object Storage (DepSky) . 129
7.2.1 Prototype Execution Instructions . 129
7.2.2 DepSky configuration . 129
7.2.3 Running DepSky locally . 129

8 Other Prototypes 130
8.1 Security Assurance of Virtualized Environments (SAVE) 130

8.1.1 Operating Environment Setup . 130
8.1.2 Prototype Build and Installation Instructions 130
8.1.3 Prototype Execution Instructions . 130

8.2 Ontology-based reasoner: Libvirt With Trusted Virtual Domains 131
8.2.1 Operating Environment Setup . 131
8.2.2 Prototype Build and Installation Instructions 131
8.2.3 Prototype Execution Instructions . 131

III Appendices 132

A TClouds Infrastructure Wiki 133
A.1 Infrastructure Overview . 133

A.1.1 Code Repositories (git.tclouds-project.eu) 133
A.1.2 Code Review (review.tclouds-project.eu) 134
A.1.3 Testing Framework (jenkins.tclouds-project.eu) 137

B Subsystems’ code availability 138

C Trustworthy OpenStack
Dashboard screenshots 139

Bibliography 139

TClouds D2.4.2 V

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

List of Figures

1.1 Graphical structure of WP2.4 and relations to other work packages. 3

3.1 Prototypes demo architecture and scenario . 13
3.2 The Trustworthy OpenStack demo architecture 15
3.3 Remote Attestation Service demo workflow 18
3.4 ACaaS demo workflow . 21
3.5 SBS Modules Overview . 23
3.6 Secure Block Storage demo workflow . 25
3.7 LogService demo workflow . 27
3.8 Resilient Log demo workflow (CheapTiny protocol) 30
3.9 Resilient Log demo workflow (CheapSwitch protocol) 31
3.10 Resilient Log demo workflow (MinBFT protocol) 31
3.11 TrustedInfrastructure architecture . 33
3.12 Start/Stop compartment demo workflow . 35
3.13 C2FS basic architecture. 36
3.14 The flow of invocations in different components for directory-related operations. 39
3.15 The flow of invocations in different components when data-intensive commands

are executed. 39
3.16 SAVE: Architecture Overview of Discovery Component 40
3.17 SAVE: Architecture Overview of Analysis Component 41
3.18 TVD scenario implemented using Open vSwitch bridges 42

4.1 The V-model . 59
4.2 Testing activities workflow . 63
4.3 TClouds Jenkins Web page . 90
4.4 Jenkins Tests Results for Build#39 (OpenStack + ACaaS Scheduler) 92
4.5 Jenkins Code Style Tests Results (OpenStack + ACaaS Scheduler) 93
4.6 Successful JUnit Test Run. 96

6.1 The TrustedObjectsManager Login screen . 118
6.2 The TrustedObjectsManager overview screen after login 118
6.3 Creating a “Company” . 118
6.4 Creating a “Location” . 119
6.5 Adding a user, step 1 . 119
6.6 Adding a user, step 2 . 120
6.7 Adding networks . 120
6.8 Adding a VPN . 121
6.9 Add a new appliance to the company . 122
6.10 Dialog to download the configuration for the specific appliance 122
6.11 Dialog to create a new TVD . 123
6.12 Adding a new compartment . 124
6.13 Installing a registered compartment to TrustedServer 124

TClouds D2.4.2 VI

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

6.14 Attaching networks to compartments installed on TrustedServer 125
6.15 Editing VPN membership of TrustedServer 126

C.1 The Trustworthy OpenStack Dashboard - Login 140
C.2 Trustworthy OpenStack Dashboard - (ACaaS) Requirements and Security Prop-

erties . 140
C.3 Trustworthy OpenStack Dashboard - (Remote Attestation/ACaaS) Setting Extra

Specs with flavours . 141
C.4 Trustworthy OpenStack Dashboard - (Remote Attestation/ACaaS) Launching

an instance and setting the requirements . 141
C.5 Trustworthy OpenStack Dashboard - (LogService) List of available logging ses-

sions . 142
C.6 Trustworthy OpenStack Dashboard - (LogService) Log file dump with verifica-

tion results . 142

TClouds D2.4.2 VII

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

List of Tables

3.1 List of TClouds subsystems and mapping to prototypes 12
3.2 List of TClouds subsystems and mapping to requirements 47

B.1 List of TClouds subsystems and code availability 138

TClouds D2.4.2 VIII

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Chapter 1

Introduction

1.1 TClouds — Trustworthy Clouds
TClouds aims to develop trustworthy Internet-scale cloud services, providing computing, net-
work, and storage resources over the Internet. Existing cloud computing services are today
generally not trusted for running critical infrastructure, which may range from business-critical
tasks of large companies to mission-critical tasks for the society as a whole. The latter includes
water, electricity, fuel, and food supply chains. TClouds focuses on power grids and electricity
management and on patient-centric health-care systems as its main applications.

The TClouds project identifies and addresses legal implications and business opportunities
of using infrastructure clouds, assesses security, privacy, and resilience aspects of cloud comput-
ing and contributes to building a regulatory framework enabling resilient and privacy-enhanced
cloud infrastructure.

The main body of work in TClouds defines an architecture and prototype systems for secur-
ing infrastructure clouds, by providing security enhancements that can be deployed on top of
commodity infrastructure clouds (as a cloud-of-clouds) and by assessing the resilience, privacy,
and security extensions of existing clouds.

Furthermore, TClouds provides resilient middleware for adaptive security using a cloud-
of-clouds, which is not dependent on any single cloud provider. This feature of the TClouds
platform will provide tolerance and adaptability to mitigate security incidents and unstable op-
erating conditions for a range of applications running on a clouds-of-clouds.

1.2 Activity 2 — Trustworthy Internet-scale Computing Plat-
form

Activity 2 carries out research and builds the actual TClouds platform, which delivers trust-
worthy resilient cloud-computing services. The TClouds platform contains trustworthy cloud
components that operate inside the infrastructure of a cloud provider; this goal is specifically ad-
dressed by WP2.1. The purpose of the components developed for the infrastructure is to achieve
higher security and better resilience than current cloud computing services may provide.

The TClouds platform also links cloud services from multiple providers together, specif-
ically in WP2.2, in order to realize a comprehensive service that is more resilient and gains
higher security than what can ever be achieved by consuming the service of an individual cloud
provider alone. The approach involves simultaneous access to resources of multiple commodity
clouds, introduction of resilient cloud service mediators that act as added-value cloud providers,
and client-side strategies to construct a resilient service from such a cloud-of-clouds.

WP2.3 introduces the definition of languages and models for the formalization of user- and

TClouds D2.4.2 Page 1 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

application-level security requirements, involves the development of management operations
for security-critical components, such as “trust anchors” based on trusted computing technology
(e.g., TPM hardware), and it exploits automated analysis of deployed cloud infrastructures with
respect to high-level security requirements.

Furthermore, Activity 2 will provide an integrated prototype implementation of the trust-
worthy cloud architecture that forms the basis for the application scenarios of Activity 3. For-
mulation and development of an integrated platform is the subject of WP2.4.

These generic objectives of A2 can be broken down to technical requirements and designs
for trustworthy cloud-computing components (e.g., virtual machines, storage components, net-
work services) and to novel security and resilience mechanisms and protocols, which realize
trustworthy and privacy-aware cloud-of-clouds services. They are described in the deliverables
of WP2.1–WP2.3, and WP2.4 describes the implementation of an integrated platform.

1.3 Workpackage 2.4 — Architecture and Integrated Plat-
form

The objective of WP2.4 is the design of an overall architecture framework that serves as a basis
for the combination of the research results and prototypes of work packages WP2.1, WP2.2 and
WP2.3 in order to build an integrated proof of concept prototype of a resilient cloud-of-clouds
infrastructure. Based on the cloud applications (WP3.1, WP3.2), and the related technical re-
quirements (WP1.1), the resulting TClouds platform architecture and the required subsystems
are defined, implemented by the corresponding work packages, and finally integrated into the
proof of concept prototype of a trustworthy cloud environment, which is the major outcome of
this work package.

The workpackage is split into four tasks.

• Task 2.4.1 (M01-M08): Use Case Analysis

• Task 2.4.2 (M01-M28): Architecture including public interfaces

• Task 2.4.4 (M07-M36): Initial component Integration and final Integrated Platform

• Task 2.4.5 (M07-M36): Test Methodology and Tests Cases

Task 2.4.1 took place in the first year and was devoted to select and analyze the use cases to
be implemented by each subsystem, starting from the requirements formulated within Activity
1 and Activity 3 work packages. Task 2.4.2 is concerned to define an overall architecture and
the interfaces; these activities were started during the first year but continued during the second
year and will take part of the third year. Task 2.4.4 refers to the integration of the various
subsystems into a platform; it started during the first year and will end at the end of the project.
The outcome of this task for the second year (initial component integration) is the main input
for the present deliverable. Task 2.4.5 is focused on defining the test methodology and the test
cases and on actually performing the tests on the developed subsystems. Also this task spans
from the first year to the end of the project.

During the second year the focus was the initial integration of the subsystems developed in
WPs 2.1-2.3 in terms of both connecting the subsystems to cooperate and having an integrated
development and testing process.

TClouds D2.4.2 Page 2 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

WP2.4

Architecture and Integrated

Platform

WP1.1 Requirements and

Roadmap

WP3.3 Validation and

Evaluation of the

TCLOUDS Platform

WP2.3 Cross-layer

Security and Privacy

Management

TASK 2.4.4: Initial

component Integration

and final Integrated

Platform

TASK 2.4.1: Use Case

Analysis

WP2.1 Trustworthy

Cloud Infrastructure

WP2.2 Cloud of

Clouds Middleware for

Adaptive Resilience

WP3.2 Cloud-

middleware and

Applications for the

Smart Grid

Benchmark Scenario

WP3.1 Cloud

Applications and Data

Structures for Home

Healthcare Benchmark

Scenario

TASK 2.4.2:

Architecture including

public interfaces

D.2.4.3

D.2.4.2

D.2.4.2

D.1.1.1

D.2.4.1

D.2.4.1
D.2.4.1

D.2.1.4

D.2.3.3

D.2.2.4

D.2.2.3

TASK 2.4.5: Test

Methodology and Tests

Cases

D.2.4.2

D.2.4.1

Figure 1.1: Graphical structure of WP2.4 and relations to other work packages.

Figure 1.1 illustrates WP2.4 and its relations to other work packages according to the
DoW/Annex I.

Requirements were collected from WP1 to define the use cases in Task 2.4.1. The architec-
ture and the interfaces defined in Task 2.4.2 are reported back to and used by WPs 2.1-2.3 to
develop their subsystems that become then the input for Task 2.4.4. The outcome of Task 2.4.2
is employed by WPs 3.1 and 3.2 to design and develop their applications. The output of Task
2.4.4 is the input for WP3.3 to perform the evaluation of the TClouds platform.

1.4 Deliverable 2.4.2 — Initial Component Integration, Final
API Specification, and First Reference Platform

Overview. Cloud computing is an emerging technology devoted to outsource IT infrastruc-
tures, from SME needs to large-scale computing and storage. However, organizations hosting
critical infrastructures internally are cautious with regards to moving them to clouds, because
the latter still experience security and privacy breaches.

The TClouds project aims at facilitating the shift of computing paradigm for critical in-
frastructures by increasing the robustness of Infrastructure as a Service (IaaS) cloud platforms
through subsystems that can be combined and used in different scenarios: private or public
clouds, commodity or native TClouds clouds, or mixed scenarios.

This deliverable is a compendium of the work done in workpackages 2.1, 2.2 and 2.3. A
subset of the subsystems conceived, designed, and developed in those workpackages, has been
integrated into three different prototypes. These prototypes represent the first round of inte-
gration that took place during the second year. A more comprehensive integration will be per-
formed during the third year of the project. However, this deliverable already gives an overall

TClouds D2.4.2 Page 3 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

view of how the project results can be used by combining the presented prototypes. In particular
a mixed scenario of private-public clouds is presented as subject of the demonstration for the
second year review. The private cloud is a TClouds native cloud that can be implemented either
using existing cloud platforms properly enhanced for security (e.g. the prototype Trustworthy
OpenStack) or a platform developed with native support for security (e.g. the prototype Truste-
dInfrastructure Cloud). The public clouds are commodity clouds used together to guarantee the
availability and integrity of data through the Cloud-of-Clouds prototype.

Subsystems and their integration in prototypes have the objective to satisfy the requirements
set by European and national laws on data protection (WP1.1) and by two benchmark applica-
tion scenarios, health-care (WP3.1) and energy related (WP3.2) applications. This deliverable
reports such requirements and how TClouds subsystems and prototypes satisfy them.

Structure. This deliverable is organized in three parts.
Part I describes the prototypes that will be demonstrated as the results of the second year and

consists of three chapters. Chapter 2 reports legal and application requirements from Activity 1
and Activity 3. Chapter 3 is the core of this deliverable describing the three prototypes that will
be demonstrated and two more being part of this deliverable but not demonstrated. Chapter 3
also includes (at the beginning) the list of all subsystems defined in D2.4.1 [ea11c] during the
first year plus a new subsystem introduced during the second year and (at the end) the mapping
between the requirements stated in Chapter 2 and the subsystems and prototypes that satisfy
them. Chapter 4 reports the tests plans for the subsystems being part of the prototypes described
in Chapter 3 and the test results grouped by prototypes.

Part II includes the documentation of the prototypes being part of this deliverable and con-
sists of four chapters. Chapter 5 documents the Trustworthy OpenStack Prototype, Chap-
ter 6 documents the TrustedInfrastructure Cloud Prototype, Chapter 7 documents the Cloud-
of-Clouds Prototype, and Chapter 8 documents the additional prototypes being part of this de-
liverable but not demonstrated.

Part III contains Appendix A describing the TClouds Infrastructure for testing and deliv-
ering the subsystems being part of Trustworthy OpenStack prototype, Appendix B reports the
code availability for all subsystems, and Appendix C collects some screenshots of the enhanced
Dashboard of Trustworthy OpenStack.

Deviation from Workplan. This deliverable follows the workplan in the DoW/Annex I apart
from the inclusion of the final API. The latter was finalized through an internal report (R2.4.2.3,
Final API specification), but it includes only few minor updates to the API already reported in
D2.4.1. For this reason it has been decided not to include the API in the present deliverable.

Target Audience. This deliverable aims at researchers and developers of security and man-
agement systems for cloud-computing platforms. The deliverable assumes graduate-level back-
ground knowledge in computer science technology, specifically, in virtual-machine technology,
operating system concepts, security policy and models, and formal languages.

Relation to Other Deliverables. Figure 1.1 illustrates WP2.4 and its relations to other work
packages according to the DoW/Annex I.

The requirements were mainly collected in D1.1.1 [GHSS11], used to define the use cases
reported in D2.4.1. The architecture and the interfaces defined in D2.4.1 are reported back
to and used by WPs 2.1-2.3 to develop their subsystems that will be delivered as D2.1.4,

TClouds D2.4.2 Page 4 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

D2.2.3 [ea11a], and D2.3.3 that become then the input for this work package. The architec-
ture and the interfaces are carried to WPs 3.1 and 3.2 to design their applications through this
deliverable. The first integrated platform, output of this work package through this deliverable,
is the input for WP3.3 to be evaluated and validated.

TClouds D2.4.2 Page 5 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Part I

TClouds Year 2 Demo

TClouds D2.4.2 Page 6 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Chapter 2

TClouds Infrastructure Requirements

The aim of the TClouds project is to provide a secure platform that addresses the security
issues specific for the Cloud environments. In this chapter, we will give an overview of revised
legal and application requirements that are partially addressed by the prototypes developed by
Activity 2 and introduced in Chapter 3.

2.1 Legal Requirements
The nature of laws addressing data protection and data security is rather high level. There
are no laws that pose requirements specifically for cloud computing or virtualisation on Euro-
pean level. European legislation tends to be technology neutral and unspecific. Single statu-
tory norms require a high level objective for data processing. For instance, Article 17 of the
European Data Protection Directive 95/46/EC requires the data controller in Paragraph 1 to
implement

“appropriate technical and organizational measures to protect personal data against
accidental or unlawful destruction or accidental loss, alteration, unauthorized dis-
closure or access, in particular where the processing involves the transmission of
data over a network”.

In Paragraph 2 the chosen processor must provide

“sufficient guarantees in respect of the technical security measures and organi-
zational measures governing the processing to be carried out, and must ensure
compliance with those measures”.

These high level objectives have to be interpreted and applied to specific technical infrastruc-
tures like cloud computing. They need to be addressed at four different levels: organisationally,
contractually, technically on application level and technically on infrastructure level. Only in
combination those four levels of security measures can provide adequate comprehensive so-
lutions. The opportunities and interplay of these layers of measures will be further described
and analyzed in D1.2.3 and D1.2.4. The security objectives that can be derived from European
legislation need to counter the specific risks that cloud computing poses regarding data protec-
tion and privacy. These risks will be identified in detail in D1.2.4 Cloud Computing - Privacy
Risk Assessment. Without prejudice to national laws, there are key areas of privacy risks and
the corresponding security objectives. The TClouds subsystems for a trustworthy internet-scale
computing platform address these legal security objectives mainly on infrastructure level and
a few on application level, so the following requirements focuses only on technical security
measures. Please note that for meeting the identified security objectives there may exist several
suitable measures. Often some of these have to be combined to achieve the best result.

Defined legal requirements are:

TClouds D2.4.2 Page 7 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

LREQ1 - Confidentiality of personal data:
The Cloud Provider must prevent the breach of users’ personal data by securing the in-
frastructure (including the internal network) and ensuring the isolation among different
tenants. Further, he must avoid accesses on data by unauthorized entities through accesses
management or, at least, must record relevant events through an auditable logging mech-
anism (that also logs actions performed by Cloud provider’s employees). Confidentiality
can be achieved also by encrypting data in a way that decryption would be possible only
for customers.

LREQ2 - Availability and Integrity of personal data:
The Cloud Provider must prevent the loss or manipulation of users’ personal data through
Duplication and Distribution (this poses some new risks, please refer to D1.2.3).

LREQ3 - Control of location (country wise) and responsible provider (cloud subcontrac-
tor):
The Cloud Provider must guarantee the applicability of law for processing personal data
through location audit trails for the customer and safeguards that prevent data transfer to
Cloud premises in other locations than those explicitly agreed with the customer.

LREQ4 - Unlinkability and Intervenability:
The Cloud Provider must prevent unauthorized pooling, combining and merging of data
through anonymization, pseudonymisation and splitting of data, through encryption of
personal data (decryption only by customer) or isolation of tenants. The Cloud Provider
must prevent the loss of control of data due to unauthorized copies through the encryption
of data (with decryption by customers) or the effective and complete deletion. He must
also provide to customers extensive control functions to avoid the risk of hindrance of the
data subject’s rights of access, rectification, erasure or blocking of data.

LREQ5 - Transparency for the customer: The Cloud Provider must inform his customers
about the security measures adopted to protect their personal data against loss of control
due to unauthorized copies, manipulation, unauthorized pooling, combining and merging.
The Cloud Provider must also prove that he did not circumvent the security measures
chosen by providing customers with an auditable logging of accesses made by himself
and his employees.

2.2 Application Requirements
This section provides an overview of the security and privacy requirements defined by A3 for
the Healthcare and the Smart Lighting benchmark applications during the first year and revised
during the development of the prototypes during the second year.

2.2.1 Healthcare Application
The TClouds healthcare application scenario focuses on developing a cloud-supported home
healthcare application to provide collaborated services across different health care providers.
The choice of adopting the technologies introduced by Cloud Computing was led especially by
the significant costs required to provide a service accessible by remote users. These costs are
arise either for building and maintaining a dedicated IT infrastructure within the hospital or for

TClouds D2.4.2 Page 8 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

outsourcing this service to an external organization that requires periodic payments regardless
of the resources usage.

Cloud computing provides a solution to the above problem as it combines the outsourcing
model with a pay-per-use model, enabling low entrance barriers and substantial cost reductions
when no services are received or less resource are used. In addition, cloud computing offers
scalability, because it allows to transparently add more resources to the service if there is an
increase in demand, availability and resilience because a typical Cloud infrastructure is built
to support a large number of customers and, finally, increased connectivity through redundant
Internet connections.

However, hosting a service in a Cloud introduces security risks that do not apply to a ded-
icated IT infrastructure. The main objection to the adoption of Cloud Computing (65%) in the
BridgeHead survey was the hospitals’ concerns about the security and availability of healthcare
data given the great number of threats, including privacy breaches and identity theft. Other
objections include cost (26.1%) and a lack of confidence that Cloud offers greater benefits with
respect to local storage media (26.1%). Current Cloud systems suffer from drawbacks and do
not offer the expected Cloud infrastructure characteristics.

In the following, we present the revised security and privacy requirements that must be
satisfied by the infrastructure to run the healthcare application in the Cloud environment.

AHSECREQ1 - Confidentiality of stored and transmitted data:
Prevent that an attacker can retrieve and disclose data from the patient data repository or
information transmitted through the communication channel between the personal front
end and the management application.

AHSECREQ2 - Integrity of stored and transmitted data:
Detect corruption done by an attacker of data stored in the patient data repository or
exchanged through the communication channel between the personal front end and the
management application.

AHSECREQ3 - Integrity of the application:
Detect corruption of the management application done by an attacker to modify its func-
tionality.

AHSECREQ4 - Availability of stored and transmitted data:
Prevent Denial-of-Service attacks to the patient data repository or to the communication
channel between the personal front end and the management application.

AHSECREQ5 - Availability of the application:
Prevent Denial-of-Service attacks to the management application.

AHSECREQ6 - Non repudiation:
Prevent that an attacker denies the fact that he/she has ever performed a specific action
(e.g. he/she made the data available to unauthorized parties).

AHSECREQ7 - Accountability:
Detect actions done by an attacker to provide him/her with privileges for the patient that
should not be assigned to him/her.

AHSECREQ8 - Data source authentication:
The attacker must not be able to run a process that appears as the legitimate management
application.

TClouds D2.4.2 Page 9 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

AHPRIVREQ1 - Unlinkability and Anonymization of data flow:
Use data anonymization/pseudonymization techniques to anonymize/pseudonymize the
documents stored in the data store and enforce process confidentiality (e.g. the state, the
memory and administrative interfaces of the process) by means of strong/secure access
control.

2.2.2 Smart Lighting Application
The purpose of the TClouds Energy application scenario is to develop a Public Light Manage-
ment solution available online for Municipalities and the Utility operators. Traditionally, this
type of solution would be hosted in the Utility Datacenter, mostly due to the required elements
be already in place (D3.2.3 [SV12], Chapter 3).

Within TClouds, this solution is to be hosted initially in a commodity cloud environment,
and then integrated with TClouds security components. In this way, we will investigate not only
the constraints and feasibility of the migration to a cloud environment, but also the cost-benefits
for adopting TClouds.

The following security requirements were specifically collected from “D3.3.3 - Validation
Protocol and Schedule for the Smart Lighting and Home Health Use Cases” ([AN12]), within
the Energy use case context.

ASSECREQ1 - Trustworthy Audit: Smart Lighting actions (application access, create, up-
date, and delete data) must be fully audited, and accessible only to privileged users.

ASSECREQ2 - Trustworthy Infrastructure: The hosting infrastructure must prevent intru-
sions.

ASSECREQ3 - Trustworthy Persistence Engine: The persistence engine must prevent intru-
sions and ensure confidentiality, integrity and availability.

ASSECREQ4 - Resilient: The Smart Lighting System must be fault-tolerant at infrastructure
and at persistence level.

ASSECREQ5 - Trustworthy communications: Communications between a client and the
Smart Lighting System must prevent data from being altered by using adequate security
mechanisms.

ASSECREQ6 - High performance & Scalable: The Smart Lighting System must have near-
realtime performance, and be able to scale on increased load.

TClouds D2.4.2 Page 10 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Chapter 3

Prototypes

This deliverable defines an initial integration of the TClouds subsystems defined in D2.4.1 [ea11c],
Section 4.2.3, toward the final TClouds Platform v2.

We found that the best way to demonstrate progresses made during the second year of the
project is to show the following three integrated prototypes:

1. Trustworthy OpenStack prototype (cf. Section 3.1)

2. TrustedInfrastructure Cloud prototype (cf. Section 3.2)

3. Cloud-of-Clouds prototype (cf. Section 3.3)

The Trustworthy OpenStack prototype as well as the TrustedInfrastructure Cloud prototype
both contribute to the task of building a trusted infrastructure cloud with a different focus and
different trust assumptions, as explained below. The Cloud-of-Clouds prototype is orthogonal
as it is concerned with building middleware for resilience on top of existing cloud infrastruc-
tures. These existing cloud infrastructures can be today’s commercial offerings as well as the
Trustworthy OpenStack cloud and the TrustedInfrastructure cloud. Diversity of the cloud imple-
mentations is a desirable property for the Cloud-of-Clouds approach to achieve fault-tolerance
against failures of a complete single cloud.

The Trustworthy OpenStack prototype enhances trustworthiness, security, and resilience
of the open source framework OpenStack which operates on legacy operating systems. The
TrustedInfrastructure cloud is rigorously building on top of Trusted Computing technologies
and is operating on top of a Security Kernel. The focus of the TrustedInfrastructure cloud is to
provide a managed IT infrastructure where administration is completely controlled and secured
by the infrastructure and no manual administrator with elevated privileges is necessary. In this
model a remote administrator of the cloud infrastructure has no longer to be trusted.

The integration effort among TClouds subsystems can be pushed further by combining the
prototypes to support a mixed scenario that includes both private and public clouds. In par-
ticular, the private cloud could be a single trusted cloud (either Trustworthy OpenStack or
TrustedInfrastructure Cloud), e.g., devoted to computation, while the public clouds could be
commodity untrusted clouds, e.g., devoted to mass storage, pooled to form a service whose
resilience is guaranteed through the Cloud-of-Clouds middleware.

Figure 3.1 shows such a high-level scenario, which is the object of the demonstration for
the second year of the TClouds project: in particular, Trustworthy OpenStack has been cho-
sen for the setup of the overall scenario, while the features of TrustedInfrastructure Cloud are
demonstrated by a different setup.

This high-level scenario is only one possible option; indeed, the TClouds prototypes can be
combined in similar ways to support different scenarios: more in general Trustworthy Open-
Stack and TrustedInfrastructure Cloud are two different implementations of a TClouds native

TClouds D2.4.2 Page 11 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

cloud, that can be either private or public while Cloud-of-Clouds prototype can run within and
use whatever clouds, TClouds native and/or commodity clouds.

Table 3.1 lists all subsystems of D2.4.1 [ea11c], the prototype they are included in, or
whether their integration is planned for the third year of the project. A new subsystem has
been added to the list, the Remote Attestation Service, since being introduced during the sec-
ond year.

This chapter is organized as follows: Sections 3.1-3.2-3.3 describe the prototypes that sup-
port the overall scenario and that will be demonstrated: for each prototype an architecture
overview, the definition of an abstract API, and the demonstration workflow are explained.
The abstract API lists the abstract functions that represent the interactions between components
(shown as arrows among them), within the subsystems in the pictures of the demo workflow.
Section 3.4 describes prototypes that are released in the second year but that are not part of
the demonstration. Finally, Section 3.5 reports the mapping between the legal and application
requirements introduced in Chapter 2 and the TClouds subsystems and prototypes.

TClouds subsystem TClouds prototype
Resource-efficient BFT (CheapBFT) Trustworthy OpenStack (Section 3.1)
Simple Key/Value Store (memcached) [Year 3 prototype]
Secure Block Storage (SBS) (*) Trustworthy OpenStack (Section 3.1)
Secure VM Instances (*) Trustworthy OpenStack (Section 3.1)
TrustedServer TrustedInfrastructure Cloud (Section 3.2)
Log Service Trustworthy OpenStack (Section 3.1)
State Machine Replication (BFT-SMaRt) Cloud-of-Clouds (Section 3.3)
Fault-tolerant Workflow Execution [Year 3 prototype]
Resilient Object Storage Cloud-of-Clouds (Section 3.3)
Confidentiality Proxy for S3 [Year 3 prototype]
Access Control as a Service (ACaaS) Trustworthy OpenStack (Section 3.1)
TrustedObjects Manager (TOM) TrustedInfrastructure Cloud (Section 3.2)
Trusted Management Channel TrustedInfrastructure Cloud (Section 3.2)
Ontology-based Reasoner libvirt: Standalone (”Other prototypes”,

Section 3.4);
Other components: [Year 3 prototype]

Automated Validation (SAVE) Standalone (see ”Other prototypes”,
Section 3.4); already presented in Year 1

Remote Attestation Service [New Year 2] Trustworthy OpenStack (Section 3.1)

(*) Secure Block Storage (SBS) and Secure VM Instances during the second year have been
combined to form Cryptography as a Service.

Table 3.1: List of TClouds subsystems and mapping to prototypes

3.1 Trustworthy OpenStack Prototype
In this section we describe the demonstration prototype based on TClouds enhancements – i.e.
a set of security extensions – to OpenStack (Trustworthy OpenStack), an overview including
the architecture showing the involved subsystems, and the demonstration storyline.

TClouds D2.4.2 Page 12 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

C
lo

u
d

 In
te

rfa
c
e

Start
Trustworthy OpenStack demo

[OR TrustedInfrastructure demo]

Cloud Node 2

Operating System

Trustworthy OpenStack
[OR TrustedInfrastructure]

Cloud-of-Clouds demo VM

HardwareTPM

Trustworthy OpenStack
[OR TrustedInfrastructure]

Cloud Node 0

3.1 [OR 3.2]

Private Cloud

CoC Middleware
(C2FS)

Public
Cloud

Public
Cloud

Public
Cloud

Public
Cloud

3.3

Start CoC demo

Cloud
Node 1

Cloud
Node N

... ...

Figure 3.1: Prototypes demo architecture and scenario

TClouds D2.4.2 Page 13 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

3.1.1 Overview
Figure 3.2 illustrates the demo architecture showing various TClouds subsystems enhancing the
security of OpenStack in various dimensions:

• Trust / Integrity:

– The Remote Attestation Service enables users to trust that their virtual machines
are actually deployed on computing nodes that satisfy their integrity requirements.
Based on Trusted Computing technologies, e.g., a Trusted Platform Module, the re-
mote attestation service verifies the configuration of the computing nodes and pro-
vides them for example to the cloud scheduler.

– The enhanced scheduler (ACaaS) matches user requirements (e.g., location restric-
tions or white lists of measurements for deploying a VM) on the physical properties
of computing nodes. The remote attestation service on the computing nodes is em-
ployed by the scheduler to query the computing nodes in a trustworthy way.

• Confidentiality: The Secure Block Storage and Secure VM Images subsystems provide
disk encryption for volumes attached to virtual machines, as well as encryption of the VM
images themselves. These subsystems offer an API to cloud users to securely provide the
encryption keys without giving the cloud provider access to them. This is an important
improvement over current encryption schemes where the keys are under control of the
cloud provider.

• Resilience: The CheapBFT subsystem provides fault tolerance to the log service. With
special FPGA hardware, this solution can tolerate byzantine (i.e. arbitrary) failure modes
of a certain amount of computing nodes. While traditional solutions require 3f +1 repli-
cas to tolerate f faults (i.e. 4 machines for 1 fault), the CheapBFT achieves the same with
just f + 1 active replicas backed up by f passive ones.

• Audit: The Log Service is used to store logs of computing nodes selected by the Cloud
Scheduler for VM deployment. It ensures confidentiality and integrity of the logs.

Note that the security improvements are conceived by the synergy of the careful selection
and integration of TCloud subsystems, e.g.:

• The Remote Attestation Service and ACaaS together ensure that the selection of comput-
ing nodes matches the users requirements. Together with the Log Service the scheduling
decisions are securely stored for audit.

• The integration of the Log Service with CheapBFT provides a fault tolerant implementa-
tion of the Log Service within the cloud infrastructure.

• The combination of Secure Block Storage with the ACaaS and Remote Attestation en-
sures that encrypted images will only be deployed on computing nodes that properly
secure the encryption keys.

The result of the integration of such subsystems is Trustworthy OpenStack, i.e. the stan-
dard OpenStack enhanced with the following security extensions: Secure Logging, Advanced
VM Scheduling, Cloud Nodes Verification/Remote Attestation, and VM Images Transparent
Decryption (see Figure 3.2).

TClouds D2.4.2 Page 14 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

C
lo

u
d

 In
te

rfa
c
e

CheapBFT Node 1

Log Storage
Replica

CASH

Log
Console

ACaaS demo

Remote Attestation
Service demo

Secure Block
Storage demo

Cloud Node 3 (Secure Block Storage)

OpenStack
Nova

Dom0

Compute

D
o
m

C

D
o
m

T

Cloud Node 1

Operating System

OpenStack Nova

Virtual
Machine

Compute

HardwareTPM

OpenStack

ACaaSScheduler

Log Service
Module

Cloud Node 0

LogService

Xen HypervisorAccess Control

HardwareTPM

Cloud Node 2

Operating System

OpenStack Nova

Virtual
Machine

Compute

HardwareTPM

CheapBFT Node 2

Log Storage
Replica

CASH

CheapBFT Node 3

Log Storage
Replica

CASH

3.1.2.1

3.1.2.2

3.1.2.3

LogService demo3.1.2.4

Resilient Log demo3.1.2.5

Secure Logging

Advanced VM
Scheduling

Cloud Nodes
Verification

Log Resiliency

Remote Attestation

ACaaS

Remote
Attestation

Service
VM Images
Transparent
Decryption

Security
Extensions
Management

Trustworthy OpenStack Cloud

D
o
m

U

Figure 3.2: The Trustworthy OpenStack demo architecture

TClouds D2.4.2 Page 15 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

In the following sections, the commands to run the demo according to the storyline have to
be given on command line. However the standard OpenStack dashboard has been enhanced to
support the setting of for three Security Extensions (Secure Logging, Advanced VM Schedul-
ing, Cloud Nodes Verification/Remote Attestation). Appendix C collects some screenshot of
the TClouds Trustworthy OpenStack Dashboard.

3.1.2 Demo Storyline
We exercise the different subsystems of the demo architecture by a executing a number of use
cases.

3.1.2.1 Remote Attestation Demo

Architecture Overview. The Remote Attestation Service is a Cloud subsystem responsible to
assess the integrity of the nodes in the Cloud infrastructure through techniques introduced by
the Trusted Computing technology.

This service gives significant advantages in the Cloud environment. First, it allows Cloud
users to deploy their virtual machines in a physical host that satisfies the desired security re-
quirements – represented by five integrity levels. Requiring a higher level will give more confi-
dence and trust into the used physical hosts.

Secondly, this service allows Cloud Administrators to monitor the status of the nodes in
an efficient way and to take appropriate countermeasures once a compromised host has been
detected. For instance, administrators can isolate the host such that it can not attack other nodes
of the infrastructure.

The Remote Attestation Service consists of two main components:

• OpenAttestation: this framework, developed by Intel, enables the OpenStack Nova
Scheduler to retrieve and verify the integrity of Cloud nodes such that the former can
select a host that meets the users requirements. The framework handles the Remote At-
testation protocol through two submodules that act as the endpoints: HisClient collects
the measurements done by the attesting platform, generates and sends the integrity report
to the verifier; HisAppraiser verifies the integrity report received from a Cloud node and
assigns to the latter an integrity level.

• RA Verifier: this component analyses the measurements performed by the Integrity
Measurement Architecture (IMA), a subsystem of the Linux Kernel, running on Cloud
nodes. In particular, it verifies whether the digest of binary executables and shared li-
braries are present in a database of known values and whether the packages these files
belong to are up to date. The first check allows to detect possibly malicious software that
may have been executed before verification, while the second check allows to identify
loaded applications with known vulnerabilities that may be exploited by an attacker.

Abstract API

Result ⇐ RegisterInstanceType()
Register a new virtual machine instance type.

Result ⇐ StartVM()
Start a new virtual machine.

TClouds D2.4.2 Page 16 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

HostsList ⇐ GetAvailableHosts()
Return the list of physical hosts with enough resources to start a new virtual machine.

IntegrityLevel ⇐ GetHostIntegrityLevel()
Remotely attest a Cloud node and return its current integrity level. Defined levels are:

• l0 boot untrusted: invalid integrity report;

• l1 ima digest not found: unknown digests;

• l2 ima pkg security updates: packages with security vulnerabilities;

• l3 ima pkg not security updates: packages with other vulnerabilities;

• l4 ima all ok: all digests recognized and packages up to date.

IntegrityReport ⇐ GetIntegrityReport()
Generate a new integrity report and return it to the caller.

VerificationResult ⇐ VerifyIntegrityReport()
Verify the IMA measurements and return the result (i.e the number of unknown digests
and the number of packages with security and/or other vulnerabilities).

Boolean ⇐ VerifyIntegrityRequirements()
Return true if the current integrity level of the Cloud node matches the one specified in
the instance type. Otherwise, return false.

Result ⇐ DeployVM()
Deploy a new virtual machine on the selected Cloud node.

Demo workflow. The Figure 3.3 shows the interactions that occur during the definition of a
new instance type1 and during the deployment of a new virtual machine. In the following, we
refer to Openstack Nova as the component that performs the above tasks and we mention the
submodules Scheduler and Compute only when they are relevant.

Openstack Nova will take advantage of the security logging capability, offered by LogSer-
vice, by logging the events related to the selection of the physical host depending on user’s
requirements, so that the logging events can be retrieved at later time by an auditor.

During the demo, we will perform the following steps:

(A) Register a new VM instance type (integrity level: l4 ima all ok)
A Cloud user registers a new instance type by prompting the following commands on the
Cloud interface:

$ nova-manage instance type create --name=m1.tiny trust lvl 4 --memory=64 --cpu=1
--flavor=6 --root gb=0 --ephemeral gb=0 --swap=0
$ nova-manage instance type extra specs create --name=m1.tiny trust lvl 4
--extra spec key=trusted host --extra spec value=l4 ima all ok

The registration is performed by the RegisterInstanceType() method of Open-
Stack Nova, which stores the parameters of the new instance type in a persistent database.

1An instance type represents the virtual hardware that an instance will be provided with, i.e. the amount of
RAM, the number of CPUs and the disk size that will be allocated for an instance; many instance types (also
known as flavors) can be defined and named with a label.

TClouds D2.4.2 Page 17 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

C
lo

u
d

 In
te

rfa
c
e

HisAppraiser

OpenStack
Nova

Cloud Node 0

Scheduler

Register a new VM
instance type

(integrity level:
l4_ima_all_ok)

Start a VM with the
new instance type

9B: Verify
 Integrity
 Requirements()

1A: RegisterInstanceType()

2A: Result

1B: StartVM()

13B: Result

3B: GetHost
 IntegrityLevel()

8B: IntegrityLevel

2B: GetAvailableHosts()

A

B

4B: Get
 Integrity
 Report()

Cloud
Node 1

Operating System (IMA)
Downgrade a package

OpenStack
Nova

C

HisClient

Virtual
Machine

RA Verifier

5B: Integrity
 Report

6B: Verify
 Integrity
 Report()

7B: Verification
 Result()

Compute

11B: DeployVM()12B: Result

10B: Log()

Log Service
Module

LogService

Execute an application
of the downgraded package

D

Register a new VM
instance type

(integrity level:
l3_ima_pkg_not_security_updates)

Start a VM with the
newest instance type

G

Start another VM with
 the same instance type

E

F

HardwareTPM

Figure 3.3: Remote Attestation Service demo workflow

(B) Start a VM with the newly created instance type
A Cloud user starts a new virtual machine by executing the command:

nova boot --image <image-uuid> --flavor 6 demovm

The StartVM() method of OpenStack Nova is implemented as follows:

• OpenStack Nova Scheduler builds the list of Cloud nodes with available resources
by executing GetAvailableHosts();

• For each node, OpenStack Nova Scheduler requests to OpenAttestation the current
integrity level by invoking GetHostIntegrityLevel() and stops once it finds
a physical host that meets the user’s integrity requirements;

• HisAppraiser contacts the Cloud node and requests it to generate and send a new
integrity report by invoking the GetIntegrityReport() method of HisClient;

• HisAppraiser calls the VerifyIntegrityReport() method of RA Verifier in
order to verify the integrity report received. Then, it determines the current integrity
level of the node depending on the verification result and returns it back to Open-
Stack Nova Scheduler;

• OpenStack Nova Scheduler verifies whether the attested Cloud node satisfies the
user’s integrity requirements by invoking VerifyIntegrityRequirements().
This function will return a positive result;

TClouds D2.4.2 Page 18 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

• OpenStack Nova Scheduler creates a log with the name of the physical host being
analyzed and the result of the selection process and sends it to LogService by invok-
ing the method Log();

• OpenStack Nova Scheduler deploys the new virtual machine on the verified Cloud
node by calling the DeployVM() method of OpenStack Nova Compute;

• OpenStack Nova returns the result of the requested operation to the Cloud user.

(C) Downgrade a package in the Cloud node
A Cloud operator performs a downgrade of an installed package in the Cloud node by
executing:

$ apt-get install <package-name>=<package-version-number>

(D) Execute a binary file of the downgraded package
A Cloud operator executes an application from the downgraded package by prompting
the command in the Cloud node:

$ <binary name>

(E) Start another VM with the same instance type
This step will fail because there are no Cloud nodes available that satisfy the user’s in-
tegrity requirements.

(F) Register a new VM instance type (integrity level: l3 ima pkg not security updates)
A Cloud user repeats the step (A) and creates a new instance type with a lower integrity
level (l3 ima pkg not security updates).

(G) Start a VM with the newest instance type
This operation now will succeed, because OpenStack Nova Scheduler finds a node that
satisfies the user’s integrity requirements.

3.1.2.2 Access Control as a Service (ACaaS) Demo

Architecture Overview. ACaaS is a subsystem ensuring that user VMs are only executed on
hosts matching their security requirements. It is composed of three components: AcaaSSched-
uler, Requirements Service, and Security Properties Service. Requirements Service and Security
Properties Service implement interfaces for users and administrators to setup scheduling re-
quirements for VMs and security properties for compute nodes. This information is maintained
by these services in the nova-db and is retrieved by the AcaaSScheduler when the latter receives
a request to instantiate a new VM.

OpenStack Scheduler is enhanced by ACaaSScheduler to achieve ACaaS-based VM schedul-
ing. It can deploy VMs with specific security requirements on compute nodes with targeted se-
curity properties. Every time a request for instantiating a VM is received, ACaaSScheduler first
examines whether scheduling requirements are specified. Then, it iterates over all connected
hosts and selects only the one with properties that satisfy the requirements for hosting the VM.
In supporting this advanced scheduling, OpenStack Nova client interfaces are also modified.

To implement the requirements and security properties management facilities, the core
database of OpenStack is modified. A table named security requirements is added to

TClouds D2.4.2 Page 19 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

manage user requirements. Moreover, a new field named security properties is added to
the table compute nodes to record the properties of the compute node. These properties are
represented by the name of requirements defined in the security requirements table, and
a corresponding value. When a user is instantiating a VM, a requirement ID can be specified,
along with the expected value. Only the hosts with the same value of the specified requirement
ID can be added to the scheduling list for the VM.

An advanced scheduling criterion called exclude-user is also implemented by the ACaaSS-
cheduler. Users can specify that their VMs can only be initiated on the hosts that are not run-
ning VMs of other particular users. In this case, a special requirement exclude-user (with an
alphabetic ID x) is predefined. Upon receiving this requirement, ACaaSScheduler performs a
search in the database through the new function HostGetAllByUserInstance(), introduced
in the next paragraph, and fetches only the hosts without VMs from the specified user.

Further, the expected states of a host can be also defined as a scheduling criterion in the
ACaaS prototype. Users can request ACaaSScheduler to deploy their VMs only on hosts with
specific platform configurations (i.e. trusted properties). This is implemented by defining a
new table, named white lists, whose entries contain an ID and the location of the target
white-list file. These entries can be referenced by records in the compute nodes table so that
it is possible to associate a compute node with a set of desired trusted properties. From this
point, this node will be attested to by the management node, according to Trusted Computing
specifications, against the white-list identified by the white-list ID. If the management node
detects any violation during the attestation, it will re-initialize the compute node or will remove
it from the scheduling pool. More details about the infrastructure that performs these tasks can
be found in the D2.3.2 [ea12c] deliverable Chapter 9.

Abstract API

Result ⇐ ReqCreate()
Create a requirement and return the requirement ID.

None ⇐ ReqUpdate()
Update a requirement.

None ⇐ ReqRemove()
Remove a requirement.

ReqName ⇐ ReqGet()
Return a requirement with specified ID.

Result ⇐ ReqGetAll()
List all requirements.

SecurityPropertiesList ⇐ SecurityPropertiesGet()
Fetch all security properties associated to a host.

None ⇐ SecurityPropertiesUpdate()
Add or modify security properties of a host.

None ⇐ SecurityPropertiesRemove()
Remove security properties of a host.

TClouds D2.4.2 Page 20 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

HostsList ⇐ HostGetAllByUserInstance()
Get all the hosts deployed with VM instances of a specified user.

Result ⇐ InstantiateVMWithReqs()
Initiate a VM on a host satisfying specified requirements.

C
lo

u
d

 In
te

rfa
c
e

OpenStack
Nova

Cloud Node 0

ACaaSScheduler

Create new
requirement

named 'location'

Add the property
'location'='uk'

to Cloud Node 1

A

B

Cloud Node 1

Operating System

OpenStack Nova

Virtual
Machine

(DEMO_USER1)

Requirements
Service

Compute

6C: DeployVM()

Log Service
Module

Instantiate a VM with
location requirement

set to 'uk'

C

Security
Properties

Service

1A: ReqCreate()

2A: Result

1B: Security
 Properties
 Update()

2B: Result

1C: Instantiate
 VMWithReqs()

2C/2E: ReqGet()

3C/3E: ReqName

4C: Security
 PropertiesGet()

5C: Security
 Properties
 List

7C: Result

Cloud Node 2

Operating System

OpenStack Nova

Virtual
Machine

(DEMO_USER2)

Compute

Instantiate a VM with
one 'exclude-user'

requirement

E

Instantiate a VM with
location requirement

set to 'us'

D

1E: InstantiateVMWithReqs()

8C: Result

8E: Result

6E: DeployVM() 7E: Result

4E: HostGetAll
 ByUserInstance()

5E: HostsList

Instantiate a VM with
multiple 'exclude-user'

requirements

F

HardwareTPM HardwareTPM

Figure 3.4: ACaaS demo workflow

Demo Workflow. At least two machines, the Cloud Node 1 (HOST1) and the Cloud Node 2
(HOST2) are needed for the demonstration. Four users have been configured, one with admin-
istration privileges (DEMO ADMIN), and three others (DEMO USER[1-3]).

Figure 3.4 depicts each step of the demo and the interactions among the different ACaaS
entities. Steps (A) to (D) show the instantiation of a VM with specified requirements on
location. Security requirements and platform properties should be set up correctly in ad-
vance. Steps (E) and (F) show an application of the show the ’exclude-user’ requirement.
The latter can be specified using the characters ’x’ or ’X’ when specifying the REQ ID. This

TClouds D2.4.2 Page 21 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

requirement specifies that the VM can only be deployed on the compute host with NO other
VMs belonging to the users with specified USER IDs (the DEMO USER1 in this case).

To further increase the reliability and trustworthiness of this service, it can be combined
with the secure log service.

(A) Create new requirement named ’location’
With the following command executed by the user DEMO ADMIN, a new entry with the
value location is created in the security requirements table.

$ nova-manage requirement create --requirement=’location’

(B) Add the property ’location’ = ’uk’ to HOST1
With the following command executed by the user DEMO ADMIN, the security properties

field of HOST1 in the table compute nodes is updated by setting the location prop-
erty to ’uk’.

$ nova-manage host add properties --host=HOST1 --properties="’location’: ’uk’"

(C) Instantiate a VM with location requirement set to ’uk’
The user DEMO USER1 initiates a VM with the ’location’ = ’uk’ requirement and
displays the log to show that the VM has been successfully instantiated on HOST1 (As-
suming the requirement ID for ’location’ is 1)2.

After prompting the following command, ACaaSScheduler first fetches the requirement
object stored in the database with the requirement ID for ’location’. It then fetches
the list of hosts from the compute nodes table with the property ’location’ set. And
finally, it iterates every host in the list, and returns the most suitable one according to
other scheduling criteria (in regarding only to ACaaSScheduler, the first one is returned).

$ nova boot --flavor m1.tiny --image IMAGE UUID --req="1:’uk’" DEMO IMAGE

(D) Instantiate a VM with location requirement set to ’us’
The user DEMO USER1 initiates a VM with the ’location’ = ’us’ requirements, and
displays the log to show that the VM instantiation has failed (Assuming the requirement
ID for ’location’ is 1).

ACaaSScheduler iterates the same procedure as the previous step, and returns NONE as
the host scheduling candidate. In this case, the VM is not deployed, and the failed-in-
deployment event is recorded in the log.

$ nova boot --flavor m1.tiny --image IMAGE UUID --req="1:’us’" DEMO IMAGE

(E) Deploy a VM with one exclude-user requirement
The user DEMO USER2 initiates a VM with the ’exclude-user’ = ’DEMO USER1’
requirement and displays the log to show that the VM has been successfully instantiated
on HOST2.

2Each node requirement specified using ACaaS is assigned an IDentifier that is then used to select such require-
ment and to set a value for it.

TClouds D2.4.2 Page 22 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

With this command, ACaaSScheduler fetches only the hosts without VMs belonging to
DEMO USER1, as discussed above, and schedules the VM to the first host of the list.
In this case, as HOST1 is deployed with a VM of DEMO USER1, the new VM will be
instantiated on HOST2.

$ nova boot --flavor m1.tiny --image IMAGE UUID --req="’x’:[’DEMO USER1’]"
DEMO IMAGE

(F) Deploy a VM with multiple exclude-user requirements
The user DEMO USER3 initiates a VM with the ’exclude-user’ = ’DEMO USER1,

DEMO USER2’ requirements and displays the log to show that the VM instantiation was
failed.

ACaaSScheduler proceeds the same procedure as the above step. However, as both the
hosts are deployed with VMs belonging to either DEMO USER1 or DEMO USER2, it
returns NONE as the host scheduling candidate. In this case, the VM is not deployed and
the failed-in-deployment event is recorded in the log.

$nova boot --flavor m1.tiny --image IMAGE UUID --req="’x’:[’DEMO USER1’,
’DEMO USER2’]" DEMO IMAGE

3.1.2.3 Secure Block Storage (SBS) and Secure VM Images Demo
(also known as Cryptography-as-a-Service)

Architecture Overview. The Secure Block Storage (SBS) component enables a VM to use
an encrypted storage device transparently as if it were plaintext. Due to the modular design it
builds the foundation for Secure VM Images, the ability to even boot from encrypted devices
while still preserving confidentiality and integrity against the Management Domain (i.e. VM)
and hence the cloud personnel and other customers. SBS consists of the following modules (see
also Figure 3.5):

Hypervisor

Dom0 DomT DomU DomC

TPM

Access
Control

Key

Figure 3.5: SBS Modules Overview

• The secure hypervisor

• A de-privileged Management Domain (Dom0)

• A minimal TCB VM builder and TPM management domain (DomT)

• The cryptographic Micro-VM (DomC)

• The actual customer VM (DomU)

TClouds D2.4.2 Page 23 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Abstract API

PubKey ⇐ GetNodePubKey()
This function instructs DomT to fetch the public key of the node from the TPM and
returns it to the user.

Result ⇐ StoreEncImageAndEncKey()
This function, that will be implemented in OpenStack, will store the encrypted image and
the encrypted key in the Cloud storage.

(EncImage, EncKey) ⇐ GetEncImageAndEncKey()
This function, that will be implemented in OpenStack, will fetch the encrypted image and
the encrypted key from the Cloud storage and will copy them to the target Cloud node.

Key ⇐ DecryptEncKey()
This function will decrypt the symmetric key using the TPM.

Result ⇐ PutKey()
This function will put the decrypted symmetric key on DomC.

Result ⇐ ScheduleDomU()
This function will start DomU.

Result ⇐ ScheduleDomC()
This function will start DomC.

Result ⇐ StartVM()
Start a new virtual machine.

Result ⇐ DeployVM()
Deploy a new virtual machine on the selected Cloud node.

Demo Workflow.

(A) Import Certified Key and Encrypt Image

The cloud consumer first imports the key of the node on which to run his VM:

$ deployer --import-node node keyfile.asc

This commands imports a certified binding key (see Section 3.3.2 of deliverable D2.1.2
[ea12b]), which is a public key of the node which includes a certificate by the hardware
trust anchor which vouches that the secret part of this key can only be used in a trusted
configuration. The tool verifies the certificate and also verifies that the ‘trusted config-
uration’ to which the key is bound, matches a list of known software hashes which are
deemed trustworthy by the consumer.

The consumer then encrypts the VM of choice for this node.

$ deployer --encrypt my linux.img --outfile encr img.enc --payload secrets.enc

TClouds D2.4.2 Page 24 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

C
lo

u
d

 In
te

rfa
c
e

OpenStack
Nova

Cloud Node 0

Scheduler

Get the public key
of Cloud Node 1

Encrypt VM image and
symmetric key

1A: GetNodePubKey()

4A: NodePubKey

2C: Result

1C: StoreEncImage
 AndEncKey()

A

B

Cloud
Node 3

Hardware

OpenStack
Nova

Dom0

Compute

2D: DeployVM()

5D: Decrypt
 EncKey()

Log Service
Module

Launch a VM from
encrypted image

Upload encrypted image
and encrypted key

C

D

Xen Hypervisor

TPM

Access Control

DomC

Key

D
o
m

T

2A: GetNode
 PubKey()

3A: Node
 PubKey

1D: StartVM()

12D: Result

OpenStack
Glance

11D: Result

3D: GetEncImage
 AndEncKey()

4D: EncImage
 AndEncKey

6D: Key

9D: PutKey()

10D: Result

11D: ScheduleDomU()

12D: Result

D
o
m

U

7D: ScheduleDomC()

8D: Result

Figure 3.6: Secure Block Storage demo workflow

This operation will first encrypt the consumer’s VM image with a symmetric key k (stor-
ing the encrypted image to encr img.enc), after which k itself is encrypted asymmet-
rically with the public key of the cloud node which has been imported earlier in this step
(storing it in secrets.enc).

(B) Uploading Encrypted VM Image
Both encrypted payloads, the key for use in DomC and the encrypted VM image are
uploaded to the cloud and stored as usual on untrusted storage.

(C) Launch encrypted VM image
After the encrypted VM image is deployed in the cloud, the cloud administrator has to
instruct Xen it wants to boot this customer’s VM. In a standard Xen VM configuration
file, extra information is added to tell the domain builder where the encrypted VM and
payload are stored. For instance:

TClouds D2.4.2 Page 25 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

cat >> /etc/xen/encrypted vm.cfg << EOF
domc enabled = ’1’
image file = ’/var/lib/xen/images/customer 1.enc’
payload file = ’/var/lib/xen/domc/payload customer 1.enc’
EOF

The actual starting of the VM takes place using the following command.

xl create -c /etc/xen/encrypted vm.cfg

The domain builder (DomT) takes care of the whole start VM operation in automatic
fashion. DomT uses the TPM to decrypt the customer’s key and puts it in his DomC
(C1). Before DomU can be started, to be accessed the encrypted storage image must
be decrypted by DomC on-the-fly (C2) using the user-provided key in DomC. After this
transparent decryption/encryption is set up for the storage device, DomU is is put into the
VCPU scheduler of Xen in order to make it runnable (C3).

3.1.2.4 LogService Demo

Architecture Overview. The LogService is the component that manages secure logging events
in the TClouds cloud infrastructure. Within LogService, four components are defined:

• The Log Service Module is a software module linked to Cloud Components and allowing
them to produce log entries using the secure logging scheme proposed by Schneier and
Kelsey in [SK99] and to forward them to the Log Storage.

• The Log Storage is the component that stores the log entries produced by Cloud Compo-
nents and groups them by logging session.

• The Log Core is a trusted party involved in the initialisation, closure, and verification of
the logging sessions.

• The Log Console is a log management console which can be used by an external entity
(auditor or user) to verify and retrieve logs.

The main building block of the LogService is the libsklog library. This library is used
by the Cloud Component and the Log Core for the initialization of a new logging session, by
the Cloud Component for the creation of the log entries using the secure scheme, and finally by
the Log Console and the Log Core during the verification process.

Abstract API

InitResult ⇐ InitLog()
Initialize a new logging session on the Log Core.

None ⇐ LogEvent()
Log events on the Log Storage and bind them to the opened session.

SessionsList ⇐ RetrieveSessions()
Retrieve all the logging sessions opened by Cloud Components.

TClouds D2.4.2 Page 26 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

(VerificationResult, TemporaryURL) ⇐ VerifySession()
Verify the integrity of the selected logging session and return a temporary URL of its
dump.

LogsList ⇐ RetrieveLogs()
Return the logs that are part of the selected logging session.

VerificationResult ⇐ VerifyLogsList()
Verify the integrity of the logs using the Schneier and Kelsey scheme and create a logs
dump.

VerifiedLogsDump ⇐ DownloadLogsDump()
Download the logs dump from the temporary URL.

Demo Workflow. Figure 3.7 depicts each step of the demo and the interactions among the
different LogService components. This workflow may be executed by an external entity, in this
case the Auditor, in order to verify whether a specific operation (e.g., a user request) has been
performed correctly by the cloud infrastructure. Before executing the workflow, the Cloud
Component requests at the Log Core the initialization of a new logging session by calling
InitLog() and starts saving log entries by invoking LogEvent().

Log
Console

C
lo

u
d

 In
te

rfa
c
e

Log Service Module

Cloud Component
(nova-scheduler)

Log Storage

Log Core

Cloud Node 0

1: InitLog()

2: InitResult

3: LogEvent()

1A: RetrieveSessions()

2A: SessionsList

1B: VerifySession()

5B: VerificationResult +
 Temporary URL

2B: RetrieveLogs()

3B: LogsList

4B: VerifyLogsList()

1C: DownloadLogsDump()

2C: VerifiedLogsDump

Retrieve logging
sessions

A

Verify integrity
of a logging
session

B

Download
verified logs
dump

C

Verify integrity
of a logging
session
(see step B)

F

Analyze Remote
Attestation
Service logs

D

Compromise
Log StorageE

Figure 3.7: LogService demo workflow

(A) Retrieve logging sessions
Through the Log Console The Auditor requests the Log Core the IDs of the already ini-
tialized logging sessions by invoking RetrieveSessions().

(B) Verify integrity of a logging session
Through the Log Console the Auditor requests the Log Core the verification of a logging

TClouds D2.4.2 Page 27 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

session by calling VerifySession() and by supplying its ID. Then, the Log Core
retrieves the logs from the Log Storage by calling RetrieveLogs(), verifies them by
invoking VerifyLogsList() and generates a verified logs dump. Finally, Log Core
forwards to the Auditor the verification result and a temporary URL pointing to the dump.

(C) Download verified logs dump
The Auditor downloads from the temporary URL the dump of verified logs by calling
DownloadLogsDump().

(D) Analyze Remote Attestation Service logs
The Auditor analyses the correctness of the operation previously executed during the
Remote Attestation Demo (see Section ??) at step B.

(E) Compromise Log Storage
The logs collected on the Log Storage are tampered in order to simulate a corruption.

(F) Verify integrity of a logging session (after the attack)
The step B is repeated in order to show that the LogService successfully detects the com-
promised logs.

3.1.2.5 Resilient LogService Demo

Architecture Overview. The LogService component described so far is able to detect com-
promised logs or, more precisely, logs corrupted in any way. Although this ensures the integrity
of the log service, this is obtained at the cost of availability. If the log storage becomes faulty,
due to deliberate attacks, careless use, hardware errors, or other reasons, the service will not be
able to provide a correct log file.

This problem can be tackled by replicating the storage. Considering the requirement of guar-
anteeing integrity in the presence of arbitrary faults, the state machine replication scheme for
Byzantine Fault Tolerance (BFT) would be a suitable solution. However, this scheme normally
entails very high resource consumption because 3f + 1 actively operating replicas are required
to tolerate f faults. Therefore, we employ CheapBFT as basis for the resilient implementation
of the LogService component. CheapBFT combines the active and passive replication schemes
and utilizes a trusted FPGA-based submodule in order to lower the number of actively involved
replicas to f + 1 in normal, error-free operation.

The resilient Log Service variant comprises the following main modules:

• A CheapBFT Replica is an instance of the CheapBFT server module that cooperates with
other replicas to provide a platform for a Byzantine fault-tolerant service implementation.
A CheapBFT replica can be either active or passive. Active replicas actually process and
respond requests from clients whereas passive ones only update their state according to
state changes determined by their active counterparts.

• CASH is a trusted FPGA-based submodule used by the CheapBFT replicas to sign and
verify messages. Broadly speaking, it implements a trusted counter and is only subject to
crash faults.

• CheapBFT Proxy is the software module which is used by clients to communicate with a
CheapBFT replica group.

TClouds D2.4.2 Page 28 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

• The Log Storage provides the same functionality as described in Section 3.1.2.4, although
it was adapted to run on top of the platform created by the CheapBFT replicas.

• The Log Storage Proxy sends requests to and receives replies from the Log Storage by
utilizing the CheapBFT Proxy.

Furthermore, besides the Log Core and the Log Service module (see Section 3.1.2.4) we use
one additional module for demonstration purposes:

• The Log Generator corresponds to the Cloud Component used in the LogService demo.
Contrary to it, the Log Generator constantly produces log events which are stored by
means of the (resilient) Log Storage.

Abstract API

None ⇐ StartGenLogs()
Instructs the Log Generator to start constantly generating log events.

None ⇐ StopGenLogs()
Instructs the Log Generator to stop generating of log events.

CmdResult ⇐ Invoke(<cmd>)
Send a command <cmd> to the service based on CheapBFT, that is the Log Storage.
Here, <cmd> can be either store to store a log event or retrieve to retrieve the log
file.

CmdResult, StateChange ⇐ ExecuteCommand()
Execute a command sent by a client and calculate the result as well as the service state
modification.

None ⇐ UpdateSrvState()
Apply a service state modification calculated by an active replica.

SrvState ⇐ GetSrvState()
Return the service state.

CmpResult ⇐ CompSrvState()
Determine whether service states are equal.

None ⇐ ReachAgreement()
Reach agreement about which commands have to be executed and in which order.

None ⇐ StartCheapSwitch()
Start the protocol CheapSwitch, which is responible for changing the consensus protocol
(CheapBFT or MinBFT).

None ⇐ ActivateReplica()
Activate a currently passive replica.

MsgCert ⇐ CreateMsgCert()
Increase the trusted counter and use it to create a certificate unique for the given message.

TClouds D2.4.2 Page 29 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

VerificResult ⇐ CheckMsgCert()
Validate a given message certificate and verify it against the expected counter value.

For the description of the functions belonging to the pure LogService component, see Sec-
tion 3.1.2.4.

Demo Workflow. The purpose of this demo is twofold: First, it shows the improved resilience
of the Log Service variant implemented on top of CheapBFT. Second, it demonstrates Cheap-
BFT as a resource-efficient system for Byzantine fault-tolerant services. Figures 3.8, 3.9 and
3.10 illustrate the course of this demo.

C
lo

u
d

 In
te

rfa
c
e

Log Generator

Cloud Node 0

Log Service Module

1A: StartGenLogs() 2A: LogEvent()
Log
Storage
Proxy

CheapBFT
Proxy

CheapBFT Node 1

Log Storage

CheapBFT
Replica
(active)

CASH

4A: CreateMsgCert()

5A: MsgCert

8A: VerificResult

7A: CheckMsgCert()

10A:CmdResult
+StateChange

9A: ExecuteCmd()

3A: Invoke(store) 11A: CmdResult

12A: CmdResult
 +StateChange

Initiate constant
loggingA

6A: ReachAgreement()

CheapBFT Node 2

Log Storage

CheapBFT
Replica
(active)

CASH

4A: CreateMsgCert()

5A: MsgCert

8A: VerificResult

7A: CheckMsgCert()

10A:CmdResult
+StateChange

9A: ExecuteCmd()

CheapBFT Node 3

Log Storage

CheapBFT
Replica

(passive)

CASH
14A: VerificResult

13A: CheckMsgCert()

15A: UpdateSrvState()

Figure 3.8: Resilient Log demo workflow (CheapTiny protocol)

The setup comprises four machines: Three machines equipped with CASH, the trusted
hardware submodule, which host the replicas of the LogStorage, and one machine for the
LogService core component in conjunction with the Log Generator that serves as a source
of events. At the beginning of the demo, all LogService replicas are correct, that is, they are
properly initialized and have all the same state. Consequently, CheapBFT is in the error-free
mode, which means, that it runs a special protocol that only needs two active replicas while
maintaining one passive replica as back-up. This protocol is called CheapTiny (Figure 3.8).
The actual demo will proceed as follows:

(A) Initiate constant logging
The Log Generator is instructed to constantly log events, which causes a steady load on
the Log Storage. Since the demo starts with the error-free case, log messages are only sent
to the two active replicas. At this point, the active replicas have to ensure that they store
the messages or, more general, that they process requests in the same order. All messages

TClouds D2.4.2 Page 30 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

CheapBFT Node 1

Log Storage

CheapBFT
Replica
(active)

CASH

3B: SendSrvState()

CheapBFT Node 2

Log Storage

CheapBFT
Replica
(active)

CASH

2B: SrvState

1B: GetSrvState()

CheapBFT Node 3

Log Storage

CheapBFT
Replica

(passive)

CASH

Compromise
Log StorageB

2B: SrvState

1B: GetSrvState()

4B: CompSrvState() 6B: ActivateReplica()

Create/CheckMsgCert() Create/CheckMsgCert() Create/CheckMsgCert()

5B: StartCheapSwitch()

Figure 3.9: Resilient Log demo workflow (CheapSwitch protocol)

C
lo

u
d

 In
te

rfa
c
e

Log Generator

Cloud Node 0

Log Service Module

Log
Storage
Proxy

CheapBFT
Proxy

CheapBFT Node 1

Log Storage

CheapBFT
Replica
(active)

CASH

6D:CmdResult

5D: ExecuteCmd()

7D: CmdResult

Create/CheckMsgCert()

Log
Console

Log Core

Verify integrity
of a logging
session

1D: VerifySession()

10D: VerificationResult +
 Temporary URL

2D: RetrieveLogs()

8D: LogsList

9D: VerifyLogsList()

D

3D: Invoke(retrieve)

Stop loggingC
1C: StopGenLogs()

CheapBFT Node 2

Log Storage

CheapBFT
Replica
(active)

CASH

6D:CmdResult

5D: ExecuteCmd()

Create/CheckMsgCert()

CheapBFT Node 3

Log Storage

4D: ReachAgreement()

CheapBFT
Replica
(active)

CASH

6D:CmdResult

5D: ExecuteCmd()

Create/CheckMsgCert()

Compromise
Log StorageE

Verify integrity
of a logging
session

F

4D: ReachAgreement()

Figure 3.10: Resilient Log demo workflow (MinBFT protocol)

TClouds D2.4.2 Page 31 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

exchanged for the coordination necessary to reach an agreement among the replicas must
contain a certificate which is created and verified by means of CASH. After the active
replicas agreed on an order, they execute the command, that is, store the message and
send the reply to the Log Service Proxy. Further, they inform the passive replica about
the changes of the service state, which in turn updates its state accordingly.

While the demo is running, the Log Generator prints information about the generated log
events every second. It also saves the generated log events in a local file to enable the
tester to examine all created events. Further, the resource consumption (e. g., CPU and
network) of the replicas is monitored and displayed during the whole run. Here it can be
seen that the passive replica requires significantly less resources.

(B) Trying to compromise Log Storage
Eventually, an error is induced into a log file of one of the active replicas (Figure 3.9).
After a short period of time, the error will be detected, because the replicas regularly
exchange and compare their service states. If one of the replicas observes a difference
between the states, it initiates a protocol switch, that is, CheapTiny is aborted and Cheap-
Switch is started. The protocol CheapSwitch is responsible for carrying out all steps re-
quired to switch to a consensus protocol that uses three active replicas, namely MinBFT
(Figure 3.10). This is necessary, since two replicas are not enough to determine which
one is correct and which one is faulty.

After the protocol switch, the resource consumption will increase, which can be witnessed
through the resource monitoring.

(C) Stop logging
The Log Generator is stopped.

(D) Verify integrity of a logging session
Although one of the replicas is corrupted, the Log Service is still able to deliver a cor-
rect log file. To show that, a verification as described in Section 3.1.2.4 is carried out.
Furthermore, the retrieved log file will be compared with the log file saved by the Log
Generator.

(E) Compromise Log Storage
In this step, we inject the same error in one of the other replicas by manipulating its
state. At this point, the number of compromised replicas exceeds the number of faults the
system is designed to tolerate. The result is, that the CheapBFT subsystem can no longer
deliver the correct results for requests from the Log Service.

(F) Verify integrity of a logging session
Again, the integrity of the logging session is tested. However, after the induction of two
errors, the Log Storage returns an invalid log file and the verification fails.

3.2 TrustedInfrastructure Cloud Prototype
This section describes the demo prototype based on the subsystems TrustedDesktop, Trusted-
Server, TrustedObjectsManager, TrustedChannel, the architecture of the TrustedInfrastructure,
and the demo storyline. TrustedDesktop is not being developed within TCloud, but it is used
here for demonstration purposes.

TClouds D2.4.2 Page 32 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 3.11: TrustedInfrastructure architecture

3.2.1 Architecture Overview
Figure 3.11 shows an overview of the involved components in the TrustedInfrastructure.

• TrustedObjectsManager (TOM): The TOM is the central management component of the
trusted cloud infrastructure. The TOM manages the physical infrastructure including net-
works, services, and appliances (physical platforms).
Since appliances remotely enforce a subset of the overall security policy, a permanent
trusted channel between the TOM and its appliances is used for client authentication, to
check their software configuration using attestation, to upload policy changes and soft-
ware updates, and manage virtual machines in terms of starting, stopping, adding and re-
moving. The TOM manages TrustedVirtualDomains (TVD) and inter-TVD information
flow policies, performs key-management, and configures the managed TrustedServers
(TS) and TrustedDesktops (TD) accordingly.
As the central TVD Management component of a TVD-based infrastructure, the TOM
provides the user interface (web-interface) to define TVDs and corresponding intra-TVD
and inter-TVD information flow policies.

• TrustedServer (TS): The TS is based on the TURAYA SecurityKernel and provides isola-
tion of virtual machines by linking them to TVDs. Domain-specific transparent encryp-
tion is applied by the TS, to prohibit information flows between TVDs. The TS is centrally
managed by the TOM via the TrustedChannel, there is no necessity for a ”root”-account
for administrators of the TS. The TS’s integrity, that is, is ensured by the TPM-based
Trusted Boot mechanism.

TClouds D2.4.2 Page 33 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

The focus of this component is to provide (together with TOM and TD) a trusted infras-
tructure for cloud applications.

• TrustedDesktop (TD): the TD is the client for the provided services of the TS. As the
TS, the TD is centrally managed by the TOM, in terms of integrity, confidentiality and
isolation. It is, as well as the TS, a trusted communication endpoint, since the applied
TVD-policies are enforced end-to-end.

• TrustedChannel (TC): The TC is a TLS secured TCP/IP connection, extended by re-
mote attestation capabilities, that allows message based communication between two end-
points.
In particular, all security related information is exchanged via the TC, in terms of policies
attached to TVDs, VPN configurations key material and certificates and virtual machine
images.

3.2.2 Demo Storyline
In the envisaged demo scenario, the TOM is configured such that it provides two different virtual
machines in two different TVDs (“green” and “red”) for two different attached appliances (TS
and TD). Any attached appliance has proven its integrity (through a TPM). These appliances
are connected to the TOM via the TrustedChannel. The administration port on the TOM is
implemented as a https web interface, where appliances, TVDs, virtual images, and VPNs
between them, can be configured.

3.2.2.1 Abstract API

startResult ⇐ startCompartment(CompartmentID)
The TOM-administrator sends the command to start a dedicated compartment (identified
uniquely by the CompartmentID) on TrustedServer.

stopResult ⇐ stopCompartment(CompartmentID)
The TOM-administrator sends the command to stop a dedicated compartment (identified
uniquely by the CompartmentID) on TrustedServer.

3.2.2.2 Demonstration flow

Figure 3.12 depicts the steps of the demo and the interactions among the components involved,
in order to start and stop a compartment on TrustedServer.

(A) Start Compartment on TS
The TOM-administrator initiates the boot-sequence of a stopped compartment on Trust-
edServer by calling startCompartment(CompartmentID).

(B) Stop Compartment on TS
The TOM-administrator initiates the shutdown-sequence of a running compartment on
TrustedServer by calling stopCompartment(CompartmentID).

The TOM administrator logs in to the web interface and selects the connected TrustedServer
appliance. The administrator then selects the first virtual machine, which is installed but not
running on the TS and triggers the startup of this VM on the TS. Following the same procedure

TClouds D2.4.2 Page 34 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 3.12: Start/Stop compartment demo workflow

for the other virtual machine, starts the second VM within another TVD on TS. The services
pre-installed and configured within the VMs can now be used from within the same TVD.

Therefore, the TD-appliance is started and a pre-registered user logs in (see Figure 3.11).
The TD user can now start an installed virtual machine within the same TVD one virtual ma-
chine of the TS belongs to. A VPN connection between the “green” virtual machines on TD
and TS will be established automatically, such that the provided service can be used.
As an example, from within the green TVD (i.e., from the green VM on TD) an Apache-
webserver can be reached, showing a static website on that server.
A SVN-server can be used from within the red TVD. This is demonstrated by a checkout.

In order to demonstrate the isolation of virtual machines, the TD-user attempts to reach the
“green” Apache-webserver from the “red” virtual machine. This will fail because of the sepa-
ration of TVDs.
Vice versa, trying to checkout the “red” SVN-repository from within the “green” virtual ma-
chine on TD will also fail.
In order to remotely shutdown the running virtual machines on the TS, the TOM-administrator
selects the TrustedServer appliance. The administrator then selects the first virtual machine,
which is running on the TS and triggers the shutdown of this VM on the TS. Following the
same procedure for the other virtual machine, the administrator stops the second VM on TS.

3.3 Cloud-of-Clouds Prototype
This section describes the Cloud-of-Clouds prototype, that illustrates a subset of the results of
work package 2.2. The objective of this prototype is to demonstrate how components provided
in this work package, namely BFT state machine replication (BFT-SMART - initially described
in D2.2.1 [ea11d] and delivered in D2.2.3 [ea11a]) and cloud-of-clouds object storage (DEPSKY

- fully described and evaluated in D2.2.2 [ea12a]) to build a cloud-backed file system that does
not require trust on individual cloud providers.

Our file system demonstrator is called C2FS (Cloud-of-Clouds File System), and it provides
support for shareable file systems with near-POSIX semantics by using untrusted cloud storage

TClouds D2.4.2 Page 35 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

(e.g., Amazon S3, Google Store, Windows Azure Blob Storage and Rackspace Cloud Files) and
computing (e.g., Amazon EC2) from unmodified public or private clouds.

3.3.1 Architecture overview
C2FS follows the same architecture of modern distributed and parallel file system (e.g., Hadoop
FS or Ceph) in which metadata and access control are managed by a separated service not
directly related to file block/object storage support [GVM00]. We leverage this architectural
principle to use some WP2.2 TClouds components in this prototype.

More specifically, we use BFT-SMART as the replication middleware for a BFT coordina-
tion service based on the tuple spaces model [Gel85], that follows the idea FFCUL introduced
in some previous work [BACF08]. This coordination service, called DEPSPACE 2 (or simply
DEPSPACE), is used to store the file system namespace (i.e., the file and directory tree) and its
associated metadata in a dependable way. Moreover, we store the data contained in the file in
the DEPSKY, one of the cloud-of-clouds object storage systems being developed in TClouds.
These two components are integrated in a Linux OS that mounts C2FS through the FUSE-J
user-level file system wrapper [Lev12]. Figure 3.13 shows an overview of the basic building
blocks of C2FS.

Figure 3.13: C2FS basic architecture.

There are many challenges related with the design of cloud-backed file systems such as
C2FS (that we expect to fully address in the third year of the project, and describe in a future
WP 2.2 deliverable), but there are two fundamental challenges that define how we engineered
the system, and their knowledge is important for the understanding of how the system operates.

The first challenge is how to avoid the big latencies of accessing cloud services most of the
time. More specifically, we want to avoid both (1) the latency of accessing a BFT-replicated
service (DEPSPACE) on each read/update on a file metadata (100s of milliseconds) and (2) the
latency of reading and writing data on the clouds (seconds), as most as possible. To do that,
we extensively use both RAM and disk cache at the C2FS clients. As it will be shown in the
demonstration, this feature dramatically improves the ergonomics of the system.

TClouds D2.4.2 Page 36 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

The second fundamental challenge is how we write and read files considering the two sep-
arated WP2.2 components of the system (i.e., DEPSPACE and DEPSKY) without endangering
the consistency of the file system. We address this challenge with the following strategy. When
a new file (or a new version of a file) is written, the C2FS client first write its data as an ob-
ject on the Cloud-of-Clouds object store (DEPSKY) and then, when the write is concluded, the
coordination service (DEPSPACE) is updated with the new file size, hash, and access key (data
unit name in DEPSKY parlance – see D2.2.2 [ea12a]). For reading a file, the C2FS client first
resolves the file name on the coordination service, obtaining the key for accessing the file and
its hash, and then read the stored object that matches the metadata. This strategy ensures that a
file (or file version) is made visible only after it is available for reading, and vice-versa.

3.3.2 Demo storyline
As already discussed, in the Cloud-of-Clouds demo we will be showing the capabilities of a
file system that makes use of BFT state machine replication and a resilient object storage, two
important contributions of WP 2.2. The main objective of the demo is to show the capabilities
of the system, i.e., that it can be used to store and share files efficiently, and demonstrate its
resiliency considering threats such as intrusion on a client, corruption and/or destruction of
some information stored in a cloud provider and the failure of some replica of the coordination
service used to store the file system metadata. We want to demonstrate these features with the
following storyline.

(A) Show the startup of DEPSPACE coordination service replicas in one or more cloud providers3.

(B) Show the C2FS filesystem being mounted in two laptops, from now on designated clients
A and B.

(C) Both A and B create some files and directories on the system (using commands such as
cp, ls, mkdir and cd), to show the usability of the cloud-backed file system.

(D) Open the web-based management console of the cloud storage providers being used to
show that the files are being stored on the clouds ensuring privacy (i.e., they are encrypted)
and cost-efficiency (i.e., only a portion of the file is stored on – and charged by – each
provider).

(E) Client A creates a specific file F, and gives B permission to access it.

(F) Client B accesses F and updates its contents, maintaining the file open. During this period,
A can read F, but cannot modify it (the file is locked by B).

(G) Kill one DEPSPACE replica to show the fault-tolerance provided by the BFT-SMART

replication library.

(H) Delete some file from a cloud provider, and show that the file is still available; and/or
corrupt some file from a cloud provider, and show that integrity is preserved.

(I) Assume client B compromised and show that it can corrupt/delete all files it has access
(including F, created by A and shared with B), but cannot destroy any other files in the
system.

3This depends on the connectivity we will be experiencing on the demonstration site. In the worst case we plan
to deploy the replicas on a single remote cloud.

TClouds D2.4.2 Page 37 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

As a disclaimer, we would like to remark that this storyline is still a work in progress.

3.3.2.1 Abstract API

C2FS uses the following abstract API4:

descriptor ⇐ openFile(name, mode)
This operation is used to open a file write with a given name and mode (read, write or
read-write). If the operation is successfully executed, it returns a valid descriptor for the
file.

result ⇐ closeFile(descriptor)
This operation is used to close a previously opened file (represented by a descriptor). The
result is a boolean indicating if the operation is well succeeded or not.

result ⇐ writeFile(descriptor, data)
This operation is used to write some data in a opened file with a given descriptor. The
result is a boolean indicating if the operation is well succeeded or not.

data ⇐ readFile(descriptor)
This operation is used to read the contents of a opened file with a given descriptor.

result ⇐ deleteFile(name)
This operation is used destroy a file with a given name. The result is a boolean indicating
if the operation is well succeeded or not.

result ⇐ changePermissionsFile(name, permission)
This operation is used to change the sharing permissions of a file with a given name. The
result is a boolean indicating if the operation is well succeeded or not.

result ⇐ createDir(name)
This operation is used to create a directory with the given name. The result is a boolean
indicating if the operation is well succeeded or not.

result ⇐ deleteDir(name)
This operation is used to delete a directory with the given name. The result is a boolean
indicating if the operation is well succeeded or not.

list ⇐ listDir(name)
This operation is used for obtaining the list of files and directories on a given directory.

As may be noted, this abstract API maps directly with the steps on our demo storyline.

3.3.2.2 Demonstration flow

Given the large amounts of steps on our storyline and the large number of component interac-
tions on each step, we opted to show some illustrative examples of operations and commands
we will be executing during the demonstration and how they use the main components of the
prototype, namely, FUSE-J, DEPSPACE (BFT-SMART) and DEPSKY. Figures 3.14 and 3.15

4The currently implemented API is a FUSE-J interface as defined in [Lev12], which includes all features and
low-level details of a file system, and is not necessary to understand the C2FS demo.

TClouds D2.4.2 Page 38 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

shows the operation invoked in these components when some basic commands are executed by
some user. These figures, together with the storyline already described can give an idea of the
basic component functionalities being shown in the Cloud-of-Clouds demo.

Unix%
Command% FUSE.J% DepSpace%%

(BFT.SMaRt)% DepSky%

mkdir(\d)% stat(\d)%
mkdir(\d)%
stat(\d)%

rdp%(invokeUnordered)%
cas%(invokeOrdered)%
rdp%(invokeUnordered)%

ls%\dir% stat(\dir)%
getDir(\dir)%
[0..n]%stat(\dir\[child])%

rdp%(invokeUnordered)%
rdAll%(invokeUnordered)%
rdp%(invokeUnordered)%

cd%\foo\fuu% stat(\)%
stat(\foo)%
stat(\foo\fuu)%

rdp%(invokeUnordered)%
rdp%(invokeUnordered)%
rdp%(invokeUnordered)%

Figure 3.14: The flow of invocations in different components for directory-related operations.

Unix%
Command% FUSE.J% DepSpace%%

(BFT.SMaRt)% DepSky%

cat%fileC2FS% stat(fileC2FS)%
open(fileC2FS)%
read(fileC2FS)%

rdp%(invokeUnordered)%

read%
stat(fileC2FS)%
flush(fileC2FS)%

rdp%(invokeUnordered)%

release(fileC2FS)%

cp%file%fileC2FS% stat(fileC2FS)%
mknod(fileC2FS)%
stat(fileC2FS)%

rdp%(invokeUnordered)%
cas%(invokeOrdered)%
rdp%(invokeUnordered)%

open(fileC2FS)%
write(fileC2FS)%
flush(fileC2FS)%
release(fileC2FS)%

cas%(invokeOrdered)%

write%

Figure 3.15: The flow of invocations in different components when data-intensive commands
are executed.

3.4 Other Prototypes
In this chapter, we will describe the prototypes that will not be presented as part of the TClouds
second year’s demonstration.

TClouds D2.4.2 Page 39 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 3.16: SAVE: Architecture Overview of Discovery Component

3.4.1 Security Assurance of Virtualized Environments (SAVE)

3.4.1.1 Architecture Overview

SAVE is a tool developed at IBM research for extracting configuration data from multiple vir-
tualization environments, transforming the data into a normalized graph representation, and
subsequent analysis of its security properties. IBM will integrate and adapt this technology for
the demonstrator based on OpenStack, in order to validate isolation of cloud users.

SAVE is structured into two components: Discovery and Analysis.

Discovery. The data discovery phase is used to collect virtualization data from a number of
heterogeneous environments (cf. Figure 3.16). It is configured with the set of hosts to query
and basic authentication information required to access the data. The tool uses simple heuristics
to identify the environment in which each host is situated. Based on the environment (HMC,
VMware, XEN, libvirt) the appropriate probe is selected. The tool outputs a single XML file
containing all virtualization information that was discovered. This XML file is used as input
into the data analysis components.

Analysis. The analysis component takes the discovery XML format as input, in addition to
a specification of traversal rules and a security policy (cf. Figure 3.17). The traversal rules
are formulated in XML and specify the information flow and trust assumptions about elements
of the virtualized infrastructure in general. The security policy is specified in a logical term
language called VALID, which expresses attack states that violate the high-level security goals,
in a nutshell. VALID is language developed with a formal methods background and based on the
AVISPA Intermediate Format (IF) and ASlan, two languages widely used in model checking.

For the validation of the discovered infrastructure against the security policy, SAVE will

TClouds D2.4.2 Page 40 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 3.17: SAVE: Architecture Overview of Analysis Component

compile problem statements for model checkers in their respective language, such as IF, ASlan
or First-Order Logic (FOL). It also takes proprietary output format of the model checkers as
feedback and evaluates their output with respect to the realization model to find alarm states.

The general persistent output of the SAVE analysis may be textual, as fault logs, or a stan-
dard graph format (GEXF), in order to render big-picture views on the topology and fine-grained
views on problem areas for diagnosis.

3.4.2 Ontology-based reasoner: Libvirt With Trusted Virtual Domains

3.4.2.1 Introduction

This prototype is an enhancement of Libvirt that allows to define and configure a Trusted Virtual
Domain (TVD) as the aggregation of virtual machines. It includes an extension of the XML
configuration language to model the network and completes the support for the management of
Open vSwitch bridges. The implementation of the TVD concept is based on the proposal made
by Bussani et al. in [BGJ+05] (Table 2, Case 1) that foresees the usage of VLAN5 + IPSec6 for
the communication channels.

Our subsystem anticipates a feature that will be presented in the Year 3 prototype. We
decided to present this work in advance so that all partners start thinking about how to take
advantage of it to solve existing security issues. For this reason, we provide in this document
a brief overview of the architecture and some details about the implementation, and we will
deliver the missing parts next year.

3.4.2.2 Architecture

Our enhancement allows to configure the scenario depicted in Figure 3.18, where two TVDs
are defined (TVD-Red and TVD-Green) and TVD members, the virtual machines, are spanned
in two physical hosts (Host 1 and Host 2).

5http://standards.ieee.org/findstds/standard/802.1Q-2005.html
6http://tools.ietf.org/html/rfc4301

TClouds D2.4.2 Page 41 of 144

http://standards.ieee.org/findstds/standard/802.1Q-2005.html
http://tools.ietf.org/html/rfc4301

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

.1.100 .1.101 .1.102 .2.100 .2.101 .2.102

Open vSwitch bridge

192.168.1.0/24 192.168.2.0/24

Open vSwitch bridge

192.168.1.0/24 192.168.2.0/24

.1.103 .1.104 .1.105 .2.103 .2.104 .2.105

.1.1 .2.1

.2.2

130.192.1.111

130.192.1.112

gw0 gw1

FWD

eth1

Host 1

.1.2

gw0 gw1

FWD

eth1

Host 2

Local Network
(L2)

br0

br0

Internet
(L3)

gre0

gre0

eth0

eth0

Figure 3.18: TVD scenario implemented using Open vSwitch bridges

TClouds D2.4.2 Page 42 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

In order to enforce the isolation property of TVDs, each physical host is responsible to
separate the local communication between virtual machines so that data can be exchanged only
among members of the same TVD. Further, physical hosts must collaborate to prevent that a
virtual machine of a TVD in the local host can communicate with a virtual machine of a different
TVD in the remote host.

For the implementation of these features, we decided to use Open vSwitch [OvT12] as the
bridge that connects together the back-end interfaces of virtual machines. This software allows
to associate a VLAN tag to each interface (also called access port), so that Ethernet frames com-
ing from the virtual machine are encapsulated with this tag. Then, these frames can be received,
in the local host, only by the virtual machines whose interface has been assigned the same tag.
With this separation, virtual machines of the same TVD believe to be connected through an
isolated network, even if they share the same bridge with virtual machines of different TVDs.

Moreover, when a virtual machine needs to contact a member in the remote host, the local
host must transmit Ethernet frames to their destination over the physical network. This can be
done alternatively by adding to the bridges the interfaces connected to the physical network
(e.g. eth0), if hosts are L2 adjacent, or by creating an IP tunnel (e.g with GRE) and adding
to them the endpoints (e.g. gre0), if hosts are L3 adjacent. In both cases, these interfaces are
configured as trunk ports in order to preserve the tag encapsulated in the packets, so that the
isolation between TVDs can be uniformly enforced by all hosts.

Further, we guarantee that the tag of a packet has not been tampered with by assuming that,
when physical hosts are L2 adjacent, the physical network is trusted, i.e., an attacker can not
modify the tag applied to Ethernet frames. Instead, if physical hosts are L3 adjacent, we protect
IP packets through an IPSec connection that guarantees confidentiality and integrity on their
payload.

From the Layer 3 perspective, each TVD has assigned a class C network of the private
address space: 192.168.1.0/24 for the TVD-Red and 192.168.2.0/24 for the TVD-
Green. Each host assigns an IP address to the virtual machines through a management inter-
face, unique for the TVD, (gw0 for TVD-Red and gw1 for TVD-Green) and an instance of the
Dnsmasq7 daemon (executed by Libvirt) that listens to it. In order to avoid collisions, each host
must have assigned its own range of IP addresses for each TVD.

Our prototype also allows to connect a TVD to the Internet. When a specific configuration
is provided, a virtual machine can send packets through the management interface, that acts as
a gateway, and then the local host forwards them to the destination through the public interface
(e.g. eth1) by using the IP masquerading technique. Since all the management interfaces of a
TVD are visible by members of that TVD, a virtual machine can send packets to Internet even
if there is no connectivity in the local host, by simply specifying as a gateway in the routing
table the IP address of the management interface in a host with the forwarding enabled.

Our prototype allows to describe the above network configuration by extending the Libvirt
XML language and allows to enforce it by executing Open vSwitch commands. In the follow-
ing, we will provide more details about the implementation.

3.4.2.3 Implementation

In this section, we explain how to specify the configuration for the scenario depicted in Fig-
ure 3.18 and how Libvirt enforces the isolation among TVDs by translating this configuration
in low-level commands to Open vSwitch.

7http://www.thekelleys.org.uk/dnsmasq/doc.html

TClouds D2.4.2 Page 43 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

XML language extension. The current format of the XML language (Libvirt version 0.9.11)
does not allow to correctly specify the configuration of TVDs. While there are some elements
that can be used to isolate the network in groups of virtual machines (the portgroup and virtual-
port elements), they appear to be not adequate to describe the configuration at Layer 3. Indeed,
if multiple portgroups are defined in the same network object, they should have assigned their
own gateway and range of IP addresses but, in the version that we evaluated, Libvirt allows
to define these settings only once for each network. For this reason we decided to split this
configuration in three main steps:

1 Definition of the TVD backbone network

2 Definition of TVD specific networks and assignment to the TVD backbone network

3 Assignment of a virtual machine network interface to a TVD specific network.

The TVD backbone network, represented in Figure 3.18 with black lines, connects together,
through the Open vSwitch bridge br0, the interfaces defined in the TVD specific network, the
physical host interfaces and, eventually, one or more tunnels to other physical hosts.

The Listing 3.1 shows the XML description of the TVD backbone network in our scenario
for Host 1. We want to focus the attention on the attribute type of the element bridge.
Such attribute has been introduced by our prototype in order to instruct Libvirt to create an
Open vSwitch bridge (attribute value openvswitch) instead of a standard Linux bridge (at-
tribute value linuxbridge). To maintain the compatibility with previous versions, this at-
tribute has been defined as optional: if not specified, Libvirt creates a bridge of the latter type.
Further, the Listing 3.1 shows the new element tunnel, introduced by our prototype, that
allows to configure an IP tunnel between L3-adjacent physical hosts. Within this element it is
possible to specify the IP address of the remote host, the name of the interface that acts as tunnel
endpoint and the list of allowed VLAN tags.

<network>
<name>tvd_backbone</name>
<bridge name="br0" type="openvswitch" />
<tunnel>

<remoteip address="130.192.1.112" />
<device name="gre0" />
<allow vlans="1,2" />

</tunnel>
</network>

Listing 3.1: XML configuration file of the TVD backbone network in Host 1

TVD specific networks, represented with red and green lines respectively for the TVD-Red
and TVD-Green, consist of the back-end interfaces of virtual machines and a management in-
terface, which are plugged in the Open vSwitch bridge of the TVD backbone network.

The Listing 3.2 illustrates the XML definition of the TVD specific network tvd red for
the TVD-Red TVD in Host 1. Also in this case, there are some configuration elements intro-
duced by our prototype. First, in the bridge element we introduced the attributes type and
sourcebridge. The former has been already described for the TVD backbone network while
the latter allows to specify the name of the Open vSwitch bridge where interfaces of the TVD
specific network will be plugged in. When a network of this type is activated, Libvirt creates the
management interface gw0 and plugs it to br0. Secondly, the element virtualport now
supports the attribute vlantag that allows to specify the VLAN tag for the interfaces defined

TClouds D2.4.2 Page 44 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

in the TVD specific network. It is also worth to mention that tvd red is allowed to connect to
Internet through the eth1 public interface, as stated in the unmodified element forward.

<network>
<name>tvd_red</name>
<forward mode="nat" dev="eth1">
<bridge name="gw0" type="openvswitch" sourcebridge="br0" />
<ip address="192.168.1.1" netmask="255.255.255.0">

<dhcp>
<range start="192.168.1.100" end="192.168.1.199" />

</dhcp>
</ip>
<portgroup name="red" default="yes">

<virtualport type="openvswitch">
<parameters vlantag="1" />

</virtualport>
</portgroup>

</network>

Listing 3.2: XML configuration file of the TVD specific network for TVD-Red in Host 1

The assignment of a virtual machine network interface to a TVD specific network is the
most simple task, as our prototype does not require any modification on the domain XML
file. The Listing 3.3 shows that in order to assign a network interface to the TVD-Red TVD
it is sufficient to specify the name of the TVD specific network tvd red in the source
subelement of interface.

<domain>
...
<devices>

...
<interface type="network">
<source network="tvd_red">

</interface>
...

</devices>
...

</domain>

Listing 3.3: XML configuration file of a virtual machine that is member of TVD-Red

Open vSwitch administrative commands. After Libvirt parses the configuration files before
a virtual network is activated, it performs the commands to Open vSwitch in order to enforce
the isolation among TVDs. When the TVD backbone network is started, Libvirt creates the
Open vSwitch bridge by executing the command:

ovs-vsctl add-br br0

This bridge can be connected alternatively to the Local Network (L2) or to Internet (L3)
respectively through the eth0 (not currently supported) or the gre0 interface. The latter,
which is an endpoint of a tunnel whose parameters are specified in the tunnel element of
configuration file for this network, is created and added to the bridge br0 by Libvirt through
the command (for Host 1):

ovs-vsctl -- --may-exist add-port br0 gre0 trunks=1,2 -- set Interface gre0
type=gre options:remote ip=130.192.1.112

TClouds D2.4.2 Page 45 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

The list of VLAN tags specified in the command option trunks=1,2 and also in List-
ing 3.1 allows to filter the Ethernet frames coming from the remote tunnel endpoint. If, for
example, a compromised host starts sending packets with an arbitrary tag, benign hosts can pre-
vent that this host communicates with TVDs for which it is not allowed to start virtual machines,
by discarding Ethernet frames whose tag is not in the list.

When a TVD specific network is started, Libvirt creates the management interface by using
the “fake bridge” feature of Open vSwitch. In the following, there is the command executed to
create the fake bridge gw0 for tvd red with VLAN tag 1 in Host 1:

ovs-vsctl add-br gw0 br0 1

Regarding the assignment of virtual machine network interfaces, Libvirt plugs them to the
fake bridge of a TVD specific network (e.g. gw0 for the tvd red network) by executing:

ovs-vsctl -- --may-exist add-port gw0 vnet0 tag=1 [...]

As the fake bridge feature of Open vSwitch is only an abstraction introduced for compati-
bility reasons to allow software to deal with standard Linux bridges, the command above, with
non-relevant options omitted, causes the interface vnet0 to be attached to br0 of the TVD
backbone network.

3.5 Mapping legal and application requirements to subsys-
tems and prototypes

Table 3.2 maps the legal and application requirements stated in Chapter 2 to TClouds subsys-
tems listed in Table 3.1. An ’X’ in a cell means that the subsystem in that column contributes
to the satisfaction of the requirement in that row. Multiple subsystems can contribute to the sat-
isfaction of a single requirement. Table 3.2 does not show if the requirements are fully satisfied
or not.

In the following the mapping is presented by prototype: for each on them which subsystems
form it and for each subsystem, which requirements it satisfies.

TClouds D2.4.2 Page 46 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

R
equirem

ents

TClouds subsystem

Resource-efficient BFT (CheapBFT)

Simple Key/Value Store (memcached)

Secure Block Storage (SBS)

Secure VM Instances

TrustedServer

Log Service

State Machine Replication (BFT-SMaRt)

Fault-tolerant Workflow Execution

Resilient Object Storage

Confidentiality Proxy for S3

Access Control as a Service (ACaaS)

TrustedObjects Manager (TOM)

Trusted Management Channel

Ontology-based Reasoner

Automated Validation (SAVE)

Remote Attestation Service

L
R
E
Q
1

-C
onfidentiality

ofpersonaldata
X

X
X

X
X

X
X

L
R
E
Q
2

-A
vailability

and
Integrity

ofpersonaldata
X

X
X

X
X

X
L
R
E
Q
3

-C
ontroloflocation

and
responsible

provider
X

X
X

L
R
E
Q
4

-U
nlinkability

and
Intervenability

X
X

L
R
E
Q
5

-Transparency
forthe

custom
er

X
X

X
A
H
S
E
C
R
E
Q
1

-C
onfidentiality

ofstored
and

transm
itted

data
X

X
X

X
X

X
X

A
H
S
E
C
R
E
Q
2

-Integrity
ofstored

and
transm

itted
data

X
X

X
X

X
A
H
S
E
C
R
E
Q
3

-Integrity
ofthe

application
X

X
X

X
A
H
S
E
C
R
E
Q
4

-A
vailability

ofstored
and

transm
itted

data
X

X
X

X
A
H
S
E
C
R
E
Q
5

-A
vailability

ofthe
application

X
X

X
X

X
A
H
S
E
C
R
E
Q
6

-N
on

repudiation
X

X
A
H
S
E
C
R
E
Q
7

-A
ccountability

X
X

A
H
S
E
C
R
E
Q
8

-D
ata

source
authentication

X
X

X
A
H
P
R
I
V
R
E
Q
1

-U
nlinkability

and
A

nonym
ization

ofdata
flow

A
S
S
E
C
R
E
Q
1

-Trustw
orthy

A
udit

X
X

A
S
S
E
C
R
E
Q
2

-Trustw
orthy

Infrastructure
X

X
X

X
X

X
X

X
A
S
S
E
C
R
E
Q
3

-Trustw
orthy

Persistence
E

ngine
X

X
X

A
S
S
E
C
R
E
Q
4

-R
esilient

X
X

X
X

A
S
S
E
C
R
E
Q
5

-Trustw
orthy

com
m

unications
X

X
X

X
A
S
S
E
C
R
E
Q
6

-H
igh

perform
ance

&
Scalable

X
X

Table
3.2:L

istofT
C

louds
subsystem

s
and

m
apping

to
requirem

ents

TClouds D2.4.2 Page 47 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

PROTOTYPE Trustworthy OpenStack

RESOURCE-
EFFICIENT
BFT
(CHEAPBFT)

REQUIREMENTS:
LREQ2 - Availability and Integrity of personal data – The Cheap-

BFT subsystem improves the availability by providing fault-
tolerance, i.e. it can mask arbitrary faults in the cloud infrastruc-
ture. This also includes arbitrary alterations in the transmitted
data, ensuring the integrity of the exchanged information.

AHSECREQ2 - Integrity of stored and transmitted data – Integrity
of application state is checked against other replicas when ex-
ternalised, i.e. transmitted to the client. Modifications can be
detected and masked, thus ensuring integrity.

AHSECREQ3 - Integrity of the application – The integrity of the ap-
plication instance is ensured by state machine replication. If the
application misbehaves on one of the replicas in a way that is ex-
ternally visible, the CheapBFT subsystem can detect and mask
this fault.

AHSECREQ4 - Availability of stored and transmitted data – As
the CheapBFT subsystem is based on replication, it does not
only tolerate manipulation of data, but also the complete outages
of single replicas.

AHSECREQ5 - Availability of the application – Since the replicas
can run any application that can be modelled as a determinis-
tic state machine, most software used in practice could be ported
to use CheapBFT for improved availability. Data storage is actu-
ally just one of the simpler applications that can be built on top
of the CheapBFT protocol.

AHSECREQ8 - Data source authentication – CheapBFT is based on
the assumption that the clients and servers mutually authenticate
each other so that the source of each transmitted message is ver-
ifiable.

ASSECREQ3 - Trustworthy Persistence Engine – If the persistence
engine was built as a replicated application on top of CheapBFT,
the integrity and availability requirements can be addressed by
the properties the communication protocol provides.

ASSECREQ4 - Resilient – CheapBFT can be used mask singular fail-
ures in the infrastructure and also in instances of the persistence
engine, thus improving the overall resilience of the system.

ASSECREQ5 - Trustworthy communications – All messages ex-
change using the CheapBFT subsystem are cryptographically
signed, thus any manipulation can be detected and prevented
from having an impact.

ASSECREQ6 - High performance & Scalable – The CheapBFT
protocol uses a trusted and fast hardware component for secure
message signing. Compared to other BFT systems, a lower
number of replicas are required to provide the same level of
fault-tolerance and thus also the amount of messages that have
to be exchanged is decreased. Therefore it also becomes easier
to build fast and scalable systems based on CheapBFT.

TClouds D2.4.2 Page 48 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

PROTOTYPE Trustworthy OpenStack

SECURE
BLOCK
STORAGE
(SBS)

REQUIREMENTS:
LREQ1 - Confidentiality of personal data – SBS builds the founda-

tion for transparent encryption and authentication of data for
legacy VMs that are not aware of cryptography. SBS transpar-
ently encrypts storage used by customer’s VM so that data that
is processed in the cloud management layer or stored on cloud
storage is always encrypted and hence provides confidentiality
since no plain text data leaves the cryptographically protected
VMs (DomC-DomU couple, as explained in 3.1.2.3).

LREQ2 - Availability and Integrity of personal data – In the same
way as for LREQ1 -, integrity of personal data is satisfied: data
is protected so that tampering becomes evident and integrity can
be verified. This currently is only supported for (block) storage
in the Y2 prototype but the very same key stored in the crypto-
VM (DomC) can easily be used to wrap network traffic in an SSL
tunnel. However, this is already possible from within the user-
VM (DomU) by establishing an SSL channel and letting the sep-
arate DomC do the encryption and decryption of the encrypted
and authenticated connection. Availability cannot be satisfied,
because the cloud administrator is in control of the encrypted
data.

AHSECREQ1 - Confidentiality of stored and transmitted data –
Cf. AHSECREQ1 -.

AHSECREQ2 - Integrity of stored and transmitted data – Cf.
LREQ2 -.

ASSECREQ2 - Trustworthy Infrastructure – The keys are bound to
a particular software configuration of SBS and the hypervisor.
This implicit attestation assures that valuable key material can
only be unwrapped (revealed) by a known-good software con-
figuration that is trusted by and known to the customer.

TClouds D2.4.2 Page 49 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

PROTOTYPE Trustworthy OpenStack

LOGSERVICE

REQUIREMENTS:
LREQ1 - Confidentiality of personal data – This subsystem allows

to detect attackers intrusions that caused the leakage of users’
personal data.

LREQ3 - Control of location and responsible provider – This sub-
system can be used to log transfers of data between different
Cloud datacenter sites.

LREQ4 - Unlinkability and Intervenability – This subsystem im-
plements techniques to prevent logs be associated to a real user.

LREQ5 - Transparency for the customer – This subsystem can be
used, together with the Remote Attestation Service, to reliably
track operations performed by the Cloud Provider on the infras-
tructure and logs produced by users’ applications.

AHSECREQ6 - Non repudiation – This subsystem ensures that an at-
tacker can not deny to have performed a specific action by guar-
anteeing, with the Remote Attestation Service, integrity of logs
and the proof that the application is trusted to properly record the
actions.

AHSECREQ7 - Accountability – This subsystem ensures that an at-
tacker can not deny to have granted users’ privileges without
permission by guaranteeing, with the Remote Attestation Ser-
vice, integrity of logs and the proof that the application is trusted
to properly record these actions.

ASSECREQ1 - Trustworthy Audit – See AHSECREQ6 - and
AHSECREQ7 -.

ACCESS
CONTROL
AS A SERVICE
(ACAAS)

REQUIREMENTS:
LREQ3 - Control of location and responsible provider – ACaaS

associated with each Cloud computing node a set of physical
properties. The properties identifies the capabilities of the
computing node. One of the capabilities is related to stating the
physical location of the node. A user, later on, when requesting
the creation of a VM defines any restrictions of hosting location.
ACaaS proves the assurance user requirements are met at the
computing node level.

TClouds D2.4.2 Page 50 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

PROTOTYPE Trustworthy OpenStack

REMOTE
ATTESTATION
SERVICE

REQUIREMENTS:
LREQ5 - Transparency for the customer – This subsystem guaran-

tees transparency to customers because the Cloud Provider can
give the proof of the integrity of the nodes.

AHSECREQ6 - Non repudiation – This subsystem allows to prove
that the application can be trusted to take logs (e.g. through the
LogService). If also the integrity of the logs is guaranteed, an
attacker can not deny to have performed a specific action.

AHSECREQ7 - Accountability – This subsystem allows to prove that
the application can be trusted to take logs (e.g. through the
LogService). If also the integrity of the logs is guaranteed, an
attacker can not deny to have performed an action to take user
privileges.

ASSECREQ1 - Trustworthy Audit – See AHSECREQ6 - and
AHSECREQ7 -.

ASSECREQ2 - Trustworthy Infrastructure – This subsystem al-
lows to prove that the infrastructure was trustworthy to perform
a specific action (e.g. launch a virtual machine in a node with
specified security requirements).

TClouds D2.4.2 Page 51 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

PROTOTYPE TrustedInfrastructure Cloud

TRUSTED-
SERVER

REQUIREMENTS:
LREQ1 - Confidentiality of personal data – Confidentiality is en-

sured by the TVD policy. Data is always encrypted according
to the TVD.

LREQ2 - Availability and Integrity of personal data – Integrity of
the server platform is ensured by Trusted Computing technolo-
gies for secure and integer system boot.

AHSECREQ1 - Confidentiality of stored and transmitted data –
Confidentiality is ensured by the TVD policy. Data is always
encrypted according to the TVD.

AHSECREQ2 - Integrity of stored and transmitted data – Integrity
of the server platform is ensured by Trusted Computing tech-
nologies for secure and integer system boot. The integrity of the
system is a prerequisite for data integrity of the stored and pro-
cessed data on the system. Additional means for data integrity
with TVDs are necessary and are future work.

TRUSTED-
OBJECTS
MANAGER
(TOM)

REQUIREMENTS:
LREQ3 - Control of location and responsible provider – Informa-

tion cannot cross the boundaries of the TVD. The TOM is in
control of which TrustedServer is allowed to join the TVD.

ASSECREQ2 - Trustworthy Infrastructure – The TOM is a trust-
worthy management component for TrustedServers and builds
on Trusted Computing technology to ensure by remote attesta-
tion that only integer TrustedServer enter the infrastructure.

AHSECREQ4 - Availability of stored and transmitted data – The
TOM is in control of which entities are allowed to join a TVD.
If only trusted entities are allowed this minimizes the risk for
denial of service attacks.

AHSECREQ5 - Availability of the application – The TOM is in con-
trol of which entities are allowed to join a TVD. If only trusted
entities are allowed this minimizes the risk for denial of service
attacks.

TRUSTED
MANAGE-
MENT
CHANNEL

REQUIREMENTS:
ASSECREQ2 - Trustworthy Infrastructure – The Trusted Manage-

ment Channel ensures authenticity, integrity and confidential-
ity for the communication between the TOM and the Trusted-
Servers.

TClouds D2.4.2 Page 52 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

PROTOTYPE Cloud-of-Clouds

STATE
MACHINE
REPLICATION
(BFT-
SMART)

REQUIREMENTS:
LREQ2 - Availability and Integrity of personal data – This com-

ponent ensures this due to the use of Byzantine fault-tolerant
replication of a data store implemented using it, i.e., the system
remains correct and available even if a fraction of its replicas,
say at most f (fault threshold), are compromised.

AHSECREQ2 - Integrity of stored and transmitted data – By the
same reason as in LREQ2 -, if some replica corrupt the data the
system will mask and possible detect the fact that some replica
is sending wrong results.

AHSECREQ3 - Integrity of the application – By the same reason as
in LREQ2 -, if some replica of a service executes the operation
incorrectly (due to a failure or intrusion) the system will mask
and possible detect the fact that some replica is faulty.

AHSECREQ4 - Availability of stored and transmitted data – The
fact the middleware provides Byzantine fault tolerance means
that it support both data/service corruption and possible replica
unavailability periods.

AHSECREQ5 - Availability of the application – Same as
AHSECREQ4 -.

AHSECREQ8 - Data source authentication – As long as the attacker
do not compromise more replicas than the fault threshold toler-
ated by BFT-SMaRt, it cannot impersonate the service.

ASSECREQ3 - Trustworthy Persistence Engine – See
AHSECREQ2 -, AHSECREQ3 -, AHSECREQ4 - and AHSECREQ5
-. Notice that confidentiality cannot be ensured by this compo-
nent alone.

ASSECREQ4 - Resilient – See AHSECREQ2 -, AHSECREQ3 -,
AHSECREQ4 - and AHSECREQ5 -.

ASSECREQ5 - Trustworthy communications – See AHSECREQ8 -.

TClouds D2.4.2 Page 53 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

PROTOTYPE Cloud-of-Clouds

RESILIENT
OBJECT
STORAGE

REQUIREMENTS:
LREQ1 - Confidentiality of personal data – This is ensured by stor-

ing only encrypted data on cloud providers. The keys used for
encryption are either stored with the client or spread in several
providers using secret sharing, ensuring no provider alone has
access to the key.

LREQ2 - Availability and Integrity of personal data – This is en-
sured by replicating the encrypted stored data in more than one
cloud provider and by using novel Byzantine fault-tolerant pro-
tocols for reading and writing this data.

LREQ4 - Unlinkability and Intervenability – See LREQ1 -.
AHSECREQ1 - Confidentiality of stored and transmitted data –

See LREQ1 -.
AHSECREQ2 - Integrity of stored and transmitted data – See

LREQ2 -.
AHSECREQ4 - Availability of stored and transmitted data – See

LREQ2 -.
ASSECREQ3 - Trustworthy Persistence Engine – See LREQ1 -

and LREQ2 -.
ASSECREQ4 - Resilient – This applies for the persistence level, as

described in ASSECREQ3 -.

TClouds D2.4.2 Page 54 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

PROTOTYPE Other prototypes

SIMPLE KEY/-
VALUE STORE
(MEMCACHED)

REQUIREMENTS:
AHSECREQ3 - Integrity of the application – By developing the sub-

system in a type-safe language even at the operating system level
and minimising the running code base, the entire service be-
comes very hard to attack. This increases confidence in the in-
tegrity of the system.

ASSECREQ6 - High performance & Scalable – As the the amount
of program code is reduced and the operating system becomes
part of the application, many time consuming intermediate steps
can be skipped. Also taking special considerations for cloud
computing environments into account, this should result in better
performance than traditional software stacks can achieve.

ASSECREQ2 - Trustworthy Infrastructure – The improved type-
safety and compile-time checks reduce the attack surface of the
memcached storage. This prevents intrusions into cloud infras-
tructures providing a key/value service using our implementa-
tion, thus improving the trustworthiness of the infrastructure.

SECURE VM
INSTANCES

REQUIREMENTS:
Since SBS builds the foundation for Secure VM Instances and
already satisfies three requirements, they are identical to the SBS
case due the fact that they are provided transitively by SBS.

FAULT-
TOLERANT
WORKFLOW
EXECUTION

REQUIREMENTS:
AHSECREQ3 - Integrity of the application – Instead of running a

given business process only on a single machine, it is executed
on multiple machines in parallel. If one of the replicas produces
a wrong result it can be detected by comparing the result with
the other replicas. While this doesn’t prevent that the application
can enter an erroneous state in the first place, it is possible to
detect and remove the faulty replica in most cases.

AHSECREQ5 - Availability of the application – The replicated exe-
cution of the business process also improves the availability of
the service provided by the process. If one of the replicas crashed
there are still other working instances available that can be used
to continue without any interruptions.

ASSECREQ4 - Resilient – Parts of the application that are imple-
mented using BPEL could use the replication mechanism to im-
prove the resilience against faults at the infrastructure level; It
can tolerate crashes of single replica instances.

TClouds D2.4.2 Page 55 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

PROTOTYPE Other prototypes

CONFIDENTIA-
LITY PROXY
FOR S3

REQUIREMENTS:
LREQ1 - Confidentiality of personal data – Confidentiality is en-

sured by the TVD policy. Data is always encrypted according
to the TVD before it is stored on public S3 storage.

AHSECREQ1 - Confidentiality of stored and transmitted data –
Confidentiality is ensured by the TVD policy. Data is always
encrypted according to the TVD.

ASSECREQ2 - Trustworthy Infrastructure – The TrustedServer is
rigorously built on top of Trusted Computing technology, ensur-
ing integrity of the system and supporting remote attestation.

ONTOLOGY-
BASED
REASONER

REQUIREMENTS:
LREQ2 - Availability and Integrity of personal data – Through the

Trusted Virtual Domain concept, this subsystem helps satisfy
these requirements by isolating the network connecting the vir-
tual machines that run the user application. This avoids that
an attacker intercepts the communication channel among TVD
members or mounts a denial-of-service attack.

AHSECREQ1 - Confidentiality of stored and transmitted data –
See LREQ2 -.

AHSECREQ5 - Availability of the application – See LREQ2 -.
AHSECREQ8 - Data source authentication – This requirement is

satisfied because a virtual machine can communicate only with
members of the same TVD.

ASSECREQ2 - Trustworthy Infrastructure – This subsystem helps
prevent attacks from compromised hosts in the infrastructure.

ASSECREQ5 - Trustworthy communications – Data exchanged
among virtual machines members of the same TVD can not be
tampered with by an attacker.

TClouds D2.4.2 Page 56 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

PROTOTYPE Other prototypes

SECURITY
ASSURANCE
OF
VIRTUALIZED
ENVIRON-
MENTS
(SAVE)

REQUIREMENTS:
LREQ1 - Confidentiality of personal data – Confidentiality is

achieved by verifying that the isolation of certain security zones
exists in the current configuration and topology of the cloud
infrastructure. A security zone may be based on tenants, in
order to ensure that tenants in a multi-tenant cloud infrastructure
are isolated, or it may be based on a tenant’s definition of zones
(e.g. to isolate testing from production systems).

LREQ5 - Transparency for the customer – The cloud provider can
show the verification results of the isolation of the security zones
to the customers. However, it does not prevent against a ma-
licious cloud provider that manipulates the verification results,
but it protects against misconfigurations of the provider.

AHSECREQ1 - Confidentiality of stored and transmitted data –
Cf. LREQ1 - with a security zone for the patient data storage
and processing.

TClouds D2.4.2 Page 57 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Chapter 4

Tests Plan and Results Report

4.1 Introduction
Testing is one of the main activities that is performed during the software development. It allows
to detect faults that may occur from the definition of its specifications to the implementation
phase. Each step of the development process must be carefully checked because, for example,
a misunderstanding of the software specifications may lead to implement features that are not
intended in the original design.

It is also important to perform the testing as early as possible because, first, detecting errors
on the whole software is more harder than checking the code just after it has been written
and, secondly, the costs for fixing that errors are greater when the product has already been
implemented.

In the TClouds project performing testing becomes very critical because the product it aims
to deliver will be composed by a collection of software subsystems developed by different part-
ners, that must work together to provide the intended security services. Further, since this
project is focused on releasing a prototype to demonstrate the feasibility of the solutions pro-
posed, testing allows to monitor progresses in the development process and to ensure that the
prototype will be delivered in time.

In this document, we define a master test plan for the TClouds project by indicating the
activities that each partner should perform and by providing details about how tests will be
performed and how the documentation with test results should be written. Finally, we provide
specific test plans from partners involved in the development of subsystems in Activity 2.

4.2 A model for testing
Since the main TClouds project objective is to release a concrete prototype integrated within
open source framework for Cloud Computing, it is necessary to adopt a model for doing the
tests that covers all aspects of the development process, from the definition of the requirements
to the software implementation. A model that can be used for this purpose is the V-model.

This model is particularly suitable for our purposes as it accommodates the structure of
TClouds that is split in: Activity 1 is responsible for the definition of legal and business require-
ments; Activity 2 will build the TClouds Platform with the security functionality required to
satisfy these requirements; Activity 3 will develop two applications, one for a medical use case
and another for the energy management on a public infrastructure, that will run on top of the
TClouds Platform.

In the V-model, depicted in Figure 4.1, a specific level of testing is planned for each phase
of the development. In particular, the requirements definition is tested through the acceptance
testing performed by customers, the functional system design is tested using system testing, the

TClouds D2.4.2 Page 58 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

technical system design is verified through integration testing. Finally, the component specifi-
cation phase is tested through unit testing.

Figure 4.1: The V-model

Acceptance testing would allow a customer to verify whether legal and business require-
ments defined in Activity 1 are met either by the TClouds Platform from Activity 2 and the
applications developed by Activity 3.

System testing can be used to check whether the functions exposed through the TClouds API
behave as defined in the functional design. These functions can be tested using the applications
from Activity 3.

Integration testing should be performed on the subsystems developed in Activity 2 and, in
particular, can be used to test the communication between them through the Internal API. This
type of testing would allow to verify whether a subsystem collaborates with other subsystems
in the expected way in order to perform complex functions.

Finally, unit testing can be used by each partner to test his subsystems and to verify whether
the implementation has been done according to the specifications. We refer the reader to Sec-
tion 4.3.2 for details about the testing levels that are covered in the TClouds master test plan.

4.3 Master test plan
In this section, we define how tests should be performed, given the fact that the above Activities
are performed in parallel and that the development process has already been scheduled in the
Description of Work (DoW).

While in the Year 1 partners have been involved in the definition of their subsystems, the
overall architecture of the TClouds Platform and the specifications of the applications that will
run on top of it, in the Year 2 and 3 they will concentrate on the development of code that will
be tested according to levels introduced in the Section 4.2.

TClouds D2.4.2 Page 59 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Since the development tasks on the TClouds Platform and the applications are overlapped,
Activities 2 and 3 need to perform tests separately until the end of the Year 2 when the first
mockup integration (TClouds Platform v1) will be available. Meanwhile, partners can perform
unit and integration testing on their software and, then, they can perform system testing together
by executing the applications test cases on top of the TClouds Platform.

However, we expect some test cases to fail because only a subset of the security functionality
will be available in the first version of the TClouds Platform. The complete set will be available
at the end of the Year 3, when all subsystems introduced in the Year 1 deliverables will be
integrated in the final platform (TClouds Platform v2).

During the Year 3 another run of unit and integration tests will be executed for the new
software to ensure that it works together with the existing subsystems of the TClouds Platform
and, then, the system testing will be executed on the new version of the platform. Finally, the
acceptance testing can be performed by customers of the whole TClouds product in order to
verify that the latter satisfies the legal and business requirements from Activity 1.

4.3.1 Testing environment
Partners will start the testing activities during the Year 2, when they begin to implement the
software as defined in the deliverables. Before related tasks will take place it is necessary to
define the environment in which tests will be executed.

Since the software will be under heavy development especially in the first months, it is
necessary to setup two separate environments: one for running tests on software that is being
developed, so that it would be possible to detect and fix specific errors; another for testing the
interactions between subsystems that have been tested for a while, in order to find whether they
communicate in the correct way.

The first environment will be created on a dedicated machine that periodically builds the
code of the configured subsystems by fetching it from the TClouds code repository, launches
the tests defined and finally collects and stores the results obtained in a report. Since these tests
allow to evaluate the stability of the software, the environment must ensure that a subsystem is
isolated from each other during the test execution.

Once a subsystem becomes sufficiently stable, for instance the percentage of passed tests
is higher than the defined threshold, it could be integrated in the second environment which
consists of a Cloud built only for testing purposes. This environment will be used to test in-
teractions between subsystems developed from Activity 2 or between these subsystems and the
applications from Activity 3. For those subsystems that need to be deployed in a Cloud of
Clouds, the testing environment will be extended using other Cloud solutions, like Amazon
AWS or Rackspace.

4.3.2 Testing levels
During the project TClouds partners involved in the development of software will perform test-
ing activities at the following levels:

• Unit testing: each partner is responsible to perform unit tests on his subsystems. These
can be either black-box testing and white-box testing and will allow to determine whether
the software can be integrated in the Cloud environment. When a defect is encountered
on a subsystem the unit tests must be run after the software has been fixed and must show

TClouds D2.4.2 Page 60 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

that the issue has been resolved. Only after the tests are passed, the updated version of
the subsystem can be integrated in the Cloud environment.

• Integration testing: the integration tests allow to verify the interactions between sub-
systems that collaborate together to perform complex functions. The partners that own
these subsystems are responsible to develop the test cases that will run on the Cloud en-
vironment. If a subsystem exposes a function through the TClouds API, the partner can
test this type of interaction using a test driver, a simple program that contains a call to
that function. Instead, applications developers can perform integration tests by develop-
ing a stub, a software that exposes the same function of the TClouds API, but without its
implementation. These additional pieces of software are needed because the applications
and the TClouds Platform will be available only at the end of the Year 2.

• System testing: systems tests will be defined by the applications developers and will
consist in performing operations that require the interaction with the TClouds Platform
through the TClouds API. At the end of the Year 2 the test drivers and the stubs will be
replaced with the software developed. However all application test cases are expected to
pass only at the end of Year 3 when all the security functionality of the TClouds Platform
are implemented.

4.3.3 Testing activities workflow
A detailed workflow of the testing activities that should be performed is depicted in the Fig-
ure 4.2. The testing activities will be performed by four actors: the Partners, the Jenkins server,
the Cloud Administrator and the Tester.

1 Upload the code: the Partners are responsible to upload the code of their subsystems to
the TClouds code repository. A version control mechanism (e.g. Subversion) should be
used to keep track of the modifications occurred on the code over the time.

2 Configure Jenkins: the Partners can configure the Jenkins server running on the dedi-
cated machine (introduced in the Section 4.3.1) in order to execute automatic unit tests.
This machine will have installed all required software dependencies required to build the
code and to launch the tests. The Partners will find the instructions to setup Jenkins in the
Section 4.5.

3 Fetch latest code: the Jenkins server will fetch the latest code from a repository owned
by the Partners or from the TClouds code repository configured by TEC.

4 Build the code: the Jenkins server will build the fetched code and stores the logs in
its internal database. The instructions for the building phase must be specified by the
Partners during the setup of Jenkins.

5 Execute unit tests: the Jenkins server will launch the unit tests defined by the Partners.
These tests should produce an output compatible with the JUnit XML format (http:
//www.junit.org), so that Jenkins can parse the results obtained and can display
them in a Web page.

6 Store unit tests results: the Jenkins server stores the results of the executed unit tests in
the TClouds reports repository.

TClouds D2.4.2 Page 61 of 144

http://www.junit.org
http://www.junit.org

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

7 Download and install stable code: the Cloud Administrator is responsible to build
the infrastructure to be used for tests in the Cloud environment. This infrastructure will
be built using the OpenStack framework (www.openstack.org) as it is the platform
chosen by the TClouds project. The Cloud Administrator will integrate subsystems devel-
oped by the Partners by downloading the stable version from the TClouds code repository
and installing them in the Cloud nodes. When a faulty software is updated, he is respon-
sible for replacing the old version with the new one.

8 Launch integration/system tests

a) Automatic: the Jenkins server will coordinate the execution of automatic integra-
tion and system tests. It can execute the commands directly on the Cloud environ-
ment or can launch the tests locally on the dedicated machine if the subsystem is
reachable over the network.

b) Manual: the Tester will execute manual integration and system tests on the Cloud
environment through the Management interface. He will perform the steps described
in the test cases defined by the Partners.

9 Collect integration/system tests results

a) Automatic: the Jenkins server collects the outputs generated during the execu-
tion of the tests. These outputs must be compatible with the JUnit XML format,
otherwise ad hoc parsers must be developed to understand the custom format.

b) Manual: the Tester must observe the behavior of the software being tested dur-
ing its execution and must fill the report based on a template, reporting the results
obtained.

10 Store integration/system tests results

a) Automatic: the Jenkins server stores the reports obtained from the parsed tests
output in the TClouds reports repository.

b) Manual: the Tester stores the compiled reports in the TClouds reports repository
through the Management interface of the Cloud environment.

4.3.4 Test results evaluation and exit criteria
The testing activities will allow partners to improve the development process and to detect in
advance defects that may cause the whole system not to work as expected. During the tests
definition, it is possible to achieve different goals depending on the role a subsystem plays
in the Cloud environment. For example, a subsystem could be tested for its performances
because other subsystems may require that data is delivered by the former in a certain time
frame. Depending on the goal, a test may return completely different results that must be
interpreted by the test writer.

However, there are common goals that should be achieved when defining test cases. In
particular, for the TClouds project, test cases are needed to evaluate:

• Stability: a significant part of test cases should be defined to verify that the software
can handle different combinations of inputs without crashing. The number of tests passed
and their coverage will allow to determine when a software is ready for integration in the
Cloud environment.

TClouds D2.4.2 Page 62 of 144

www.openstack.org

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 4.2: Testing activities workflow

TClouds D2.4.2 Page 63 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

• Functionality: another set of test cases should be defined to verify whether the features
described in the design document are currently implemented or not. These tests are useful
to keep track of the software development and to determine whether it can be delivered in
time.

Once the tests are executed and their results are collected, it is needed to define criteria to
determine when a software can be considered of sufficient quality for release as part of the final
TClouds prototype. Since it is not aim of the TClouds project to develop a commercial product
that can be used in production environments but, instead, to deliver a prototype to demonstrate
research results from partners in the area of Cloud Computing, the tests can be considered
passed when the whole system works in the correct way under normal conditions. For example,
one aspect that will not be considered in this document is the misbehavior of the underlying
hardware or software that could lead to unexpected results.

TClouds D2.4.2 Page 64 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

4.4 Test plans for subsystems/prototypes

4.4.1 TrustedInfrastructure Cloud

4.4.1.1 Test methodology/strategy

The TrustedObjectsManager component will be tested in a manual way. The prerequisites for
this testing are a readily setup TrustedObjectsManager, a TrustedDesktop- as well as a Trust-
edServer instance connected together via network (LAN/WAN). In order to operate the tests,
at least one applicable virtual machine instance (VirtualBox) is required for addressing the en-
visaged tests. A successful test will fulfill all test cases described in Chapter 4.4.1.2. This test
cannot be automated since user interaction with different physical machines is required.

4.4.1.2 Test cases

• Type of test: manual

• Coverage: high

• Description of the procedure:

– setup and configure TrustedObjectsManager

– setup and configure TrustedServer

– setup and configure TrustedDesktop

– expected result: Virtual machine runs and TrustedServer and can be used on Trusted-
Desktop

TClouds D2.4.2 Page 65 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.1.2-1/ Create compartment on TrustedObjectsManager
DESCRIPTION Create a compartment on TrustedObjectsManager in order to be capable

to start and stop it on TrustedServer and use it’s provided services on
TrustedDesktop from within the same TrustedVirtualDomain

TYPE Functional test
PRECONDITIONS The user is logged in on the TrustedObjectsManager. A virtual-disk

image is available locally
STEPS

1 User creates a new TrustedVirtualDomain by choosing ”New
TVD” and assigning a name and a color to it

2 User right-clicks on the newly created TrustedVirtualDomain and
chooses ”Compartments”

3 User selects ”New”, ”Compartment Manager” and clicks ”Up-
load”

4 User selects the unassigned virtual-disk image and presses ”OK”
5 User waits for the upload to be finished
6 User waits for the calculation of the SHA1-sum
7 User clicks ”Close”
8 User assigns a compartment name (without whitespaces) to the

newly created compartment
9 User checks ”Enable Compartment”

10 User unchecks ”Enforce client update”
11 User chooses the uploaded virtual-disc image from the dropdown

menu
12 User clicks ”Apply” and ”OK”

RESULT Passed
Failed

TClouds D2.4.2 Page 66 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.1.2-2/ Start compartment
DESCRIPTION Start a compartment on TrustedServer from the TrustedObjectsMan-

ager’s GUI
TYPE Functional test
PRECONDITIONS The user is logged in on the TrustedObjectsManager. The TrustedServer

is connected to the TrustedObjectsManager. A compartment is installed
but not running on the TrustedServer.

STEPS
1 The user selects the TrustedServer, the compartment should be

started on
2 The user selects a compartment that is installed but not currently

running on the TrustedServer
3 The user triggers a start of this compartment on the TrustedServer
4 The compartment should be running on the TrustedServer

REMARKS

RESULT Passed
Failed

TEST CASE ID /TC 4.4.1.2-3/ Service usable from TrustedDesktop
DESCRIPTION A service within a running compartment on TrustedServer can be used

from the same TrustedVirtualDomain on TrustedDesktop
TYPE Functional test
PRECONDITIONS The TrustedServer is running and a compartment providing a service is

started. The user is logged in on TrustedDesktop. The TrustedDesk-
top is connected to the TrustedServer. A compartment within the same
TrustedVirtualDomain as the service provided by the TrustedServer, is
started on TrustedDesktop.

STEPS
1 User uses the service from within the compartment
2 The service answers as expected

REMARKS

RESULT Passed
Failed

TClouds D2.4.2 Page 67 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.1.2-4/ Stop compartment
DESCRIPTION Start a compartment on TrustedServer from the TrustedObjectsMan-

ager’s GUI
TYPE Functional test
PRECONDITIONS The user is logged in on the TrustedObjectsManager. The TrustedServer

is connected to the TrustedObjectsManager. A compartment is running
on the TrustedServer.

STEPS
1 The user selects the TrustedServer on which the running compart-

ment should be stopped
2 The user selects the running compartment on the TrustedServer
3 The user triggers a stop of this compartment on the TrustedServer
4 The compartment should be shutdown on the TrustedServer

REMARKS

RESULT Passed
Failed

TClouds D2.4.2 Page 68 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

4.4.2 Security Assurance of Virtualized Environments (SAVE)

4.4.2.1 Test methodology/strategy

The Discovery component will be tested in a manual way. The requirement for this testing is an
existing OpenStack infrastructure (with our OpenStack discovery extensions) that we will try to
discover. A successful test will return the discovery data for this OpenStack infrastructure. This
test may become automated, once the discovery and infrastructure is configured, by periodically
trying to perform the discovery.

The Analysis component is tested using automated unit testing (Junit) as well as overall
system testing. The unit tests will verify that the translation of the discovery data into our
unified graph model is performed correctly by using sample input data and reference output
data. The overall system testing will perform the analysis of known good and known vulnerable
infrastructures (given by its discovery data), which need to be correctly identified as such.

4.4.2.2 Test cases

Discovery
• type of test: manual / semi-automated

• coverage: medium

• description of the procedure:

– setup OpenStack test infrastructure with our discovery extension
– configure discovery with host and credentials
– run discovery with configuration (can be done periodically afterwards for semi au-

tomation)
– expected output: discovery data and successful termination

Analysis Unit Testing
• type of test: automated

• coverage: medium

• description of the procedure:

– Test are aggregated in a JUnit runner

Analysis System Testing
• type of test: manual / semi-automated

• coverage: medium

• description of the procedure:

– Run analysis against known good and known vulnerable infrastructures given by its
discovery data

– For known good: analysis should return no problems
– For known vulnerable: indicate isolation problems

TClouds D2.4.2 Page 69 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

4.4.3 Resource-efficient BFT (CheapBFT)

4.4.3.1 Test methodology/strategy

CheapBFT is a system with complex setting and configuration whose main purpose is to mask
occurring errors. That makes it relatively difficult to test the system in an automated manner.
Therefore, CheapBFT is tested manually. However, scripts and tools are provided to enable
an easy set-up, conducting, and analyzing of test runs. Since CheapBFT is not a Byzantine
fault tolerant service itself but a basis for the implementation of such services, test applications
are required. Here, we employ an artificial benchmark and, as a more realistic application, the
secure log service whose test plan is describe in Section 4.4.8.

Before the tests can be carried out, three machines have to be equipped with FPGA cards
which in turn have to be initialized with the firmware of the trusted hardware module of Cheap-
BFT, named Cash. Further, a Linux system and all CheapBFT software components must have
been installed on the provided machines. The machines must be connected over an TCP/IP
network. Moreover, one additional machine that hosts the clients for the benchmark and the log
service is required. (A more detailed description of the set-up and its installation can be found
at Section ??.)

The system (comprising CheapBFT and the log service hosted on it) and all tests can be
started by means Bash of scripts. The outcome of test runs are basically log messages and other
feedback provided to a tester in form of files and as console or graphical output. The given
feedback enables a tester to assess the proper functioning of the system and to evaluate the
performance in comparison with the resource usage.

4.4.3.2 Test cases

TClouds D2.4.2 Page 70 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.3.2-1/ Fault-free operation
DESCRIPTION As a first simple function test, an artificial benchmark application is ex-

ecuted on top of CheapBFT. A client sends requests of configurable size
to the system. All requests are handled through the active replicas by
generating replies and updates for the passive replicas (also with con-
figurable size). This is done without any additional (simulated) compu-
tation.

TYPE Functional test
PRECONDITIONS

The test environment, which comprises four machines (three servers
and one client) that are provided with all required hardware and soft-
ware modules, is up and running.

CheapBFT is properly configured, especially the addresses of the ma-
chines and the location of the program files are set.

STEPS
1 Select CheapTiny as consensus protocol:

./run_micro.bash setup_prot cheap

2 Start the test:

./run_micro.bash start
[--warmup=<warm-up time in sec>]
[--run=<test run time in sec>]
[--micro.reqsize=<request size>]
[--micro.replysize=<reply size>]
[--micro.updsize=<update size>]

3 The client should continuously issue requests and the replicas
should respond them.

4 Shut down and clean up:

./run_micro.bash cleanup -t

NOTES
The script run micro.bash is located at the directory cheap/bin.

Please note, that the syntax of the commands might change in future
versions.

REMARKS

RESULT Passed
Failed

TClouds D2.4.2 Page 71 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.3.2-2/ Comparison of different consensus protocols
DESCRIPTION In this test, the behavior and resource usage of CheapTiny is compared

to MinBFT. The basis for the comparison is the same benchmark appli-
cation as used in text case /TC 4.4.3.2-1/ .

TYPE Benchmark test
PRECONDITIONS Same as for test case /TC 4.4.3.2-1/ .
STEPS

1 Select CheapTiny or MinBFT as consensus protocol:

./run_micro.bash setup_prot cheap

./run_micro.bash setup_prot min

2 Start the benchmark (see test case /TC 4.4.3.2-1/) for each pro-
tocol with different arguments for the request, reply, and update
size.

3 Shut down and clean up the system after each test run.
4 Depending on the settings for sizes of requests, replies, and up-

dates, the resource monitors should show different resource us-
age between the the leader of the replica group, the second active
replica and the passive one in the case of CheapTiny. In the case
of MinBFT, there should be only a noticeable difference between
the leader and the other two active replicas.

NOTES
See test case /TC 4.4.3.2-1/ .

Contrary to the simple benchmark employed here, a real application
would carry out some kind of computation or other activities to fulfill
the requests, which would be more beneficially for CheapBFT regard-
ing the resource usage because of the lower count of replicas actively
executing requests. However, this test is mainly meant to illustrate the
different characteristics in resource usage. Alternatively, the Log Ser-
vice application from test case /TC 4.4.3.2-3/ can be employed.

REMARKS

RESULT Passed
Failed

TClouds D2.4.2 Page 72 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.3.2-3/ Operation in the presence of errors
DESCRIPTION CheapBFT is meant for the provisioning of fault-tolerant services. This

test is to examine the proper functioning of the system in the presence of
errors. Here, the more realistic demo application, the secure log service,
is used.

TYPE Functional test
PRECONDITIONS Same as for test case /TC 4.4.3.2-1/ .
STEPS

1 Select CheapTiny as consensus protocol:

./run_logsrv.bash setup_prot cheap

2 Start the test:

./run_logsrv.bash start

3 The demo client should continuously invoke store and retrieve
operations of the log service.

4 Induce an error into the log file of one replica:

./run_logsrv.bash inderr 1

5 CheapBFT should eventually detect the error and should switch
from CheapTiny to MinBFT. This can be verified by the tester
through corresponding log messages and status information.

6 The client should not be affected (except of changed timings) by
the induced errors. It should still receive correct answers from the
the log service.

NOTES
See test case /TC 4.4.3.2-1/ .

The script run logsrv.bash is located at the directory
logservice/bin.

REMARKS

RESULT Passed
Failed

TClouds D2.4.2 Page 73 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

4.4.4 Secure Block Storage

4.4.4.1 Test methodology/strategy

The Secure Block Storage will be tested manually, since there are many diverse components
involved which do net lend themselves well for automatic testing. For instance, testing a hyper-
visor, cannot be done on the same machine where the tests are executed at, due to the fact that
it needs to run on dedicated hardware because it is the most low level piece of software running
on a PC. Moreover, the required trusted boot setup requires an actual hardware TPM to talk to
in order to verify the correctness of the setup. This requires a non-trivial testing setup. Further-
more, the interaction between the various domains (VMs) often requires manual intervention to
emulate the steps a cloud administrator or consumer would take.

In testing our Secure Block Storage, it is essential to focus on the exact required function-
ality. We shall not test functionality of the Xen hypervisor which do not directly relate to the
requirements of confidentiality and integrity of consumer VMs.

Our test cases reflect the customer’s requirements for security objectives throughout the
entire workflow of VM deployment. More precisely, this is confidentiality and integrity in order
to protect the assests from anybody else but the customer, especially from the cloud provider or
any other cloud tenants. The test cases further reflect a temporal story line from a customer’s
perspective starting at the moment he or she bundles the VM together with keys, then securely
uploads it, to the moment it is running in the verified cloud and has secure access to those keys.

4.4.4.2 Test cases

TEST CASE ID /TC 4.4.4.2-1/ Test domain builder functionality
DESCRIPTION Start up the domain builder stubdom (DomT), testing whether it can

communicate with the TPM (dependency for other tests)
TYPE Functional test
PRECONDITIONS The domain builder has ownership of the TPM
STEPS

1 Machine is powered on.
2 GRUB boots Tboot with Xen, Dom0 and DomT as multiboot

modules.
3 In Dom0 the admin uses the standard Xen tool which has been

patched:
xl domt --out-file=˜/wrapkey.enc getkey.

RESULT Passed
Failed

TClouds D2.4.2 Page 74 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.4.2-2/ Customer makes encrypted VM available
DESCRIPTION Customer encrypts her VM with cloud key
TYPE Functional test
PRECONDITIONS Domain builder initialized (test 4.4.4.4.4.2-1)
STEPS

1 The customer takes a working VM image (disk image).
2 The image is encrypted using a symmetric key k.
3 the key symmetric key k is encrypted with the asymmetric key

from test 4.4.4.4.4.2-1.

RESULT Passed
Failed

TEST CASE ID /TC 4.4.4.2-3/ Deploy and run secure image
DESCRIPTION Deploy the customer’s encrypted image to the cloud
TYPE Functional test
PRECONDITIONS Customer VM deployed (test 4.4.4.4.4.2-2)
STEPS

1 Using scp the customer’s image is copied to the Dom0 domain.
2 In Dom0 the cloud admin configures the domain config in
/etc/xen/domain X.cfg for this domain to have the domc
= 1 flag.

3 The cloud admin starts the domain using
xl create /etc/xen/domain X.cfg.

RESULT Passed
Failed

TEST CASE ID /TC 4.4.4.2-4/ Test Security of SBS
DESCRIPTION Test the avenues via which the cloud administrator can attack
TYPE Functional test
PRECONDITIONS Customer VM running (test 4.4.4.4.4.2-3)
STEPS

1 The cloud admin tries in vain a hexdump on the customers en-
crypted VM.

2 The cloud admin tries in vain to use the
xc map foreign range() hypercall to do introspection
(for instance, with the help of the LibVMI1 library which
abstracts from the bare hypercall).

RESULT Passed
Failed

1http://code.google.com/p/vmitools/.

TClouds D2.4.2 Page 75 of 144

http://code.google.com/p/vmitools/

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

4.4.5 Access Control as a Service (ACaaS)

4.4.5.1 Test methodology/strategy

ACaaS will be tested manually. As ACaaS prototype is serving the purpose of proof-of-concept,
the major aspects to be covered through the tests will be functionality.

A working OpenStack cloud should be ready with all those OpenStack services replaced
with our modified ACaaS-enabled version. This cloud will include at least two OpenStack com-
pute node, hosting nova-compute and nova-network, and one OpenStack management node,
hosting other nova services, namely nova-scheduler, nova-api, nova-volume, nova-objectstore
and glance services. The management node can at the same time acting as the compute node.
Hence at least two connected machines are needed. At least one Virtual Machine image must
be pre-configured and uploaded to glance for demonstration. This image can be as simple as a
Just-enough Linux system.

4.4.5.2 Test cases

TEST CASE ID /TC 4.4.5.2-1/ User requirement management
DESCRIPTION Test the user requirment management module. Ensure user requirement

catalogues can be added, removed and queried by administrators cor-
rectly.

TYPE Functional test
STEPS

1 Create a requirement. The correct requirement is created with a
valid requirement ID.

2 Remove a requirement. The correct requirement with the in-
tended requirement ID is removed.

3 List all requirements. All existing requirements are displayed.

RESULT Passed
Failed

TEST CASE ID /TC 4.4.5.2-2/ Infrastructure property management
DESCRIPTION Ensure infrastructure properties can be specified, removed and queried

correctly
TYPE Functional test
STEPS

1 Specify a property to a host and query the host’s properties. The
target host is specified with the correct properties.

2 Remove a property of a host and query the host’s properties. The
correct properties is removed from the target host.

RESULT Passed
Failed

TClouds D2.4.2 Page 76 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.5.2-3/ ACaaS-based VM scheduling
DESCRIPTION Ensure VMs with specified requirement can only run on hosts with ap-

propriate properties
TYPE Functional test
PRECONDITIONS User requirements and infrastructure security properties have been set

up (test 4.5.4.4.5.2-1, 4.5.4.4.5.2-2)
STEPS

1 Run a VM instance with at least one host satisfying its require-
ments, expecting the VM scheduled to the host with satisfying
properties

2 Run a VM instance with no host satisfying its requirements. ex-
pecting VM not scheduled.

3 Run a VM instance with at least one host not running any VM
belonging to a specified user, expecting the VM scheduled to the
host with no VM belonging to the specified user running on it.

4 Run a VM instance with all hosts running VMs belonging to a
specified user, expecting the VM not scheduled.

RESULT Passed
Failed

TClouds D2.4.2 Page 77 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

4.4.6 BFT-SMaRt

4.4.6.1 Test methodology/strategy

BFT-SMaRt has test cases defined using the JUnit framework. The tests are placed together
with the source code and can be executed using Java or Apache Ant. The environment to run
BFT-SMaRt and the JUnit tests must have JRE verion 1.5 or later installed. To run the test
cases using the Ant script provided with the source code it is necessary to have Apach Ant
installed. JUnit can be downloaded from www.junit.org and Apache Ant can be downloaded
from ant.apache.org. Together with the BFT-SMaRt source code there are a few demonstration
packages to be used as examples on how to use BFT-SMaRt interfaces. These demo is not part
of the test cases but can be used to see the framework running and clients using it. The demos
are in the package navigators.smart.tom.demo. Instruction to run the demo packages are in the
file README.txt, in the root of BFT-SMaRt source code.

4.4.6.2 Test cases

Tests in BFT-SMaRt are performed using code defined for the demo package. The tests tries to
perform different operations in BFT-SMaRt to guaranty that the protocol responds as expected.

TEST CASE ID /TC 4.4.6.2-1/ Test write and query of data in the regular case
DESCRIPTION The test will insert data in a key value store and queries the servers to

guarantee that data was correctly inserted.
TYPE Unit test
PRECONDITIONS JUnit framework and JRE are installed correctly.
STEPS

1 Run the test BFTMapClientTest.testRegularCase().

RESULT Passed
Failed

TEST CASE ID /TC 4.4.6.2-2/ Test the protocol in the presence of a faulty non leader
replica

DESCRIPTION The test will insert data in a key value store and queries the servers to
guarantee that data was correctly inserted. The test will insert and verify
data. After that a replica is turned off and insertion and query of data is
performed to verify if the protocol still responds as expected.

TYPE Unit test
PRECONDITIONS JUnit framework and JRE are installed correctly.
STEPS

1 Run the test BFTMapClientTest.testStopNonLeader().

RESULT Passed
Failed

TClouds D2.4.2 Page 78 of 144

http://www.junit.org
http://ant.apache.org

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.6.2-3/ Test the state transfer protocol
DESCRIPTION Data is inserted and verified in a key value store. A non leader replica is

turned off, data is inserted and the replica is turned on again. A different
non leader replica is turned off after that. This test verifies if the first
replica that was turned off and on again is capable of respond to requests
using the data it received from the state transfer protocol.

TYPE Unit test
PRECONDITIONS JUnit framework and JRE are installed correctly.
STEPS

1 Run the test BFTMapClientTest.testStopAndStartNonLeader().

RESULT Passed
Failed

TEST CASE ID /TC 4.4.6.2-4/ Test the leader change protocol
DESCRIPTION Data is inserted and verified in a key value store. The leader replica is

turned off. Requests are sent after the leader removal and results tested
to verify if the component still behaviors as expected.

TYPE Unit test
PRECONDITIONS JUnit framework and JRE are installed correctly.
STEPS

1 Run the test BFTMapClientTest.testStopLeader().

RESULT Passed
Failed

TEST CASE ID /TC 4.4.6.2-5/ Test the leader change protocol and state transfer proto-
col

DESCRIPTION Data is inserted and verified in a key value store. All replicas, includ-
ing the leader, are turned off and on again, once at a time, in a round
robin fashion. After each removal and inclusion of replicas, the state of
the application is verified to guarantee that no data was lost during the
process.

TYPE Unit test
PRECONDITIONS JUnit framework and JRE are installed correctly.
STEPS

1 Run the test BFTMapClientTest.testStopLeaders().

RESULT Passed
Failed

4.4.6.3 Demos

BFT-SMaRt source code includes a demo package with several examples to be used as a usage
reference. The package is navigators.smart.tom.demo. Each folder inside that package is one

TClouds D2.4.2 Page 79 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

example containing the client and server classes. To run the demos, there is a script in runscripts
folder. Files with .sh and .bat extensions are provided. The command line with arguments to
run the scripts are described in the file README.txt, in the source root.

TClouds D2.4.2 Page 80 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

4.4.7 Resilient Object Storage (DepSky)

4.4.7.1 Test methodology/strategy

DepSky works with different clouds providers to store data in different servers. To test it it is
necessary to have accounts in cloud providers, to be able to store data and analyse the stored
data. After have the accounts created it is necessary to have the user and private keys to be used
to manipulate data. DepSky have drivers written for different providers as Amazon, Nirvanix.

4.4.7.2 Test cases

In the tests described here, DepSky stored data units in four Amazon S3 servers distributed
in different locations. To define the locations there is the file configClouds under the config
directory. All tests described here contains a startup procedure described here: Start the DepSky
client running the code ./DepSky Run.sh <container name> <client id> <DepSky mode>.
The options are described in the instructions file README.txt. For the tests performed we
used ./DepSky Run.sh container1 0 1 as the command line. Wait for the client to connect to
the servers. It is confirmed by the display of the message ”All drivers started.”. To verify that
the data was written to the cloud, it is necessary to open the cloud provider console. In the
tests written we used Amazon S3, so, to verify the data we opened the Amazon S3 console in
console.aws.amazon/s3.

TEST CASE ID /TC 4.4.7.2-1/ Test write and query of data in the regular case
DESCRIPTION The test will run the DepSky client to write data to the cloud and then

query the cloud to verify if the data was correctly inserted.
TYPE Manual test
PRECONDITIONS Have an Amazon S3 account created with the keys written in the AWS-

Credentials.properties configuration file in the root of DepSky source
code. Have the DepSky client code, DepSky Run.sh with execution
privileges in the file system.

STEPS
1 First, DepSky client must be initialized, as described above.
2 Data is inserted, using the command write.
3 Verify in the cloud console that the buckets with the data units

was created for the locations defined in the configuration file con-
figClouds.

4 Verify if it is not possible to read useful data from the data units.
5 Query the data is retrieved with the command read.

RESULT Passed
Failed

TClouds D2.4.2 Page 81 of 144

http://console.aws.amazon/s3

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.7.2-2/ Validate DepSky confidentiality and consistency against
data loss or server is disconnected

DESCRIPTION The test will run the DepSky client to write data to the cloud, remove
the data written from f servers and query the data in the client.

TYPE Manual test
PRECONDITIONS Have an Amazon S3 account created with the keys written in the AWS-

Credentials.properties configuration file in the root of DepSky source
code. Have the DepSky client code, DepSky Run.sh with execution
privileges in the filesystem.

STEPS
1 First, DepSky client must be initialized, as described above.
2 Data is inserted, using the command write.
3 Verify in the cloud console that the buckets with the data units

was created for the locations defined in the configuration file con-
figClouds.

4 Verify if it is not possible to read useful data from the data units.
5 Choose one server from the list of servers and remove the data

units created. The data units are inside the folder with the con-
tainer name defined when the DepSky client was started.

6 Query the data is retrieved with the command read.

RESULT Passed
Failed

TClouds D2.4.2 Page 82 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.7.2-3/ Validate DepSky confidentiality and consistency for
modified data

DESCRIPTION The test will run the DepSky client to write data to the cloud and modify
the data written in f servers.

TYPE Manual test
PRECONDITIONS Have an Amazon S3 account created with the keys written in the AWS-

Credentials.properties configuration file in the root of DepSky source
code. Have the DepSky client code, DepSky Run.sh with execution
privileges in the filesystem.

STEPS
1 First, DepSky client must be initialized, as described above.
2 Data is inserted, using the command write.
3 Verify in the cloud console that the buckets with the data units

was created for the locations defined in the configuration file con-
figClouds.

4 Verify if it is not possible to read useful data from the data units.
5 Choose one server from the list of servers and open the folder

with the container name defined.
6 Replace data units with files with the same name but different

content.
7 Query the data is retrieved with the command read.

RESULT Passed
Failed

TClouds D2.4.2 Page 83 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

4.4.8 LogService

4.4.8.1 Test methodology/strategy

Log Service is the component that provides secure logging capabilities in the TClouds architec-
ture. The core element of the Log Service is the libsklog library. Such a library is mainly
written in C, hence is possible to implement unit tests using frameworks like CUnit [KS12] or
Cmockery [Mil12]. We select the framework CUnit because it is capable to export test results
in a format which is readable and importable by Jenkins. Despite libsklog is designed to
operate on a distributed environment is possible to install it on a single node in order to execute
the tests without losing test case. We base the development of the libsklog library on Debian
Wheezy. To execute the tests the following packages need to be installed:

available as Debian packages
libtool
autoconf
build-essentials
OpenSSL >= 1.0.0
SQLite3
libuuid
libconfig >= 1.4.8
libjansson >= 2.3.1
libreadline
python-sphinx
python-bottle
python-dev
libmysqlclient-dev

available from sources
libumberlog (https://github.com/algernon/libumberlog)

4.4.8.2 Test cases

Tests cover the main functionality of Log Service. In detail, we test the initialisation of a new
logging session, the logging of a set of dummy events, the retrieval of already opened logging
session and finally, the verification of a logging session. The tests are provided within the
libsklog source code. In order to run them, it is necessary to build the library with the
option --enable-tests as shown in the Listing 4.1:

cd /temp
tar zxvf libsklog-<version>.tar.gz
cd libsklog-<version>
./autogen.sh
./configure --enable-tests --with-storage=rest
make
cd test

Listing 4.1: Commands to build the libsklog library in testing mode

TClouds D2.4.2 Page 84 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.8.2-1/ Checking for malformed input
DESCRIPTION Tests the behaviour of the main functions in case of malformed input.

In detail, is checked the behaviour of the function when a NULL pointer
is passed as argument. Moreover, is checked how the functions reacts
when a data that non respect the specifications is passed as input (for
instance when the accepted values are α, β but γ is supplied).

TYPE Functional test
PRECONDITIONS libsklog built with --enable-test option (Listing 4.1).
STEPS

1 Exec the command:

./run_tests --malformed-input

TEST CASE ID /TC 4.4.8.2-2/ Logging session initialisation
DESCRIPTION Tests the initialisation of a new logging session. The test simulates the

initialisation message exchanging among the Cloud Component and the
Log Core. The test is considered passed if a new log file is created and
if such a file contains the initialisation log entries.

TYPE Functional test
PRECONDITIONS libsklog built with --enable-test option (Listing 4.1).
STEPS

1 Exec the command:

./run_tests --init-session

TEST CASE ID /TC 4.4.8.2-3/ Log dummy events
DESCRIPTION Tests the execution of the logging operation. The test logs a set of 1000

dummy events that are bound to the logging session initialised in the
testcase /TC 4.4.8.2-2/ and checks if the generated log file contains
1000 log entries plus 3 control entries (2 initialisation entries + 1 closure
entry).

TYPE Functional test
PRECONDITIONS libsklog built with --enable-test option (Listing 4.1). Execu-

tion of testcase /TC 4.4.8.2-2/ .
STEPS

1 Exec the command:

./run_tests --init-session --log-events

TClouds D2.4.2 Page 85 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.8.2-4/ Logging sessions retrieval
DESCRIPTION Checks the retrieval of already initialised logging sessions. The test

checks if the list size is ≥ 1.
TYPE Functional test
PRECONDITIONS libsklog built with --enable-test option (Listing 4.1). Execu-

tion of testcase /TC 4.4.8.2-2/ .
STEPS

1 Exec the command:

./run_tests --retrieve-sessions

TEST CASE ID /TC 4.4.8.2-5/ Logging session verification
DESCRIPTION Tests the verification process in case of undamaged log and in case of

damaged log. In the first case the test pass if the verification return a
positive result, in the second case, the test pass if the verification result
is negative.

TYPE Functional test
PRECONDITIONS libsklog built with --enable-test option (Listing 4.1). Execu-

tion of testcase /TC 4.4.8.2-3/ .
STEPS

1 Exec the command:

./run_tests --init-session --log-events \
--verify-session

TClouds D2.4.2 Page 86 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

4.4.9 Remote Attestation Service

4.4.9.1 Test methodology/strategy

The test cases cover only the RA Verifier component of the Remote Attestation Service, as
it is the one developed by POL. Since RA Verifier is entirely written in Python language,
we will implement them by using the Pyunit framework.

Our test cases check the functionality of the component, as it is very critical that the service
gives the expected verification results, and accomplish this task through the black-box testing
technique. First, they verify that data have been correctly inserted into the database by perform-
ing some queries and, then, compare the results obtained from the verification of sample IMA1

measurements files with the expected ones.
Tests can be executed on a single machine and require the installation of the software spec-

ified in Section 5.2 for both nodes and the following Fedora packages: python-unittest2
and rpmdevtools.

4.4.9.2 Test cases

1Integrity Measurement Architecture: see http://linux-ima.sourceforge.net for details

TClouds D2.4.2 Page 87 of 144

http://linux-ima.sourceforge.net

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.9.2-1/ Verify DB data
DESCRIPTION This test case verifies that data have been correctly inserted into the

database.
TYPE Functional test
PRECONDITIONS The Apache Cassandra database is up and running
STEPS

1 Download the following Fedora 16 packages in a temporary di-
rectory f16-pkgs:

Pkg 1: http://kojipkgs.fedoraproject.org//packages/curl/7.21.

7/7.fc16/x86_64/curl-7.21.7-7.fc16.x86_64.rpm

Pkg 2: http://kojipkgs.fedoraproject.org//packages/curl/7.21.

7/7.fc16/x86_64/libcurl-7.21.7-7.fc16.x86_64.rpm

Pkg 3: http://kojipkgs.fedoraproject.org//packages/curl/7.21.

7/7.fc16/x86_64/libcurl-devel-7.21.7-7.fc16.x86_64.rpm

2 Execute this command to insert data into the database:

$ update_pkgs.sh -d f16-pkgs -n F16 -c x86_64 -t testing

3 For each digest, retrieve the record stored in the database and
check the following statements:

• 976a6505edeae28ccb63b491b91bce6113e87779 is the digest of the
file usr/bin/curl which belongs to Pkg 1

• 8c9f2d95d80d24332139bb33da33a1340b35e1d6 is the digest of the
file usr/lib64/libcurl.so.4.2.0 which belongs to Pkg 2

• f9ca79dbbab0d2d2e190904b9fe0e451a7ce901e is the digest of the
file usr/include/curl/curl.h which belongs to Pkg 3

4 The file usr/bin/curl is of type executable and depends on
the following shared libraries:
libcurl.so.4, librt.so.1, libz.so.1, libpthread.so.0,

libc.so.6, libidn.so.11, liblber-2.4.so.2, libldap-2.4.so.2,

libgssapi krb5.so.2, libkrb5.so.3, libk5crypto.so.3,

libcom err.so.2, libssl3.so, libsmime3.so, libnss3.so,

libnssutil3.so, libplds4.so, libplc4.so, libnspr4.so,

libdl.so.2, libssh2.so.1, ld-linux-x86-64.so.2, libresolv.so.2,

libsasl2.so.2, libkrb5support.so.0, libkeyutils.so.1,

libssl.so.10, libcrypto.so.10, libcrypt.so.1, libselinux.so.1,

libfreebl3.so

5 The file usr/lib64/libcurl.so.4.2.0 is of type library

and has the following aliases:
libcurl.so, libcurl.so.4

TClouds D2.4.2 Page 88 of 144

http://kojipkgs.fedoraproject.org//packages/curl/7.21.7/7.fc16/x86_64/curl-7.21.7-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/curl/7.21.7/7.fc16/x86_64/curl-7.21.7-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/curl/7.21.7/7.fc16/x86_64/libcurl-7.21.7-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/curl/7.21.7/7.fc16/x86_64/libcurl-7.21.7-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/curl/7.21.7/7.fc16/x86_64/libcurl-devel-7.21.7-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/curl/7.21.7/7.fc16/x86_64/libcurl-devel-7.21.7-7.fc16.x86_64.rpm

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

TEST CASE ID /TC 4.4.9.2-2/ Test verification of sample IMA measurements files
DESCRIPTION This test case verifies a set of sample IMA measurements files using

the RA Verifier component and compares results obtained with those
expected.

TYPE Functional test
PRECONDITIONS The Apache Cassandra database is up and running
STEPS

1 Download the following Fedora 16 packages in a temporary di-
rectory f16-pkgs:

Pkg 1: http://kojipkgs.fedoraproject.org//packages/coreutils/

8.12/7.fc16/x86_64/coreutils-8.12-7.fc16.x86_64.rpm

Pkg 2: http://kojipkgs.fedoraproject.org//packages/coreutils/

8.12/6.fc16/x86_64/coreutils-8.12-6.fc16.x86_64.rpm

Pkg 3: http://kojipkgs.fedoraproject.org//packages/glibc/2.

14.90/24.fc16.9/x86_64/glibc-2.14.90-24.fc16.9.x86_64.rpm

Pkg 4: http://kojipkgs.fedoraproject.org//packages/glibc/2.

14.90/24.fc16.7/x86_64/glibc-2.14.90-24.fc16.7.x86_64.rpm

2 Execute this command to insert data into the database:

$ update_pkgs.sh -d f16-pkgs -n F16 -c x86_64 -t updates

3 Generate the sample IMA measurements files as follows:

Sample A: all digests of files from Pkgs 1,3

Sample B: same as above + an unknown digest

Sample C: same as above + a digest of file from Pkg 2

Sample D: same as above + a digest of file from Pkg 4

4 Run the verification of sample IMA measurements files by
prompting the command:

$ ra_verifier.py -i <sample_ima_measurements_file>

The script should return the following output:

Sample A: 613 ok, 0 unknown, 0 pkg-security, 0 pkg-not-security

Sample B: 613 ok, 1 unknown, 0 pkg-security, 0 pkg-not-security

Sample C: 613 ok, 1 unknown, 0 pkg-security, 1 pkg-not-security

Sample D: 506 ok, 1 unknown, 109 pkg-security, 0 pkg-not-security

where each field indicates the number of measurements of files
that:

• ok: have a known digest and belong to the most recent package

• unknown: have an unknown digest

• pkg-security: belong to a package with security updates

• pkg-not-security: belong to a package with other updates

TClouds D2.4.2 Page 89 of 144

http://kojipkgs.fedoraproject.org//packages/coreutils/8.12/7.fc16/x86_64/coreutils-8.12-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/coreutils/8.12/7.fc16/x86_64/coreutils-8.12-7.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/coreutils/8.12/6.fc16/x86_64/coreutils-8.12-6.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/coreutils/8.12/6.fc16/x86_64/coreutils-8.12-6.fc16.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/glibc/2.14.90/24.fc16.9/x86_64/glibc-2.14.90-24.fc16.9.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/glibc/2.14.90/24.fc16.9/x86_64/glibc-2.14.90-24.fc16.9.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/glibc/2.14.90/24.fc16.7/x86_64/glibc-2.14.90-24.fc16.7.x86_64.rpm
http://kojipkgs.fedoraproject.org//packages/glibc/2.14.90/24.fc16.7/x86_64/glibc-2.14.90-24.fc16.7.x86_64.rpm

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

4.5 Jenkins server
According to its Web site (http://jenkins-ci.org) “Jenkins is an award-winning ap-
plication that monitors executions of repeated jobs, such as building a software project or jobs
run by cron. Among those things, current Jenkins focuses on the following two jobs: [...] build-
ing/testing software projects continuously and [...] monitoring executions of externally-run
jobs”.

We chose this software because it will simplify for partners the process of building the
code and launching automatic tests that have already been defined in the Section 4.4. Among
others, it is currently used by Apache (https://builds.apache.org) and OpenStack
(http://jenkins.openstack.org - requires registration).

Our Jenkins installation is running on a dedicated machine hosted by TEC and can be con-
tacted at the URL: http://jenkins.tclouds-project.eu. The main Web page is
shown in the Figure 4.3 where actually only the POL-LogService subsystem has been config-
ured. We expect that other partners will progressively register their subsystems during the Year
2.

Figure 4.3: TClouds Jenkins Web page

4.5.1 Subsystem setup
The procedure required for configuring Jenkins to build and test a subsystem is very simple and
consists of a few steps. The complete documentation that describes all configuration parameters
can be found on the Jenkins Web site. In this section we provide a brief tutorial to build a
subsystem written in C language using Jenkins.

1 In the main TClouds Jenkins Web page click the mouse over the icon named “New Job”
on the top right corner.

2 Prompt the “Job name” in the text field, select the checkbox “Build a free-style software
project” and, then, click the OK button.

3 In the loaded Web page there are a lot of configuration parameters used by Jenkins to
determine the operations that will be performed during the building and testing phases.

TClouds D2.4.2 Page 90 of 144

http://jenkins-ci.org
https://builds.apache.org
http://jenkins.openstack.org
http://jenkins.tclouds-project.eu

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

In order to configure the former phase, it is needed to select the correct version control
system used to manage the code (CVS, git and Subversion are currently supported) and
to provide a valid URL of the repository.

4 In the section “Build” of the same Web page, it is necessary to provide the instructions
for building the subsystem. These may consist of standard Linux commands (e.g. make),
or custom build scripts. Finally, at the end of the Web page, click the “Save” button to
save the configuration.

5 In the main Web page, click on the new job added and try to build the code by clicking
the mouse over the icon named “Build Now” on the top right corner.

It could be possible that the build fails due to some missing software dependencies. In this
case, it is necessary to install them manually by accessing the dedicated machine through SSH.

4.6 Tests Results
During Year 2, partners spent most of the effort in the development of their subsystems and in
the integration of them in the respective prototypes. This section will provide a brief summary
of results obtained from integration tests executed on the three prototypes delivered this year
and results of unit tests performed on each subsystem, as described in the Section 4.4.

4.6.1 Trustworthy OpenStack Prototype
This prototype is being tested using a clone of the infrastructure built by OpenStack developers
for testing their software. This choice was led by the fact that this testing environment is partic-
ularly suitable for the TClouds project, where patches developed by partners should be merged
in a central repository. Another motivation was that this environment allows to run tests already
defined for OpenStack, so that it is possible to verify whether new patches developed by partners
break the unmodified version. Last motivation was that replicating the testing infrastructure is
a relative easy task, as OpenStack developers publish the scripts used for the configuration of
their platforms (https://github.com/openstack/openstack-ci-puppet).

As a result, we built our infrastructure by configuring three servers:

• https://review.tclouds-project.eu: Code Review Web site

• https://jenkins.tclouds-project.eu: Jenkins Web site

• https://git.tclouds-project.eu: TClouds Code Repository

The Code Review site allows code maintainers to review and test patches submitted by
contributors before merging them in the code repository. The Jenkins Web site automatically
determines if a patch can be applied on top of the current version and then, executes the test
cases defined by OpenStack developers in a virtual environment. Lastly, patches that success-
fully pass the tests and are approved by maintainers will be merged on top of the current version
in the TClouds Code Repository. More details about the instructions that partners should follow
in order to submit a new patch can be found in the Appendix A.

Currently, we tested the integration of the following contributions:

• Project: openstack/nova

TClouds D2.4.2 Page 91 of 144

https://github.com/openstack/openstack-ci-puppet
https://review.tclouds-project.eu
https://jenkins.tclouds-project.eu
https://git.tclouds-project.eu

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

– Modified .gitreview and disabled test authors up to date test

– Add scheduler filter for trustedness of a host

– log: added support for secure logging

– nova-manage: added subcommands to manage extra specs for an instance type

– Added ssl verify option for the TrustedFilter scheduler filter

– ACaaS Scheduler

• Project: openstack/python-novaclient

– Modified host in .gitreview

– ACaaS Scheduler CLI

In the following, we will provide some tests results obtained from the Jenkins Web site.
Figure 4.4 is a snapshot of a Jenkins Web page after the latest version of the patch that introduces
the AcaaS Scheduler in OpenStack Nova was submitted by OXFD to the Code Review site.

Figure 4.4: Jenkins Tests Results for Build#39 (OpenStack + ACaaS Scheduler)

This figure shows that the build was triggered by a change in the Code Review site and
that the patch set will be merged into the OXFD/ACaaS branch of OpenStack Nova by Jenk-
ins if it is approved by the maintainers of the repository and tests succeed. The figure also
shows that four tests, defined by OpenStack developers, were executed: gate-nova-docs,
gate-nova-merge, gate-nova-pep8 and gate-nova-python27. Since the reported re-
sult was SUCCESS, this means that the patch set was ready for merge into the TClouds Code
Repository.

TClouds D2.4.2 Page 92 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

The Figure 4.5 provides another example of tests results executed in a previous build, where
the test gate-nova-pep8 failed due to code style errors. This test is also important, because
if the code is well written, it is more easy to maintain and to inspect when a bug is discovered.

Figure 4.5: Jenkins Code Style Tests Results (OpenStack + ACaaS Scheduler)

With the exception of the Resilient Log, each subsystem of the Trustworthy OpenStack
prototype has been tested using a set of unit tests. For the Resilient Log, we conducted some
first resource measures. The obtained results, grouped per subsystem, will be shown in the
following.

LogService. The Listing 4.2 shows the output produced by the testing framework used to
perform the unit tests for the LogService. As reported in the Listing, all tests produce a positive
result. The test suite libsklog test suite 1 implements the test case /TC 4.4.8.2-1/ and
includes all the tests used to check the behaviour of all functions in case of malformed input.
The test suite libsklog test suite 2 includes all others tests. In detail, the test function
test SKLOG initialization() implements the test case /TC 4.4.8.2-2/ , the function

TClouds D2.4.2 Page 93 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

test SKLOG log() the test case /TC 4.4.8.2-3/ , the function test SKLOG retrieve()
the test case /TC 4.4.8.2-4/ and finally, the function test SKLOG verify() the test case
/TC 4.4.8.2-5/ .

CUnit - A Unit testing framework for C - Version 2.1-0
http://cunit.sourceforge.net/

Suite: libsklog_test_suite_1
Test: test_SKLOG_T_NewCtx() ... passed
Test: test_SKLOG_T_InitCtx() ... passed
Test: test_SKLOG_T_ManageLogfileRetrieve() ... passed
Test: test_SKLOG_T_ManageLogfileUpload() ... passed
Test: test_SKLOG_T_ManageLogfileVerify() ... passed
Test: test_SKLOG_T_ManageLoggingSessionInit() ... passed
Test: test_SKLOG_T_FreeCtx() ... passed
Test: test_SKLOG_U_NewCtx() ... passed
Test: test_SKLOG_U_InitCtx() ... passed
Test: test_SKLOG_U_Open_M0() ... passed
Test: test_SKLOG_U_Open_M1() ... passed
Test: test_SKLOG_U_Open() ... passed
Test: test_SKLOG_U_LogEvent() ... passed
Test: test_SKLOG_U_Close() ... passed
Test: test_SKLOG_U_DumpLogfile() ... passed
Test: test_SKLOG_U_FlushLogfile() ... passed
Test: test_SKLOG_U_FreeCtx() ... passed
Test: test_SKLOG_V_NewCtx() ... passed
Test: test_SKLOG_V_InitCtx() ... passed
Test: test_SKLOG_V_RetrieveLogFiles() ... passed
Test: test_SKLOG_V_RetrieveLogFiles_v2() ... passed
Test: test_SKLOG_V_VerifyLogFile() ... passed
Test: test_SKLOG_V_VerifyLogFile_uuid() ... passed
Test: test_SKLOG_V_VerifyLogFile_v2() ... passed
Test: test_SKLOG_V_FreeCtx() ... passed

Suite: libsklog_test_suite_2
Test: test_SKLOG_initialization() ... passed
Test: test_SKLOG_log() ... passed
Test: test_SKLOG_retrieve() ... passed
Test: test_SKLOG_verify() ... passed

--Run Summary: Type Total Ran Passed Failed
suites 2 2 n/a 0
tests 29 29 29 0
asserts 73 73 73 0

Listing 4.2: Unit test results for the core library of the LogService

Remote Attestation Service. The RA Verifier module of the Remote Attestation Service sub-
system has been tested according to the test plan in Section 4.4. Test cases have been imple-
mented in a new script, called test cases.py, so that they can be run in a automatic way
from the console. The following table summarizes the results of an execution of the script.

Test Case Date Result
/TC 4.4.9.2-1/ 21/09/12 passed
/TC 4.4.9.2-2/ 21/09/12 passed

The overall time required to complete both tests was about 84 seconds.

Secure Block Storage. We successfully executed the tests from the test plan Section 4.4 at 14
Sept. 2012. The tests were ran in the manual, consecutive fashion as described in the test plan.
The tests were run in our Xen development environment.

TClouds D2.4.2 Page 94 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Test Case Date Result
/TC 4.4.4.2-1/ 14/09/12 passed
/TC 4.4.4.2-2/ 14/09/12 passed
/TC 4.4.4.2-3/ 14/09/12 passed2

/TC 4.4.4.2-4/ 14/09/12 passed

ACaaS. We tested ACaaS Scheduler with the steps described in the test plan Section 4.4 at 19
Sept. 2012. These tests were successfuly executed manually in a consecutive fashion.

Test Case Date Result
/TC 4.4.5.2-1/ 19/09/12 passed
/TC 4.4.5.2-2/ 19/09/12 passed
/TC 4.4.5.2-3/ 19/09/12 passed

Resilient Log. In order to give a first evaluation of the resource usage of CheapTiny compared
to MinBFT, we did a few test runs with our demonstration cluster for the Resilient Log in
conjunction with the Log Generator. The following table presents the average values of the
runs for each protocol. We measured the number of stored events per second (Reqs/s) and
the combined average CPU load of all replicas (CPU load). The cluster consists of multi-core
machines, thus an average CPU load of 100% indicates the full utilization of one core. Each
test run lasted 150 seconds including a warm-up time of 90 seconds.

Protocol Reqs/s CPU load CPU load/Reqs/s
CheapTiny 392 80% 0.204%
MinBFT 385 120% 0.312%

The values show that under the given scenario CheapTiny incurs about 35% less CPU load
per request than MinBFT. This means the comparison test passed successfully.

Test Case Date Result
/TC 4.4.3.2-2/ 15/09/12 passed

4.6.2 TrustedInfrastructure Cloud Prototype
We successfully tested all functional tests described in Section 4.4 within a prototypical but
automatically reproducible environment.

Test Case Date Result
/TC 4.4.1.2-1/ 10/09/12 passed
/TC 4.4.1.2-2/ 10/09/12 passed
/TC 4.4.1.2-3/ 10/09/12 passed
/TC 4.4.1.2-4/ 10/09/12 passed

2For debug reasons the verification of the user key is not done in the TPM.

TClouds D2.4.2 Page 95 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

4.6.3 Cloud-of-Clouds Prototype
We successfully executed the tests described in the Section 4.4. The results are listed below

Test Case Date Result
/TC 4.4.6.2-1/ 10/09/12 passed
/TC 4.4.6.2-2/ 10/09/12 passed
/TC 4.4.6.2-3/ 10/09/12 passed
/TC 4.4.6.2-4/ 10/09/12 passed
/TC 4.4.6.2-5/ 10/09/12 passed
/TC 4.4.7.2-1/ 21/09/12 passed
/TC 4.4.7.2-2/ 21/09/12 passed
/TC 4.4.7.2-3/ 21/09/12 passed

In the test /TC 4.4.7.2-1/ the query returned the expected value. Data read from the cloud
using the cloud provided console wasn’t useful.

In the test /TC 4.4.7.2-2/ the query returned the expected value. Data read from the cloud
using the cloud provided console wasn’t useful. After removing data from one of the servers
the data read from the DepSky client was still the same written in the begining.

In the test /TC 4.4.7.2-3/ the query returned the expected value. Data read from the cloud
using the cloud provided console wasn’t useful. After corrupting data from one of the servers
the data read from the DepSky client was still the same written in the beginning.

4.6.4 SAVE Subsystem
Discovery. We successfully tested the discovery with a small test infrastructure running Open-
Stack. The underlying virtualization management is based on libvirt, which was already sup-
ported and tested previously in SAVE. Furthermore, we successfully tested and operated the
discovery with a mid-sized virtualized infrastructure based on VMware that was part of a SAVE
case-study (cf. D2.3.1 [ea11b], Section 8.7).

Analysis Unit Testing. The automated unit-testing verified the successful translation of dis-
covery data samples of different virtualization management technologies into our unified graph-
based model. Figure 4.6 shows the successful test-run.

Figure 4.6: Successful JUnit Test Run.

TClouds D2.4.2 Page 96 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Analysis System Testing. We successfully tested the overall system in a case-study of a mid-
sized production infrastructure (D2.3.1, Section 8.7), as well as a analysis of both a known-good
and known-bad infrastructure that SAVE identified as such (D2.3.2, Section 4.7).

TClouds D2.4.2 Page 97 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Part II

Prototypes Documentation

TClouds D2.4.2 Page 98 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Chapter 5

Trustworthy OpenStack Prototype

The Trustworthy OpenStack prototype code is available either as a tarball, which can be down-
loaded from https://jenkins.tclouds-project.eu/tarballs or as a package which
URL is https://jenkins.tclouds-project.eu/packages. These files are generated
by our Jenkins infrastructure, described in detail in Appendix A, whenever a patch submitted
by partners successfully passes the tests and is merged by Jenkins into the tclouds branch of
the TClouds GIT Repository. It is also possible to set up an APT1 repository in order to auto-
matically install the Trustworthy OpenStack packages in the Ubuntu 12.04 LTS distribution by
executing the following instructions.

Copy your SSH public key into the Jenkins server (credentials are stored in the TClouds
SVN) by executing:

$ ssh-copy-id -i $HOME/.ssh/id_rsa.pub tcloudsuserjenkins.tclouds-project.eu

Create the file /etc/apt/sources.list.d/tclouds.list to include the TClouds
packages repository in the APT sources:

deb ssh://jenkinsjenkins.tclouds-project.eu/home/jenkins/packages precise main

Create the file /etc/apt/preferences.d/00-tclouds to set the highest priority
to the above repository

Package: nova-*
Pin: version 2012.1.3+git*
Pin-Priority: 1001

Package: python-novaclient
Pin: version 2012.1+git*
Pin-Priority: 1001

Then, you can install Trustworthy OpenStack normally by following steps described in
the documentation of the OpenStack Web site at the URL http://docs.openstack.org/

essex/openstack-compute/install/apt/content. In order to use the Security Ex-
tensions of this prototype, you can refer to the documentation of specific subsystems in the
remaining of this chapter. Just one remark, for dependency issues, the LogService subsystem
should be installed before Trustworthy OpenStack to avoid APT errors.

1https://help.ubuntu.com/12.04/serverguide/package-management.html

TClouds D2.4.2 Page 99 of 144

https://jenkins.tclouds-project.eu/tarballs
https://jenkins.tclouds-project.eu/packages
http://docs.openstack.org/essex/openstack-compute/install/apt/content
http://docs.openstack.org/essex/openstack-compute/install/apt/content
https://help.ubuntu.com/12.04/serverguide/package-management.html

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

5.1 LogService
In this section we will present the procedure to install the LogService. The core library used by
the LogService is developed on Debian Wheezy, therefore the installation steps will be described
considering as operating system a Debian-based Linux distribution.

5.1.1 Platform Setup
To install the libsklog, the core library of the LogService, several dependencies need to be
resolved. While the major part of them can be installed using the package manager, there is
a library that must be installed manually. The Listing 5.1 shows the command to install the
required packages.

apt-get install libtool autoconf build-essential libssl1.0.0 libssl-dev uuid-dev \
libconfig8-dev libjansson-dev libreadline-dev python-sphinx python-bottle python-devel \
libcurl3

Listing 5.1: Packaged dependencies

The library libumberlog [NF12] needs to be installed manually. To do that it’s necessary to
run the commands in the Listing 5.2.

apt-get install pkg-config
cd /temp
git clone https://github.com/deirf/libumberlog.git libumberlog
cd libumberlog
git checkout -b libumberlog-0.2.1 libumberlog-0.2.1
./autogen
./configure
make
make install (as root)

Listing 5.2: libumberlog installation

At this point all the dependencies have been resolved. To install the libsklog library it’s
necessary to run the commands depicted in the Listing 5.3.

cd /temp
git clone https://github.com/psmiraglia/Libsklog.git libsklog
cd libsklog
./autogen
./configure --with-storage=rest --enable-apps
make
make install (as root)

Listing 5.3: libsklog installation

5.1.2 LogService Subcomponents
As already mentioned in the Section 3.1.2.4, the LogService is the composition of four subcom-
ponents (Log Core, Log Storage, Log Console, Log Service Module). In this section will be
illustrated how to configure and use each subcomponent.

TClouds D2.4.2 Page 100 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

5.1.2.1 Log Core

Within the libsklog sources, some sample applications are provided including one called
RESTserver.py. Such application is a simplified version of the Log Core that implements all
the main capabilities (logging session initialisation, verification and retrieval). Before starting
the application it’s necessary to set some values in the configuration file. In the Listing 5.4 is
depicted an example of configuration.

#
FILE: /usr/local/etc/libsklog/libsklog-t.conf
#

...

Information about log storage
log_storage_host = "localhost"
log_storage_resource = "logservice/logstorage"
log_storage_port = 8080

Listing 5.4: Log Core configuration file

To start the execution of the Log Core run the command

userlocalhost: RESTserver.py

Listing 5.5: Execution of simplified Log Core

5.1.2.2 Log Storage

Since the Log Storage is a subcomponent that is integrated by design with CheapBFT, to use the
Log Service separately it’s possible to run a dummy version of the Log Storage implemented in
Python that exposes the same functionality.

userlocalhost: dummy-logstorage.py

Listing 5.6: Execution of the dummy Log Storage

5.1.2.3 Log Console

Like the Log Core, the libsklog library provide a sample application also for the Log Con-
sole. Such application is called RESTverifier and make possible the interaction with the
Log Core.

userlocalhost: RESTverifier.py

Listing 5.7: Execution of simplified Log Console

5.1.2.4 Log Service Module

The Log Service Module is a set of functions for C languages provided by the library libsklog.
At the moment, each function is bound also for the Python language. To use the Log Service

TClouds D2.4.2 Page 101 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Module in Python it’s necessary to install a Python module called pysklog provided with the
libsklog sources. The installation commands are depicted in the Listing 5.8.

cd /temp/libsklog
pip install PySklog-0.0.1.tar.gz

Listing 5.8: pysklog installation commands

To use the module it’s necessary set some values in a configuration file

#
FILE: /usr/local/etc/libsklog/libsklog-u.conf
#

...

Information about log storage
log_storage_host = "localhost"
log_storage_resource = "logservice/logstorage"
log_storage_port = 8080

Listing 5.9: Log Service Module configuration file

5.2 Remote Attestation Service
This section provides the documentation for the RA Verifier component. Installation instruc-
tions for OpenAttestation can be found in the docs folder of the official code repository (URL:
https://github.com/OpenAttestation/OpenAttestation). The following documen-
tation refers to the Fedora 16 Linux distribution but we are adapting it for Ubuntu 12.04 LTS.

5.2.1 Operating Environment Setup
A typical installation of the Remote Attestation Service requires the setup of two hosts or virtual
machines. One platform, called Database Node, is dedicated to running the Apache Cassandra
database and the other, named OpenAttestation Node, to OpenAttestation and RA Verifier. The
former platform should satisfy at least the following hardware requirements: CPU 2.0 Ghz,
RAM 2 GB or more, Hard Disk 500 GB. Instead, for the latter platform, there are no particular
needs.

Regarding the software requirements, it is necessary to install the following software:

• Database Node

– The python-pip python library (Fedora package)

– The pycassa python library (install it by executing pip-python install pycassa)

– The python-fedora python library (Fedora package)

– The java-1.6.0-openjdk-devel OpenJDK JAVA headers (Fedora package)

– The gcc and make development tools (Fedora packages)

• OpenAttestation Node

– The python-pip python library (Fedora package)

TClouds D2.4.2 Page 102 of 144

https://github.com/OpenAttestation/OpenAttestation

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

– The pycassa python library (install it by executing pip-python install pycassa)

– The python-matplotlib python library (Fedora package)

– The python-networkx python library (Fedora package)

5.2.2 Prototype Build and Installation Instructions

5.2.2.1 Database Node

In order to use RA Verifier it is necessary to setup the database. First, download Apache Cas-
sandra from the URL: http://cassandra.apache.org. From the download options, chose
the latest version of the 1.0 branch. For example, the Cassandra database can be downloaded
by executing the command:

$ wget http://it.apache.contactlab.it/cassandra/1.0.11/
apache-cassandra-1.0.11-bin.tar.gz

Extract files from this package in the target directory (e.g. /srv):

$ tar zxf apache-cassandra-1.0.11-bin.tar.gz -C /srv

Extract the files from the tarball of the ratools software in the target directory (e.g. /srv):

$ tar zxf ratools-1.0.0.tar.gz -C /srv

Install the custom libraries for Apache Cassandra by calling the install cassandra libs.sh

script and by providing the directory where Cassandra was extracted. For example, the com-
mand executed could be:

$./install cassandra libs.sh /srv/apache-cassandra-1.0.11

Edit the Apache Cassandra init script db/cassandra/init.d/cassandra and set the
BASH variable PROGDIR to the directory where Cassandra has been installed (e.g. /srv/apache-cassandra-1.0.11).
Then, install the script and execute the service:

$ cp db/cassandra/init.d/cassandra /etc/init.d
$ chkconfig --add cassandra
$ chkconfig cassandra on
$ service cassandra start

Install the database schema by executing cassandra-cli in the bin directory of Apache
Cassandra:

$ /srv/apache-cassandra-1.0.11/bin/cassandra-cli -h localhost -B -f
db/cassandra/schema/cassandra-schema.txt

Create the /etc/ra directory, copy the configuration files in the db/conf directory of the
ratools software to /etc/ra and remove the suffix .sample:

$ mkdir /etc/ra
$ cp db/conf/ra.conf.sampe /etc/ra.conf
$ cp db/conf/pkgs download list.conf.sample /etc/ra/pkgs download list.conf

Edit the file /etc/ra/ra.conf and set the following BASH variables:

TClouds D2.4.2 Page 103 of 144

http://cassandra.apache.org

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

• RABASEDIR to the directory where the ratools tarball was extracted (e.g. /srv/ratools-1.0.0)

• TARGETBASEDIR to a temporary directory in a large partition (at least 100 GB) where
packages will be downloaded (e.g. /srv/ratools-1.0.0/Packages).

• CASSANDRAURL to the <IP:port> of the Apache Cassandra database

Create the temporary directory specified in the TARGETBASEDIR variable:

$ mkdir /srv/ratools-1.0.0/Packages

Edit the file /etc/ra/pkgs download list.conf and configure the repository of the
Linux distributions from which the update pkgs.sh script will download the packages and
insert the information from extracted files into the database. The file has the following format:

<distro ID> <distro Arch> <repo dir> <repo URL> <subdir of TARGETBASEDIR>

5.2.2.2 OpenAttestation Node

Install the OpenAttestation RPM package with POL patches through the yum command:

yum install OAT-Appraiser-Base-OATapp-1.0.0-2.fc16.x86 64.rpm

Then, install the RA Verifier component by following the instructions for the Database Node.
For the configuration, it is necessary to set only the RABASEDIR variable in the configuration
file /etc/ra/ra.conf to the directory where ratools was extracted.

5.2.2.3 Cloud Nodes

In order to perform the measurements of software executed in Cloud nodes it is necessary to
perform the following steps.

Install the provided custom Linux kernel (with IMA enabled) and the patched systemd:

yum install kernel-3.4.2-1.ima.fc16.x86 64.rpm
systemd-37-25.torsec.fc16.x86 64.rpm
systemd-sysv-37-25.torsec.fc16.x86 64.rpm
systemd-units-37-25.torsec.fc16.x86 64.rpm

Create the /etc/ima directory and put into it the IMA policy file named ima-policy

which content should be:

measure func=BPRM CHECK mask=MAY EXEC
measure func=FILE MMAP mask=MAY EXEC

TClouds D2.4.2 Page 104 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

5.2.3 Prototype Execution Instructions

5.2.3.1 Database Node

Insert data from packages of the configured Linux distribution into the database by executing
the update pkgs.sh script from the ratools software directory:

$ db/scripts/fedora/update pkgs.sh

In addition, the script update pkgs.sh allows to insert data from packages in a given
directory by executing:

$ db/scripts/fedora/update pkgs.sh -d <packages directory> -n <distro ID> -c
<distro arch> -t <update type>

where allowed values for the options are:

• <distro ID>: F16, F17, ...

• <distro arch>: i686, x86 64

• <update type>: newpackage, updates, testing

5.2.3.2 OpenAttestation Node

Before using the OpenAttestation Node with OpenStack, it is recommended to try the RA Ver-
ifier component alone by testing the verification of an IMA measurements file. Obtain it by
booting a Cloud node with the updated configuration and executing:

cat /sys/kernel/security/ima/ascii runtime measurements >
ima measurements.txt

The file ima measurements.txt should be similar to:

10 000...000 ima 000...000 boot aggregate
10 1f3...c2d ima 0fb...278 /lib/systemd/system-generators/systemd-getty-generator
10 7c8...874 ima ef0...20b ld-2.14.90.so
10 084...3a2 ima ab1...3e2 libselinux.so.1
10 25d...36f ima 624...f06 libcap.so.2.22
10 8c4...cae ima 4c9...51c librt-2.14.90.so
10 ecc...b70 ima c33...456 /lib/systemd/system-generators/systemd-cryptsetup-...
10 a7a...917 ima 0d3...eb3 /lib/systemd/system-generators/systemd-rc-local-...
10 819...978 ima db2...15b libc-2.14.90.so
10 ae1...275 ima e77...b27 libdl-2.14.90.so
10 3ff...306 ima 893...008 libattr.so.1.1.0
10 7ec...75f ima e5c...3f6 libpthread-2.14.90.so
10 e3c...8bf ima 967...726 /lib/systemd/systemd-readahead-collect
10 c79...cfc ima 870...2d9 libsystemd-daemon.so.0.0.0
10 07e...416 ima 57d...d3d libudev.so.0.12.0
10 d85...7c3 ima a64...89d libgcc s-4.6.3-20120306.so.1
10 7ac...4a1 ima f70...23a /lib/systemd/systemd-cgroups-agent
10 933...095 ima f5b...3a1 libdbus-1.so.3.5.6

Then, copy this file to the OpenAttestation Node and verify the IMA measurements by
executing the ra verifier.py script from the ratools software directory:

$ verifier/ra verifier.py -i ima measurements.txt -t openattestation

It should return an output like:

ok: 212, unknown: 0, pkg security: 0, pkg not security: 0

TClouds D2.4.2 Page 105 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

5.2.3.3 Trustworthy OpenStack Management Node

Edit the configuration file /etc/nova/nova.conf and add the following lines at the end of the
[DEFAULT] group so that Nova Scheduler filters the Cloud nodes that can run a VM depending
on the integrity level specified by users:

scheduler available filters=nova.scheduler.filters.trusted filter.TrustedFilter
scheduler default filters=TrustedFilter

Then, add these lines at the end of the same file to tell Nova Scheduler that it should contact
the OpenAttestation Node at the specified address in order to obtain the current integrity level
of a Cloud node:

[trusted computing]
server=<IP of OpenAttestation Node>
port=8443

5.3 Access Control as a Service

5.3.1 Platform Setup
Ubuntu 12.04 is deployed as the base system on every node, installed and configured with
default packages . The prototype relies on a complete deployment of OpenStack with ACaaS
patches, and the Trusted Computing Infrastructure. A typical deployment includes deploying
one node as the management nodes, and several nodes as the compute nodes.

5.3.1.1 ACaaS Setup

ACaaS prototype is implemented on OpenStack Essex release. Its building and installation
are as simple as applying ACaaS patch to Essex source codes, and then following the general
python software building procedure. As described above, two major components are modified:
the OpenStack Nova Compute, and the python-novaclient.

1 OpenStack Nova

• Fetching nova source code

$apt-get source nova-compute

• Applying ACaaS patches

$cd nova-2012.1
$patch -p1 < nova-acaas.patch

• Build and install
$python setup.py build
$sudo python setup.py install

• Restart the services (For management node)

$sudo restart nova-api
$sudo restart nova-scheduler

(For compute node)

$sudo restart nova-compute

TClouds D2.4.2 Page 106 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

2 Python-novaclient

• Fetching python-novaclient source code

$apt-get source python-novaclient

• Applying ACaaS patches

$cd python-novaclient
$patch -p1 < novaclient-acaas.patch

• Build and install
$python setup.py build
$sudo python setup.py install

5.3.1.2 Trusted Computing Infrastructure Setup

The management node is deployed with the nova-scheduler, nova-api, central database, rab-
bitmq. A compute node is deployed with nova-compute, and optionally nova-volume and nova-
network. These deployments and configurations follow the general OpenStack settings, which
are well documented and can be found online, e.g. the ”OpenStack Install and Deploy Manual”
(http://docs.openstack.org/essex/openstack-compute/install/apt/content/index.html)

To enable ACaaS, the ACaaSScheduler should be specified as the computer scheduler driver,
which can be achieved by modifying the /etc/nova/nova.conf to have the corresponding field set
as follows:

compute scheduler driver = nova.scheduler.acaas scheduler.ACaaSScheduler

Trusted Computing Infrastructure is deployed for enabling the Trusted-based scheduling,
providing by ACaaS prototype. It is composed of the integrity measurement and reporting
service on the compute nodes, and the remote attestation service on the management node.

1 Measurement Services

The measurement services build the chain-of-trust on every compute node from its Core-
Root-of-Trust-for-Measurement, a specific piece of code in it BIOS up to every software
component running on top of it. The chain-of-trust is built in an iterative method during
the bootstrapping procedure of the node, i.e. every component participating in the booting
procedure measure the next component before loading and giving control to it. The term
’measure’ in TCG terminology stands for taking the hash value of the target software
component and store the value into the TPM.

Consequently, every software component responsible for booting a platform should be
modified to support the measurement services, namely the BIOS, bootloader, and the OS
kernel. First of all, the integrity measurement service should be turned on in the BIOS
to enable the first-step measurement for measuring the bootloader. Secondly, the trusted
BIOS should be installed to implement the trusted boot for measuring the kernel, e.g. the
TrustedGrub (http://sourceforge .net/projects/trustedgrub/). Finally the Linux kernel on
our base system should have its IMA component built and enabled, for implementing the
measurement of every software component loaded on the platform. To implement this,
the kernel of the base system (Ubuntu 12.04) should be re-configured and compiled with
the IBM IMA configuration turned on. The kernel-arg entry in the grub configuration
should also be added with the ”ima tcb” argument.

TClouds D2.4.2 Page 107 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

2 Remote Attestation Service

Remote attestation service is implemented by the OpenPTS system in our prototype. The
deployment of OpenPTS includes the measurement reporting sub-system on the compute
nodes, and attestation sub-system on the management node:

(a) Setting up the compute nodes

• Installing OpenPTS components

$sudo apt-get install trousers tpm-tools libtspi-dev libtspi1
$sudo dpkg -i openpts-0.2.6-2.x86 64.deb

• Setting up TPM

$tpm take ownership -y -z

• Configure ptsc
Adjust the configuration le /etc/ptsc.conf, choosing/configuring the appropriate
reference models (rm). The detailed rm configurations are specific to each plat-
form and are out of scope of this documents. Detailed information can be found
at
http://sourceforge.jp/projects/openpts/. An exemplar is as follows:

irm.num=2
rm.model.1.pcr.4=grubpcr4hdd.uml
rm.model.1.pcr.5=grubpcr5 uml
rm.model.1.pcr8=grubpcr8.uml
rm.model.1.pcr.10=f12imapcr10.uml

• Initialize Collector ptsc

$/usr/sbin/ptsc -i

• Selftest the target platform

$/usr/sbin/ptsc -s

• Startup tcsd and ptsc

$service trousers start
$service ptsc start

• Set whether ptsc should run on startup

$chkconfig --add ptsc

(b) Setting up the management nodes

• Installing OpenPTS components

$sudo apt-get install trousers tpm-tools libtspi-dev libtspi1
$sudo dpkg -i openpts-0.2.4-1.x86 64.deb

• Setup SSH public key authentication between compute nodes and management
node

$ssh-keygen
$ssh-copy-id ptsc@compute node N

TClouds D2.4.2 Page 108 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

• Enrollment with trust collector

$openpts -if compute node N

• Testing attestation with trust collector

$openpts -l ptsc -v compute node N

(c) Setting up the nova periodically attestation
To enable the periodically attestation supported by ACaaS Scheduler, ACaaS Sched-
uler Manager should be enabled, which can be achieved by modifying the /etc/no-
va/nova.conf to have the corresponding field set as follows:

scheduler manager=nova.scheduler.manager integrity.SchedulerManager

SchedulerManager is a modification to the OpenStach TrustedComputingPool. In-
stead of using the RESTful API, the SchedulerManager in ACaaS performs attesta-
tion directly. In our prototype this is achieved by invoking the OpenPTS facilities as
described above. The following parameters can be specified in /etc/nova/nova.conf
for controlling the openpts operation, with the default values given:

i. Enabling openpts When openpts is disabled, attestation in ACaaS is in demo
mode: simply output text indicating the operation to invoke. Without a well-
configured openpts infrastructure, enabling it will cause ACaaS to hang.

openpts enabled = False

ii. Path of openpts command

openpts bin = ’/usr/bin/openpts’

iii. Path for storing aide db for openpts The aide db is used as the white-list, repre-
senting the expected trusted properties of a target node

openpts aide path = ’/var/lib/aide/aide.gz’

iv. ssh username required by openpts

openpts username =’ptsc’

v. ssh port number required by openpts

openpts port = ’’

vi. ssh key file required by openpts

openpts key = ’’

By modifying the configuration files, and if necessary, a minor portion of the sched-
uler manager source codes, other attestation facilities can easily be switched to.

TClouds D2.4.2 Page 109 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

5.3.2 Management Console

5.3.2.1 Requirement Management

Requirement management facilities provide functionalities for creating, removing and query-
ing specifies user requirements for VM scheduling. The management interfaces are listed as
follows:

• List all requirements

$nova-manage requirement list

• Create new requirement, with a string as the name of the requirement (e.g. location)

$nova-manage requirement create --requirement=NAME

• Remove the requirement with specific ID (e.g. 9)

$nova-manage requirement remove --id=ID

5.3.2.2 Trusted Requirement Management

Trusted Requirement management facilities provide functionalities for adding, removing, query-
ing trusted properties (the while list database). These properties represent the expected config-
uration (or state) of a node. They can be trustworthy examined (attested to) by the trusted
computing remote attestation as described above. Any violation of the attestation result to the
white list (the expected configuration) indicates the untrusted state of the node, and will result
in the node to be examined and re-initiated (in current prototype, the state-changed host with be
removed with the white list property).

• List all white-lists

$nova-manage white-lists list

• Create new white-lists With a string as the name of the white-lists and the location for
storing the white-list database as value for the name

$nova-manage white-lists create --white-list=white-list-file-path

• Remove the white-lists with specific WL ID

$nova-manage white-lists remove --id=WL ID

TClouds D2.4.2 Page 110 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

5.3.2.3 Security Properties Management

Security Properties management facilities provide functionalities for adding, removing, query-
ing properties of a compute node. The management interfaces are listed as follows:

• Query a HOST for its security properties

$nova-manage host get properties --host=HOST

• Add a security properties to a HOST Specified by NAME and VALUE. When NAME
equals to ”trusted-host”, it represented the trusted properties and its VALUE should iden-
tifies one of the TP IDs

$nova-manage host add properties --host=HOST --properties="’NAME’: ’VALUE’,
..."

• Specify white-list White-list is specified to a host as a requirement to provide a same
management interface. In current implementation, the name for the white-list requirement
should be: whitelist.

$nova-manage host add properties --host=HOST --properties="’whitelist’:
’WL ID’"

• Remove a security properties from a HOST, specified by NAME

$nova-manage host remove properties --host=HOST --properties="[’NAME’, ...]"

5.3.2.4 Requirement-based VM Instantiation

• Initiating a VM with with general requirement matching The REQ ID represents the re-
quirement id for each requirement defined by the requirement management component,
and the REQ VALUE will be the expected value matching the specific requirement.

$nova boot --flavor XXX --image XXX --key name XXX --security group XXX
--req="REQ ID:’REQ VALUE’" IMAGE NAME

• Staring VMs with exclude-user requirements A predefined alphabic REQ ID is specified
for these type of requirement matchings. The ’exclude-user’ is represented by ’x’ or ’X’
as REQ ID to specified the VM can only be launch on the compute host with NO other
VMs belonging to the users identified by USER IDs.

$nova boot --flavor XXX --image XXX --key name XXX --security group XXX
--req="’x’:[’USER ID1’, ’USER ID2’, ...]" IMAGE NAME

• Staring VMs with trusted-hosts requirements A predefined REQ ID is specified for these
type of requirement matching. The ’trusted-host’ is represented with ’t’ or ’T’ as REQ ID
to specified the VM can only be launch on the compute host with a target attestation
white-list (representing a set of trusted properties) identified by TP ID.

$nova boot --flavor XXX --image XXX --key name XXX --security group XXX
--req="’w’:TP ID" IMAGE NAME

TClouds D2.4.2 Page 111 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

5.4 Cryptography-as-a-Service (Caas)

5.4.1 Operating Environment Setup

5.4.1.1 Hardware Prerequisites

Cryptography-as-a-Service requires (in a minimal configuration) two platforms: a computing
platform, on which the user’s VMs are deployed, and verifying platform (short Cloud Verifier),
which delegates management tasks between user and computing platform and which verifies the
trustworthiness of the computing platform. The computing platform requires certain capabilities
from the underlying platform:

Trusted Platform Module v1.2 A TCG TPM in version 1.2 must be present on the platform.
Moreover, the module must be activated and owned. The owner and Storage Root Key
(SRK) authentication values must be made available to the CaaS software.

Hardware Virtualization Support The CPU and chipset must support hardware virtualiza-
tion, e.g., Intel VT-d or AMD-V. In the current version of CaaS only Intel VT-d is sup-
ported.

5.4.1.2 Download and Installation

CaaS builds on the Xen hypervisor in version 4.1.2, which can be retrieved from the Xen project
webpage2, the MiniOS (from the Xen 4.1 source tree), and Intel tboot3 for a measured launch of
the software stack. The corresponding patches (libxl and libxc) for Xen 4.1.2 and MiniOS
to enable CaaS support and install a basic configuration/templates for a domain builder and
crypto-service VM can currently only be retrieved upon request from partner TUDA4. After
applying the patches to the Xen source code and MiniOS, this code is compiled and installed
according to the default Xen documentation.

Our current prototype has the following minimal software requirements for building and
executing Xen:

• GCC v3.4 or later

• GNU Make

• GNU Binutils

• zlib-dev

• Python v2.3

• libncurses-dev

• openssl-dev

• xorg-x11-dev

• uuid-dev
2http://www.xen.org/
3http://sourceforge.net/projects/tboot/
4stefan.nuernberger@trust.cased.de and sven.bugiel@trust.cased.de

TClouds D2.4.2 Page 112 of 144

http://www.xen.org/
http://sourceforge.net/projects/tboot/

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

• bridge-utils package (/sbin/brctl)

• iproute package (/sbin/ip)

• hotplug or udev

• GNU bison and GNU flex

• GNU gettext

• 16-bit x86 assembler, loader and compiler (dev86 rpm or bin86 & bcc debs).

On the verifier platform, Python is required for executing the verification and delegation
service.

5.4.1.3 Configuration

Before first boot, the CaaS software has to be configured to be able to use the platform’s TPM.
This is achieved by entering the SRK and owner authentication values into the TPM Auth.cfg
configuration file.

For the first boot, the default steps for booting a vanilla Xen with Intel tboot should be
followed. During boot, the domain builder and management domain will automatically be
launched. On first boot, the domain builder VM will automatically create a new TPM binding
key, which is bound to the measurement of the platform and provided at a world-wide readable
location. This key has to be provided to the user to enable encryption of VM images and secrets
deployed in the cloud by the user.

5.4.2 Prototype Execution Instructions
After the system has booted and the configuration was completed, the workflow looks as fol-
lows:

• Cloud Verifier attests the Xen-based computing machine, and receives the public key of
the certified binding key for this configuration.

• The user uploads his VM image to the cloud, and sends his user secret encrypted under
the public TPM binding key to the CV.

• The computing platform asks the CV for the user secret in order to run the VM image.

• The CV sends the encrypted secret to the computing platform.

• The domain building code on the computing platform uses the TPM to decrypt the user
secret, the VM image by using the secret, and starts building the domain.

For a detailed description of the inner workings during user VM launch, we refer to deliver-
able D2.1.2 [ea12b].

TClouds D2.4.2 Page 113 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

5.5 Resource-efficient BFT (CheapBFT)

5.5.1 Operating Environment Setup

5.5.1.1 Hardware Prerequisites

A system setup of CheapBFT comprises at least four machines. Three server systems are re-
quired with the following specification:

• x86 (better x86-64) machines with identical or at least similar hardware specs; at least
Intel Pentium 4 class processor

• 4 GB RAM

• PCI bus (necessary for the FPGA-cards, see below)

• 1 Gigabit/s or better IP-network connectivity

• Enterpoint ”Raggedstone 1” FPGA card

In order to programm the FPGA cards, a Xilinx JTAG programmer with USB interface is nec-
essary.

Further, one or two additional computer with similar specification as the server system (ex-
cept the FPGA cards) are required for running the benchmark tools.

5.5.1.2 Software Environment

Following software should be installed on all test machines:

• Linux distribution with kernel 2.6.32 or better (e.g. Ubuntu 10.04), 32- or (preferably)
64-bits.

• xz data compression tools

• Eclipse 3.6 (Indigo) or better

• Java Runtime environment 6.0 or better

• Secure Shell Server (OpenSSH) with key-based authentication to enable scripted remote-
logins

• screen terminal multiplexer

• Xilinx ISE WebPack 13.x for Linux

• Header files and build environment for the running Linux kernel

5.5.1.3 Installation

The source code is provided as a GNU tarball, packed with the xz data compression util-
ity. In order to unpack it on a GNU/Linux system, use the following command: xzcat
cheapbft.tar.xz | tar xf -All files are extracted into the subdirectory cheapbft/.
The following subsections will describe the necessary steps to configure and translate the pro-
gram code to get it into a working state. All specified paths are relative to the cheapbft directory,
unless beginning with a forward slash (/), or mentioned otherwise.

TClouds D2.4.2 Page 114 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

FPGA Hardware The source code for the FPGA firmware and associated Linux kernel driver
is located in the directory cash/pci base. In order to build the firmware image, the Xilinx
ISE tools must be configured properly and present in the search path of the Linux shell. This can
be usually accomplished running the command source settings32.sh in the installation
directory of the Xilinx suite.

Each of the three FPGA boards must be assigned an unique identifier so that to they gen-
erate different signatures. This ID can be adjusted in the file fpga/pci base/source/
adrdec.vhd in the line starting with constant SYS ID. The value is at the end of this
line, enclosed in double quotes and must be a 16-bit hexadecimal number.

To compile the firmware image, change into the directory fpga/pci base and simply
call make. The shipped Makefile will create a .bit file suitable for the FPGA chip of the
“Raggedstone 1” board. This build process can take up to an hour, even on fast machines, as
the logic is quite complex and requires expensive optimization processes to fit onto the FPGA.

When the build process has finished, the next step is to load the firmware onto the card.
Make sure the USB programmer is connected to the Raggedstone board. There are two possible
modes to store the firmware: The command make load will just reconfigure the FPGA and
keep it until the host PC is turned off. The command make i-really-want-to-flash
can be used to additionally save the image in persistent flash memory, so that it will survive
when the machine is powered down. Just loading the firmware is the preferred mode when
working on the FPGA code, as the flash memory has a limit on the number it can be erased.
The host PC has to be rebooted before.

As each card requires an unique ID embedded in its firmware, the image has to be rebuilt
and loaded for each of the three FPGA boards individually. After programming the FPGA,
the PC hosting the card should be rebooted as soon as possible, otherwise the card won’t be
detected properly and may interfere with the operation of the machine in unpredictable ways.

Kernel Driver In order to use the cards from any Linux application software, it is necessary
to install a kernel driver that can interface with the hardware registers on the FPGA board.
The driver provides a device node called /dev/counter for the protocol implementation. To
compile the driver, change into the directory fpga/pci base/kernel and edit the Makefile
so that the KDIR variable points to the directory containing the header files for your current
kernel version.

Type make (using your regular user account) in order to build the driver. When the module
counter.ko was built successfully, switch to the root account (e.g using su or sudo). Now
the driver can be loaded using make device. This command will also create the necessary
device node and allows everyone to use it. For security reasons it is advisable to change per-
missions for /dev/counter, so that access is restricted to the user account(s) that will run
the application protocol later.

Userland applications The userland software is entirely written in the Java language (except
for a few programs for testing purposes) and ships in form of multiple Eclipse projects. To
compile and install them, it is necessary to import two projects into the Eclipse workspace:

• Modular-SMaRt from the folder modular-smart/

• CheapBFT from the folder cheap/

Do not copy the project directories into your workspace upon import, as they contain relative
references to other directories in the source tree. If everything is set up, the projects can be built

TClouds D2.4.2 Page 115 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

with the normal Build project function in the menu. As the CheapBFT project depends
on class files in the Modular-SMaRt, it is necessary to compile the Modular-SMaRt tree first.

5.5.2 Prototype Execution Instructions
The benchmark suite is implemented as a set of bash scripts that connect to the participating
machines via SSH and set up the required services. The progress can be monitored by switching
between terminals in the screen software that is used to manage the parallel execution of
aforementioned scripts. The required files are all stored in the directory cheap/bin/.

There is a script for each test scenario. For instance, run micro.bash can be used to
start micro benchmarks. However, the main functionality is implemented in system.bash,
which is imported in every script for a scenario in order to provide consistent use.

The behavior of the running system is configured via three configuration files which are
stored in cheap/bin/config: system.config is the main configuration file, which
contains, for example, settings concerning the used consensus protocol. hosts.config
contains a list of all replica endpoints and logging.properties can be used to config-
ure the logging output generated during a run. Instead of editing these configuration files di-
rectly, the scenario scripts (or system.bash) should be used in conjunction with configura-
tion templates (also contained in cheap/bin/config) to set up the system. For instance,
system.config.cheap is a template for a configuration with CheapBFT as consensus pro-
tocol. The same holds for system.config.cheap.sof, with the exception that a software
module is employed for the message verification instead of an FPGA.

Before a test run can be started, the addresses of the hosts executing servers and clients
have to be configured. The addresses are usually stored in files named according to the pattern
hosts.config.*. These files contain two variables: ENDPOINT SERVERS and HOSTS
CLIENT. The former is a list of machines equipped with the FPGA boards together with a base

port. The specified machines act as servers and server sockets are opened with port numbers
starting from the given base port as required. (For that purpose, at least five ports starting from
the base port should be available.) The latter of the two variables is a list of host addresses
only. Here, the clients for the test run are executed. Please ensure that your current user account
can login to all specified server and client hosts via SSH, without being asked for a password.
This can be accomplished by either deploying host-based authentication or (probably easier)
just supplying proper SSH keys for the user.

After the host addresses have been provided, the test configuration has to be set up. For
example, the command ./system.bash setup prot cheap sets system.config.
cheap as protocol configuration, hence selects CheapBFT as consensus protocol. ./system.
bash setup hosts <yourhosts> initializes the server and client hosts according to the
file hosts.config.<yourhosts>. With ./system.bash setup logging con
logging output is redirected to the console.

Next, a screen environment can be started by running ./system.bash screen This
should start the screen program with a basic configuration from which the individual client
and server programs will be launched.

The actual benchmark can be started, for example, using ./run micro.bash start
This will connect to the previously configured host machines and run a minimal performance
benchmark. Statistics are printed in regular intervals to the screens.

All available commands and their options can be obtained by ./run micro.bash help
(or ./system.bash help).

TClouds D2.4.2 Page 116 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Chapter 6

TrustedInfrastructure Cloud Prototype

6.1 TrustedObjectsManager setup
Essentially the TrustedObjectsManager (TOM) is a webserver that provides the necessary man-
agement and administrative functions via a web interface.
The managment console holds the complete set of configuration-files for all TrustedDesktops
and TrustedServers, which are attached to the TOM. These appliances establish a permanent
secure tunnel to the management console and get their dedicated initial configuration, as well
as configuration changes via this tunnel automatically (TrustedChannel).
The mentioned appliances derive the settings (firewall-, router-, security-, user-settings, etc.)
which have to be applied, from the centrally downloaded configuration and apply them au-
tonomously.

This chapter describes the steps to be done in order to attach a TrustedServer and a Trusted-
Desktop to the TOM in order to start, stop install and remove a compartment (an virtual machine
(VM) associated with a trusted virtual domain (TVD)) and to use its provided services.

6.1.1 Using the management console
The web interface of a newly installed TOM is reachable via the https-adress 192.168.1.11 from
any client’s webbrowser within the same network, showing the login screen as in Figure 6.1.
The TOM’s IP-address can be changed later on. After logging in with the predefined credentials
the screen appears as shown in Figure 6.2.

6.1.2 Creating a company
At first a “company”-object has to be created, to store the essential structures like VPNs, (local)
networks, users, TVDs, compartments and their relationships within a company or a project. In
Figure 6.3, the company “TCLOUDS” is created via a right-click on “Management Console”
and selecting “New”.

6.1.3 Creating a location
Within this newly created company one has to create a new location in order to logically sort
different company branches. Here the location “Bochum” is created by expanding the sub-tree
menu, selecting “Locations” and a right-click choosing “New...” and “Location”.

TClouds D2.4.2 Page 117 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 6.1: The TrustedObjectsManager Login screen

Figure 6.2: The TrustedObjectsManager overview screen after login

Figure 6.3: Creating a “Company”

TClouds D2.4.2 Page 118 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 6.4: Creating a “Location”

Figure 6.5: Adding a user, step 1

6.1.4 Adding users
Choose the newly created location “Bochum” and open the sub-tree by a left-click. The appear-
ing “Users”-entry allows to add users to the infrastructure via a right-click selecting “New”,
“User”. The form has to be filled out with a real-name and an existing email-address (Fig-
ure 6.5). After clicking “Apply”, three additional tabs appear, whereat the “Login Name”,
a “Password” which has to be confirmed, and a “Hold-back time” has to be entered. The
“Expiry Date” is calculated based on the value entered in the “Hold-back time” field (Fig-
ure 6.6).
Only those users entered in the “Users” sub-tree are granted access to the whole infrastructure.

6.1.5 Network configuration
Within the newly created location, the local networks have to be defined, choosing “Locations”,
“Bochum” and a right-click on ”Networks (Figure 6.7). Here, the 4 networks “TD-ConfidentialNet”,
“TD-PublicNet”, “TS-ConfidentialNet” and “TS-PublicNet” are created with different IP-
ranges. These networks i.e. IP-adress-ranges, will be attached to the virtual machines’ net-

TClouds D2.4.2 Page 119 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 6.6: Adding a user, step 2

Figure 6.7: Adding networks

TClouds D2.4.2 Page 120 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 6.8: Adding a VPN

work interfaces running on the TrustedServer (TS) and on the TrustedDesktop (TD). Further-
more the “Confidential”-networks, as well as the “Public”-networks will reside within the
“Confidential”- or “Public”-VPN respectively, which themselves will be part of the “Confidential”
or “Public”-TrustedVirtualDomain (TVD). The assignment of networks to VPNs and TVDs en-
sures a separation of information-flow on the network level.

6.1.6 Creating and configuring VPNs
Logical VPNs are created by choosing “VPNs & Internet Groups”, “New”, “VPN”. The ap-
pearing dialog (Figure 6.8) requires in this step just a name, here “ConfidentialVPN”. The
assignment of networks to VPNs (see: Section 6.1.5), takes place in a later step (see: Sec-
tion 6.1.10).

6.1.7 Attaching appliances
Adding appliances like TrustedServer or TrustedDesktop to the company takes place within the
sub-entry “Appliances” of a “Location”. Right-clicking “Appliance” and choosing “New”,
“Appliance” opens a window like in Figure 6.9. The appliance has to be named, and the “Serial
number” has to be entered. Here the TrustedServer is created. This 5x5 alphanumeric number
has to gathered from the console of a newly installed TrustedDesktop or TrustedServer. The
“Interface” field is greyed out and set statically to “eth0 - external network interface”. This
cannot be changed currently. If the appliance to attach is reachable via a static IP-address the
“Static” radio-button has to be chosen and the appropriate fields “IP / Mask”, “Gateway” and
“DNS 1 / DNS 2” have to be filled. In case, the appliance gets its IP-address from a DHCP-
server, the “Dynamically using DHCP”-option has to be chosen.
After clicking the “Apply” button, the “Download configurations / software update”-button
will become active. By clicking this, a dialog opens, where the “configurations”-file can be
downloaded. This file has to be stored on the root-folder of an USB-drive.
Attaching the USB-drive to the newly installed TrustedServer or TrustedDesktop, the configu-

TClouds D2.4.2 Page 121 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 6.9: Add a new appliance to the company

Figure 6.10: Dialog to download the configuration for the specific appliance

TClouds D2.4.2 Page 122 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 6.11: Dialog to create a new TVD

ration will be found and applied to this dedicated machine. Not till then, the appliance is able
to connect to the TrustedObjectsManager, getting additional configuration settings after that the
integration of the appliance to the infrastructure will be finished.

6.1.8 Creating TrustedVirtualDomains
To create a new TVD, “TrustedVirtualDomains” can be chosen from the context menu, right-
clicking and choosing “New”, “TrustedVirtualDomain”. The TVD has to be named and a
color has to be chosen from the color palette (Figure 6.11). The chosen color will appear as an
visual border around the running compartment on TrustedDesktop. As shown in the Figure 6.11,
in this scenario the TVDs “Confidential” and “Public” are created.

6.1.9 Adding compartments to TVDs
In order to add a virtual machine disk image to a TVD, one chooses for example “TrustedVirtualDomains”,
“Confidential”, “Compartments” and right-clicks on “New”. The new compartment screen
(Figure 6.12) asks for the name, and a description of the compartment. The “Availability”
checkbox has to be checked, in order to allow clients to download and use the compartment.
Furthermore the virtual disc image template has to uploaded. If there are already files registered
at the underlying database, one of these can be selected. Otherwise a new virtual disc image
can be uploaded via the “Manage”-button. Press “Add local file”, if the *.file is already on the
TOM’s harddisk or “Upload” in order to upload a *.vdi-file from remote.
An explaining comment of the image’s content is optional. The “Last change” field in the

TClouds D2.4.2 Page 123 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 6.12: Adding a new compartment

“New compartment” window is automatically filled with the derived virtual disc image’s
timestamp.

6.1.10 Connecting everything together
The available compartments, uploaded to the TOM in Section 6.1.9 can now be installed to the
TrustedServer by choosing the “Properties” of the appliance (Figure 6.13). Switching to the
“Compartments”-tab allows the user to choose “Install new...” and select the desired com-
partment. The remote installation of the compartment starts immediately after a click on “OK”
in case the TrustedServer is online.
Now, the corresponding network, defined in Section 6.1.5 has to be attached to the installed
compartment. For that purpose, the registered appliance has to be modified via “Properties”.

Figure 6.13: Installing a registered compartment to TrustedServer

TClouds D2.4.2 Page 124 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 6.14: Attaching networks to compartments installed on TrustedServer

The networking-tab, lists all installed compartments of the chosen appliance. Choosing one of
them (“TS-ConfidentialNet” in Figure 6.14) leads to the selection of an “Interface”, which is
an entry like “tun1280 - internal compartment interface”. All upcoming fields and check-
boxes are automatically set to the values already defined during the step of creating networks.
See Section 6.1.5. Pressing “Set” and “OK” applies all changes made to this tab. The installed
compartment on the TrustedServer will now get a network connection after startup.
In order to separate the information-flow between different TVDs on different machines the
VPNs are now set up finally. Dragging the TrustedServer-appliance from the list to the previ-
ously created “ConfidentialVPN”-entry in the “VPNs & Internet Groups” opens a window
like in Figure 6.15. Checking “This appliance connects to all other appliances” is manda-
tory. Furthermore the “Policy” for the “Share”-networks have to be choosen, which is “IP
forwarding (bidirectional)” in this case. Clicking “OK” closes the dialog and the setup is
complete.

The procedure described in this section has to be repeated for the “Public”-TVD and the
containing VPNs, networks and compartments.

TClouds D2.4.2 Page 125 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure 6.15: Editing VPN membership of TrustedServer

TClouds D2.4.2 Page 126 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

The compartments can now be started, stopped or removed remotely by clicking the appro-
priate button in the “Compartments”-tab of an appliance (see Figure 6.13).

TClouds D2.4.2 Page 127 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Chapter 7

Cloud-of-Clouds Prototype

7.1 BFT-SMaRt

7.1.1 Download instructions
The BFT-SMaRt source repository is in http://code.google.com/p/bft-smart. In the repository
there is the latest stable and work versions of BFT-SMaRt, wiki and API documention.

7.1.2 How to install
BFT-SMaRt is a middleware to perform state machine replication. Altough it is not an applica-
tion, the source code provides a demo package to be used as example on how to extend and use
BFT-SMaRt.

Environment requirements for BFT-SMaRt:

• 3f+1 computers, where f is the number of faults that can be tolerated

• Java Runtime Environment 6 or later

To extend and use BFT-SMaRt has to implement two interfaces, one in the replica side
and another for the client side. The replica interface will define how the application data is
replicated. The client side will define how to send data to servers. Instructions on how to extend
client and server interfaces are provided in the BFT-SMaRt web page wiki. To run existing
demo packages provided with BFT-SMaRt, the user has to:

• Download the code from the BFT-SMaRt repository

• Extract the code and copy to the desired location on each server

• Edit the /config/hosts.config and set the ip and port number of each server

• Start BFT-SMaRt server on each replica by calling the executable /runscripts/smartrun.sh
or smartrun.bat, depending on the operating system.

The instructions above are also listed in the instructions file README.txt in the root of
BFT-SMaRt source code.

TClouds D2.4.2 Page 128 of 144

http://code.google.com/p/bft-smart

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

7.2 Resilient Object Storage (DepSky)

7.2.1 Prototype Execution Instructions
DepSky is a library to store data in multiple clouds and ensure confidentiality of the data. It
does not require software to be installed in the clouds. It is necessary to configure DepSky to
access the user accounts in the different clouds.

7.2.2 DepSky configuration
The current version of DepSky has driver and instructions implemented for different servers in
the Amazon cloud. The AwsCredentials.properties configuration file has to be modified with
the user account information. Instalation instructions are also available in the file README.txt.

7.2.3 Running DepSky locally
To run and test DepSky locally, there is an additional package to simulate a cloud locally. It is
the package ServerClouds. To start the server locally the ServerThread class has to be ran by
the command java ServerThread. After the local cloud is started, in another terminal window
a DepSky client can be started by the shell script DepSky Run.sh. The command line to start
the application is: ./DepSky Run.sh <container name> <client id> <DepSky mode>. The
container name can be any name defined by the user. The client id can be any client that has
keys in the configuration folder config. DepSky mode can be 0 for DepSky-A, 1 for DepSky-
CA, 2 to use only erasure codes and 3 to use only secret sharing.

TClouds D2.4.2 Page 129 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Chapter 8

Other Prototypes

8.1 Security Assurance of Virtualized Environments (SAVE)

8.1.1 Operating Environment Setup
In order to enable SAVE to discover OpenStack, OpenStack needs to be modified.

Hardware requirements:

• Hardware virtualization (VT-x) capable physical machine

Software requirements:

• OpenStack’s cactus release patched with the TClouds API patch

After patching OpenStack, once it’s up and running, it can export data to SAVE. Ideally
more than one virtual machine should be deployed, but the discovery works with even one.

8.1.2 Prototype Build and Installation Instructions
• Unzip the cactus release of OpenStack

• patch -p1 < openstack-save.patch

• start up OpenStack as normally

• start some virtual machines

8.1.3 Prototype Execution Instructions
SAVE relies on using probes to communicate with target systems. Such a probe must be con-
figured. An example configuration:
<?xml version="1.0" encoding="UTF-8"?>
<DiscoverConfig>

<Host hostname="openstack1" address="127.0.0.1" enabled="true">
<Credential type="API" username="openstack-admin" password="secretpassword" port="8775"/>

</Host>
</DiscoverConfig>

Upon starting up SAVE, one can select the project to execute. This should be a directory
containing the above XML in a ”discovery.xml” file. Once that is loaded, executing the probe
and showing the discovery result in a visual way can be done from the GUI.

TClouds D2.4.2 Page 130 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

8.2 Ontology-based reasoner: Libvirt With Trusted Virtual
Domains

8.2.1 Operating Environment Setup
In order to use Libvirt with Trusted Virtual Domains, it is necessary to install the Open vSwitch
software. It can be downloaded from http://openvswitch.org/download and can be
installed by following the installation instructions in the Documentation section (http://
openvswitch.org/support).

Other software dependencies are automatically installed by the package manager of the
Fedora 16 distribution (YUM).

8.2.2 Prototype Build and Installation Instructions
Libvirt with Trusted Virtual Domains can be installed by executing the command:

yum install <libvirt pkgs>

where <libvirt pkgs>must be replaced with packages contained in the Ontology-Libvirt-TVD
directory of the tarball for the D2.4.2 deliverable.

8.2.3 Prototype Execution Instructions
In order to configure Libvirt to create a Trusted Virtual Domain, it is necessary to create XML
files for the virtual network and virtual machines as described in Section 3.4.2.3.

TClouds D2.4.2 Page 131 of 144

http://openvswitch.org/download
http://openvswitch.org/support
http://openvswitch.org/support

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Part III

Appendices

TClouds D2.4.2 Page 132 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Appendix A

TClouds Infrastructure Wiki

This section contains the instructions to use the TCLOUDS infrastructure for OpenStack patches.

A.1 Infrastructure Overview
Our infrastructure consists of three sites:

• https://git.tclouds-project.eu: code repositories

• https://review.tclouds-project.eu: code review with gerrit

• https://jenkins.tclouds-project.eu: testing framework for automatic tests

A.1.1 Code Repositories (git.tclouds-project.eu)
The code repositories that use GIT as version control system are managed by git.tclouds-
project.eu. Actually, this server contains the following repositories:

• openstack/nova.git (the Nova module of OpenStack)

• openstack/openstack-ci-puppet (scripts for automating the installation of the infrastruc-
ture)

Each partner can create his own repositories by using Gerrit (below there are the instructions
to create a new repository). New repositories should follow the naming convention:

• <PARTNER ID>/<Project Name>

A.1.1.1 Layout of the Nova repository (openstack/nova.git)

Actually there are the following branches (created by OpenStack developpers):

• master (development branch);

• milestone-proposed (branch that contains patches to be released as part of the next mile-
stone);

• stable/diablo (OpenStack diablo release + fixes);

• stable/essex (OpenStack essex release + fixes).

and the following branch (created by TClouds):

TClouds D2.4.2 Page 133 of 144

https://git.tclouds-project.eu:
https://git.tclouds-project.eu
https://review.tclouds-project.eu:
https://review.tclouds-project.eu
https://jenkins.tclouds-project.eu:
https://jenkins.tclouds-project.eu
https://git.tclouds-project.eu
https://git.tclouds-project.eu

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

• tclouds (this branch will contain all the patches developed by partners);

Partners can create temporary branches for development purposes using the following nam-
ing convention:

• <PARTNER ID>-<Branch Name>

A.1.1.2 Authentication

Steps required to create a new set of credentials are described in the Code Review section.

A.1.2 Code Review (review.tclouds-project.eu)
Gerrit is intended to provide a light weight framework for reviewing every commit before it is
accepted into the code base. Changes are uploaded to Gerrit but dont actually become a part of
the project until theyve been reviewed and accepted.

A good description of this software and the steps that should be performed in order to submit
code can be found at http://wiki.openstack.org/GerritWorkflow.

A.1.2.1 Authentication

In order to distinguish between different users, each partner (it is possible to create an account
for each member) should register a new set of credentials in Apache. In the following, there are
the steps to setup Apache:

1 Log in the jenkins.tclouds-project.eu:1027 server through SSH as tcloudsuser (the pass-
word was decided in the Darmstadt integration meeting);

$ ssh -p29418 <your user id>@jenkins.tclouds-project.eu gerrit create-project
--name <PARTNER ID>/<Project Name>

2 Set the new user credentials by executing the command:

$ ssh -p29418 mrossi@jenkins.tclouds-project.eu gerrit create-project --name
POL/LogService

3 Access the Code Review site by giving the newly set of credentials;

4 Click on the Sign Out link on the right upper corner to refresh credentials;

5 Enter the full name, register an email and a SSH public key (required to submit code
changes with git review);

6 Click the Continue link at the bottom of the page;

7 Close the browser, reopen it and go to the Code Review site;

8 Access the Code Review site by giving the credentials of tcloudsuser;

9 Click on the Sign Out link on the right upper corner to refresh credentials;

10 Go to Admin -> Groups -> Project Bootstrappers;

11 In the Members field enter your full name and click the Add button;

TClouds D2.4.2 Page 134 of 144

http://wiki.openstack.org/GerritWorkflow
https://review.tclouds-project.eu
https://review.tclouds-project.eu
https://review.tclouds-project.eu

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

12 Close the browser, reopen it and go to the Code Review site;

13 Access the Code Review site by giving your credentials;

14 Click on the Sign Out link on the right upper corner to refresh credentials;

A.1.2.2 Creation of New Code Repositories

Each partner can create a new code repository by executing the following command:

$ ssh -p29418 <your user id>@jenkins.tclouds-project.eu gerrit create-project
--name <PARTNER ID>/<Project Name>

example

$ ssh -p29418 mrossi@jenkins.tclouds-project.eu gerrit create-project --name
POL/LogService

Then, in the working copy directory, the partner should first create and commit the file
.gitreview which content is:

[gerrit] host=review.tclouds-project.eu port=29418
project=<PARTNER ID>/<Project Name>

and execute the command:

$ git review -s

Finally, the partner should push the master branch to gerrit:

$ git push gerrit HEAD:refs/heads/master

A.1.2.3 Creation of Additional Branches in Existent Code Repositories

Additional branches can also be created through the web UI, assuming at least one commit
already exists in the project repository. A project owner can create additional branches under
Admin > Projects > Branches. Enter the new branch name, and the starting Git revision.

A.1.2.4 Creating a New Patch Set and Submitting It for Review

1 Configure git:

$ git config --global user.name "Your Name"

$ git config --global user.email "your@email.com"

2 Clone the remote repository (e.g. Nova):

$ git clone https://git.tclouds-project.eu/openstack/nova.git

3 Create a new branch (assign it a names that summarize the goal of the patch set):

$ git checkout -b <new branch name> origin/tclouds

4 Modify the code;

TClouds D2.4.2 Page 135 of 144

https://review.tclouds-project.eu
https://review.tclouds-project.eu

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

5 Save the changes:

$ git commit -a -s -m"Your Comment"

6 Submit the patch set to Gerrit:

$ git review tclouds

NOTE: alternatively you can work on a different branch than ”tclouds”. For instance, you
can submit the patches (for testing purposes) on a branch that you created before. More details
are below in the section OpenStack Patches Submission Workflow.

A.1.2.5 Review of Patches

With Gerrit it is possible to review submitted patches before they are merged in the code repos-
itory. The submission process relies on a voting system to determine when a patch will be
effectively merged and requires that three conditions are satisfied:

1 the patch must receive a +2 vote for the Code-Review requirement;

2 the patch must receive a +1 vote for the Approved requirement;

3 the patch must receive a +2 vote for the Verified requirement.

All partners can partecipate in the review process and are allowed to merge code. However,
while they can directly do the merge operation, it is useful to wait that Jenkins completes all
tests and does the merge by itself (this will happen after submitted patches receive a +2 vote for
the Code-Review and +1 for the Approved requirements).

A.1.2.6 OpenStack Patches Submission Workflow

In this section, it is described the workflow that each partner should follow in order to submit
patches for OpenStack.

Each partner can submit patches in two ways:

1 if a partner wants to submit minor changes that do no need to be tested separately, he can
submit the patch to Gerrit by executing the command:

$ git review tclouds

2 if a partner wants to develop his patches in a separate branch, he should:

(a) follow the instructions contained in the subsection Creation of Additional Branches
in Existent Code Repositories

(b) submit the patch to Gerrit by executing the command:

$ git review <partner branch>

(c) when a patch is ready, submit the patches to Gerrit by referring to the tclouds branch:

$ git review tclouds

TClouds D2.4.2 Page 136 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

A.1.3 Testing Framework (jenkins.tclouds-project.eu)
The Jenkins framework will be used to test OpenStack patches and the subsystems developed
by partners.

A.1.3.1 Authentication

In order to access the Jenkins Web site, it is sufficient to supply the same credentials provided
for the Code Review site.

A.1.3.2 Testing OpenStack

This operation will be done automatically each time a new patch is submitted to Gerrit and
before the code is merged in the repository. This site behaves like the OpenStack Jenkins site,
which is used by OpenStack community to perform automatic tests on this software. While
actually only the Nova module has been configured, it is possible to test also other OpenStack
modules like Glance or Swift.

A.1.3.3 Testing Partners’ Subsystems

The report R2.4.5.2 contains the workflow that partners should follow in order to perform auto-
matic and manual tests and the steps required to configure partners subsystems in Jenkins.

TClouds D2.4.2 Page 137 of 144

https://review.tclouds-project.eu
https://jenkins.openstack.org
https://svn.tclouds-project.eu/trunk/ActivityA2-TrustedCloudPlatform/Documents/R-HeartbeatReports-Internal/TC-R2_4_5_2/src/TC-R2_4_5_2.pdf:

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Appendix B

Subsystems’ code availability

Table B.1 reports the code availability for each subsystem.

TClouds subsystem Code availability
Resource-efficient BFT (CheapBFT) Source code in D2.4.2 tarball (**)
Simple Key/Value Store (memcached) It will delivered in Year 3
Secure Block Storage (SBS) (*) Object code in D2.4.2 tarball (**)
Secure VM Instances (*) Object code in D2.4.2 tarball (**)
TrustedServer Confidential
Log Service Source code in D2.4.2 tarball (**)
State Machine Replication (BFT-SMaRt) Source code delivered as D2.2.3, available at

http://code.google.com/p/bft-smart
Fault-tolerant Workflow Execution It will delivered in Year 3
Resilient Object Storage (DepSky) Source code in D2.4.2 tarball (**)
Confidentiality Proxy for S3 It will delivered in Year 3
Access Control as a Service (ACaaS) Source code in D2.4.2 tarball (**)
TrustedObjects Manager (TOM) Confidential
Trusted Management Channel Confidential
Ontology-based Reasoner (libvirt) Source code in D2.4.2 tarball (**)
Automated Validation (SAVE) Confidential
Remote Attestation Service [New Y2] Source code in D2.4.2 tarball (**)

(*) Secure Block Storage (SBS) and Secure VM Instances during the second year have been
combined to form Cryptography as a Service.

(**) D2.4.2 tarball also includes binary packages for Ubuntu 12.04 LTS and Fedora 16 Linux
distributions generated for source code and also source code of the original OpenStack and
Open Attestation, existing external software. They have been included for ease of installation
(and for rebuilding packages from source code, if wanted). The packages for OpenStack (also
including TClouds patches) have been automatically generated by the Jenkins platform (see
Sections 4.5 and A.1.3). For details and installation instructions see the README files
included in the root folder of the tarball.

Table B.1: List of TClouds subsystems and code availability

TClouds D2.4.2 Page 138 of 144

http://code.google.com/p/bft-smart

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Appendix C

Trustworthy OpenStack
Dashboard screenshots

The standard OpenStack Dashboard (i.e., the Graphical User Interface for cloud management)
has been enhanced to set up some of the Security Extensions forming Trustworthy OpenStack
(Secure Logging, Advanced VM Scheduling, and Cloud Nodes Verification/Remote Attesta-
tion). In the following, some sample screenshots (without the whole workflow) will be shown
to give an overall view of the enhancements applied to the standard Dashboard.

Figure C.1 shows the login page of TClouds Trustworthy OpenStack Dashboard. Figure C.2
shows the page to define the cloud-wide Requirements and the Security Properties of the cloud
nodes (for the ACaaS subsystem, see Section 3.1.2.2). Figure C.3 shows the page to set the
TClouds newly added requirements for an instance type (for the RemoteAttestation and ACaaS
subsystems, see Sections 3.1.2.1 and 3.1.2.2). Figure C.4 shows the page to start an instance
and to directly set up TClouds newly added requirements for the instance being started (for
the RemoteAttestation and ACaaS subsystems, see Sections3.1.2.1 and 3.1.2.2). Figure C.5
shows the list of opened secure logging sessions that can be selected to be verified for integrity
and shown (for the LogService subsystem, see Section 3.1.2.4). Finally Figure C.6 shows a
successfully verified secure logging session, with all log entries (for the LogService subsystem,
see Section 3.1.2.4).

TClouds D2.4.2 Page 139 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure C.1: The Trustworthy OpenStack Dashboard - Login

Figure C.2: Trustworthy OpenStack Dashboard - (ACaaS) Requirements and Security Proper-
ties

TClouds D2.4.2 Page 140 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure C.3: Trustworthy OpenStack Dashboard - (Remote Attestation/ACaaS) Setting Extra
Specs with flavours

Figure C.4: Trustworthy OpenStack Dashboard - (Remote Attestation/ACaaS) Launching an
instance and setting the requirements

TClouds D2.4.2 Page 141 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Figure C.5: Trustworthy OpenStack Dashboard - (LogService) List of available logging ses-
sions

Figure C.6: Trustworthy OpenStack Dashboard - (LogService) Log file dump with verification
results

TClouds D2.4.2 Page 142 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

Bibliography

[AN12] Marco Abitabile and Marco Nalin. D3.3.3 - Validation Protocol and Schedule for the
Smart Power Grid and Home Health Use Cases. Technical report, FSR, September
2012. TClouds deliverable.

[BACF08] Alysson N. Bessani, Eduardo P. Alchieri, Miguel Correia, and Joni S. Fraga.
DepSpace: a Byzantine fault-tolerant coordination service. In Proc. of the 3rd ACM
European Systems Conference – EuroSys’08, pages 163–176, April 2008.

[BGJ+05] Anthony Bussani, John Linwood Griffin, Bernhard Jansen, Klaus Julisch, Genter
Karjoth, Hiroshi Maruyama, Megumi Nakamura, Ronald Perez, Matthias Schunter,
Axel Tanner, and et al. Trusted virtual domains: Secure foundations for business
and it services. Science, 23792, 2005.

[ea11a] Alysson Bessani et al. D2.2.3 Proof-of-concept of Middleware for Adaptive Re-
silience. Technical report, FFCUL et al., September 2011. TClouds deliverable.

[ea11b] Christian Cachin et al. D2.3.1 - Requirements, Analysis, and Design of Security
Management. Technical report, IBM et al., October 2011. TClouds deliverable.

[ea11c] Emanuele Cesena et al. D2.4.1 - Clouds Prototype Architecture, Quality Assur-
ance Guidelines, Test Methodology and Draft API. Technical report, Politecnico di
Torino et al., September 2011. TClouds deliverable.

[ea11d] Marcelo Pasin et al. D2.2.1 - Preliminary Architecture of Middleware for Adaptive
Resilience. Technical report, FFCUL et al., October 2011. TClouds deliverable.

[ea12a] Alysson Bessani et al. D2.2.2 - Preliminary Specification of Services and Protocols
of Middleware for Adaptive Resilience. Technical report, FFCUL et al., September
2012. TClouds deliverable.

[ea12b] Norbert Schirmer et al. D2.1.2 - Preliminary Description of Mechanisms and Com-
ponents for Single Trusted Clouds. Technical report, SRX et al., September 2012.
TClouds deliverable.

[ea12c] Sor̈en Bleikertz et al. D2.3.2 - Components and Architecture of Security Config-
uration and Privacy Management. Technical report, IBM et al., September 2012.
TClouds deliverable.

[Gel85] David Gelernter. Generative communication in linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, January 1985.

[GHSS11] Ruediger Glott, Elmar Husmann, Matthias Schunter, and Ahmad-Reza Sadeghi.
D1.1.1 - Draft Scenario and Requirements Report. Technical report, UMM et al.,
April 2011. TClouds deliverable.

TClouds D2.4.2 Page 143 of 144

D2.4.2 – Initial Component Integration, Final API Specification, and
First Reference Platform

[GVM00] Garth A. Gibson and Rodney Van Meter. Network attached storage architecture.
Communications of the ACM, 43(11):37–45, November 2000.

[KS12] Anil Kumar and Jerry St.Clair. A Unit Testing Framework for C. Retrieved from:
http://cunit.sourceforge.net/, September 2012.

[Lev12] Peter Levart. FUSE-J: A Java binding for FUSE. Retrieved from: http:
//sourceforge.net/projects/fuse-j/, 2012.

[Mil12] Stewart Miles. A lightweight library to simplify and generalize the process of writ-
ing unit tests for C applications. Retrieved from: http://code.google.com/
p/cmockery/, September 2012.

[MT09] Di Ma and Gene Tsudik. A new approach to secure logging. Trans. Storage, 5:2:1–
2:21, March 2009.

[NF12] Gergely Nagy and Zoltán Fried. CEE-enhanced syslog() API. Retrieved form:
https://github.com/deirf/libumberlog, September 2012.

[OvT12] Open vSwitch Team. Open vSwitch. Retrieved form: http://openvswitch.
org/, September 2012.

[SK99] Bruce Schneier and John Kelsey. Secure audit logs to support computer forensics.
ACM Trans. Inf. Syst. Secur., 2:159–176, May 1999.

[SV12] Paulo Santos and Paulo Viegas. D3.2.3 - Smart Lighting System Draft Prototype.
Technical report, EFACEC ENG, September 2012. TClouds deliverable.

TClouds D2.4.2 Page 144 of 144

http://cunit.sourceforge.net/
http://sourceforge.net/projects/fuse-j/
http://sourceforge.net/projects/fuse-j/
http://code.google.com/p/cmockery/
http://code.google.com/p/cmockery/
https://github.com/deirf/libumberlog
http://openvswitch.org/
http://openvswitch.org/

	Introduction
	TClouds — Trustworthy Clouds
	Activity 2 — Trustworthy Internet-scale Computing Platform
	Workpackage 2.4 — Architecture and Integrated Platform
	Deliverable 2.4.2 — Initial Component Integration, Final API Specification, and First Reference Platform

	I TClouds Year 2 Demo
	TClouds Infrastructure Requirements
	Legal Requirements
	Application Requirements
	Healthcare Application
	Smart Lighting Application

	Prototypes
	Trustworthy OpenStack Prototype
	Overview
	Demo Storyline
	Remote Attestation Demo
	Access Control as a Service (ACaaS) Demo
	Secure Block Storage (SBS) and Secure VM Images Demo (also known as Cryptography-as-a-Service)
	LogService Demo
	Resilient LogService Demo

	TrustedInfrastructure Cloud Prototype
	Architecture Overview
	Demo Storyline
	Abstract API
	Demonstration flow

	Cloud-of-Clouds Prototype
	Architecture overview
	Demo storyline
	Abstract API
	Demonstration flow

	Other Prototypes
	Security Assurance of Virtualized Environments (SAVE)
	Architecture Overview

	Ontology-based reasoner: Libvirt With Trusted Virtual Domains
	Introduction
	Architecture
	Implementation

	Mapping legal and application requirements to subsystems and prototypes

	Tests Plan and Results Report
	Introduction
	A model for testing
	Master test plan
	Testing environment
	Testing levels
	Testing activities workflow
	Test results evaluation and exit criteria

	Test plans for subsystems/prototypes
	TrustedInfrastructure Cloud
	Test methodology/strategy
	Test cases
	/TC 4.4.1.2-1/ Create compartment on TrustedObjectsManager
	/TC 4.4.1.2-2/ Start compartment
	/TC 4.4.1.2-3/ Service usable from TrustedDesktop
	/TC 4.4.1.2-4/ Stop compartment

	Security Assurance of Virtualized Environments (SAVE)
	Test methodology/strategy
	Test cases

	Resource-efficient BFT (CheapBFT)
	Test methodology/strategy
	Test cases
	/TC 4.4.3.2-1/ Fault-free operation
	/TC 4.4.3.2-2/ Comparison of different consensus protocols
	/TC 4.4.3.2-3/ Operation in the presence of errors

	Secure Block Storage
	Test methodology/strategy
	Test cases
	/TC 4.4.4.2-1/ Test domain builder functionality
	/TC 4.4.4.2-2/ Customer makes encrypted VM available
	/TC 4.4.4.2-3/ Deploy and run secure image
	/TC 4.4.4.2-4/ Test Security of SBS

	Access Control as a Service (ACaaS)
	Test methodology/strategy
	Test cases
	/TC 4.4.5.2-1/ User requirement management
	/TC 4.4.5.2-2/ Infrastructure property management
	/TC 4.4.5.2-3/ ACaaS-based VM scheduling

	BFT-SMaRt
	Test methodology/strategy
	Test cases
	/TC 4.4.6.2-1/ Test write and query of data in the regular case
	/TC 4.4.6.2-2/ Test the protocol in the presence of a faulty non leader replica
	/TC 4.4.6.2-3/ Test the state transfer protocol
	/TC 4.4.6.2-4/ Test the leader change protocol
	/TC 4.4.6.2-5/ Test the leader change protocol and state transfer protocol
	Demos

	Resilient Object Storage (DepSky)
	Test methodology/strategy
	Test cases
	/TC 4.4.7.2-1/ Test write and query of data in the regular case
	/TC 4.4.7.2-2/ Validate DepSky confidentiality and consistency against data loss or server is disconnected
	/TC 4.4.7.2-3/ Validate DepSky confidentiality and consistency for modified data

	LogService
	Test methodology/strategy
	Test cases
	/TC 4.4.8.2-1/ Checking for malformed input
	/TC 4.4.8.2-2/ Logging session initialisation
	/TC 4.4.8.2-3/ Log dummy events
	/TC 4.4.8.2-4/ Logging sessions retrieval
	/TC 4.4.8.2-5/ Logging session verification

	Remote Attestation Service
	Test methodology/strategy
	Test cases
	/TC 4.4.9.2-1/ Verify DB data
	/TC 4.4.9.2-2/ Test verification of sample IMA measurements files

	Jenkins server
	Subsystem setup

	Tests Results
	Trustworthy OpenStack Prototype
	TrustedInfrastructure Cloud Prototype
	Cloud-of-Clouds Prototype
	SAVE Subsystem

	II Prototypes Documentation
	Trustworthy OpenStack Prototype
	LogService
	Platform Setup
	LogService Subcomponents
	Log Core
	Log Storage
	Log Console
	Log Service Module

	Remote Attestation Service
	Operating Environment Setup
	Prototype Build and Installation Instructions
	Database Node
	OpenAttestation Node
	Cloud Nodes

	Prototype Execution Instructions
	Database Node
	OpenAttestation Node
	Trustworthy OpenStack Management Node

	Access Control as a Service
	Platform Setup
	ACaaS Setup
	Trusted Computing Infrastructure Setup

	Management Console
	Requirement Management
	Trusted Requirement Management
	Security Properties Management
	Requirement-based VM Instantiation

	Cryptography-as-a-Service (Caas)
	Operating Environment Setup
	Hardware Prerequisites
	Download and Installation
	Configuration

	Prototype Execution Instructions

	Resource-efficient BFT (CheapBFT)
	Operating Environment Setup
	Hardware Prerequisites
	Software Environment
	Installation

	Prototype Execution Instructions

	TrustedInfrastructure Cloud Prototype
	TrustedObjectsManager setup
	Using the management console
	Creating a company
	Creating a location
	Adding users
	Network configuration
	Creating and configuring VPNs
	Attaching appliances
	Creating TrustedVirtualDomains
	Adding compartments to TVDs
	Connecting everything together

	Cloud-of-Clouds Prototype
	BFT-SMaRt
	Download instructions
	How to install

	Resilient Object Storage (DepSky)
	Prototype Execution Instructions
	DepSky configuration
	Running DepSky locally

	Other Prototypes
	Security Assurance of Virtualized Environments (SAVE)
	Operating Environment Setup
	Prototype Build and Installation Instructions
	Prototype Execution Instructions

	Ontology-based reasoner: Libvirt With Trusted Virtual Domains
	Operating Environment Setup
	Prototype Build and Installation Instructions
	Prototype Execution Instructions

	III Appendices
	TClouds Infrastructure Wiki
	Infrastructure Overview
	Code Repositories (git.tclouds-project.eu)
	Layout of the Nova repository (openstack/nova.git)
	Authentication

	Code Review (review.tclouds-project.eu)
	Authentication
	Creation of New Code Repositories
	Creation of Additional Branches in Existent Code Repositories
	Creating a New Patch Set and Submitting It for Review
	Review of Patches
	OpenStack Patches Submission Workflow

	Testing Framework (jenkins.tclouds-project.eu)
	Authentication
	Testing OpenStack
	Testing Partners' Subsystems

	Subsystems' code availability
	Trustworthy OpenStackDashboard screenshots
	Bibliography

