

D3.1.2

Application API and first specification on
application side trust protocols

Project number: 257243

Project acronym: TClouds

Project title:
Trustworthy Clouds - Privacy and Resilience
for Internet-scale Critical Infrastructure

Start date of the project: 1st October, 2010

Duration: 36 months

Programme: FP7 IP

Deliverable type: Report

Deliverable reference number: ICT-257243 / D3.1.2/ 1.0

Activity and Work package
contributing to the deliverable:

Activity 3 / WP 3.1

Due date: March 2012 – M18

Actual submission date: 2nd April, 2012

Responsible organisation: PHI

Editor: Mina Deng

Dissemination level: Public

Revision: 1.0

Abstract:

This deliverable introduces a concept as
Healthcare Trustworthy Platform as a Service
(Health T-PaaS), by defining and describing
its use cases, platform architecture and
security components deployed on top of it.
The objective of Health T-PaaS is to provide
a secure and resilient cloud environment for
healthcare service enhancement as well as
developer oriented functionalities for 3rd part
integration.

Keywords:
Healthcare applications and platform,
Trustworthy PaaS, TClouds infrastructure, A2
and A3 integration

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 I

Editor

Mina Deng (PHI)

Contributors

Marco Nalin (HSR)

Marco Abitabile (HSR)

Ya Liu (PHI)

Sebastian Banescu (PHI)

Paolo Smiraglia (POL)

Davide Vernizzi (POL)

Klaus Stengel (FAU)

Johannes Behl (FAU)

Stefan Nürnberger (TUDA)

Norbert Schirmer (SRX)

Imad M. Abbadi (OXFD)

Sören Bleikertz (IBM)

Disclaimer

This work was partially supported by the European Commission through the FP7-ICT program under
project TClouds, number 257243.

The information in this document is provided as is, and no warranty is given or implied that the
information is fit for any particular purpose.

The user thereof uses the information at its sole risk and liability. The opinions expressed in this
deliverable are those of the authors. They do not necessarily represent the views of all TClouds
partners.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 II

Executive Summary

This deliverable presents the work carried out within WP3.1 from M12—M18, and mainly
addresses Task 3.1.2 “Definition of application architecture: components, APIs and data
structures” and Task 3.1.5 “Integration between Activities A2 and A3”.

The work presented in this deliverable is based the result from WP3.1 in year 1, and it
extends the A3 activities from application layer oriented healthcare applications (SaaS) to
platform level (PaaS) solutions. Moreover, this work tries to function as a bridge to link
results from A2 of trustworthy cloud infrastructure solutions and A3 healthcare use case
applications towards end users.

This deliverable introduces a concept as Healthcare Trustworthy Platform as a Service
(Health T-PaaS), by defining and describing its use cases, platform architecture and security
components deployed on top of it. The objective of Health T-PaaS is to provide a secure and
resilient cloud environment for healthcare service enhancement as well as developer
oriented functionalities for 3rd part integration.

We define the roles of each involved actor in the proposed Health T-PaaS, and illustrate
different functional packages which include user management, security and privacy
management, application management, auditing, monitoring and benchmarking.

Then we give a brief overview on existing healthcare PaaS offerings in the market, and
analyze selected vendors such as Microsoft HealthVault and TPSC Cloud, to analyze their
utility, security, privacy and development aspects.

Based on the exploration of existing healthcare PaaS providers, we introduce the
architecture and components of this multilevel healthcare platform, Health T-PaaS, aiming to
offer novel services for both users and developers. The business model, prototype and
benchmark applications of the platform are illustrated.

Next, a high level API document is provided, focusing on offering RESTful level APIs for
developers to implement Health T-PaaS compatible applications, including basic function for
authentication, authorization and resource access. Application side trust protocol is
described in details with extensive API support.

Last but not least, we discuss the integration between A2 and A3 by proposing a list of A2
security components to be embedded within the Health T-PaaS. These security components
include Log Service, Tailored Cloud Services (Tailored memcached), Resilient BPEL
(RPEL), Secure Block Storage (SBS), Trusted Virtual Domain (TVD), Resilient Object
Storage, Access Control as a Service (ACaaS), and Security Assurance tool for Virtual
Environment (SAVE).

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 III

Contents

Chapter 1 Introduction ... 1

1.1 Outline of the Work Done from M12-M18 .. 1

1.2 Structure of this deliverable ... 1

Chapter 2 Use cases of a health trustworthy PaaS ... 3

2.1 Relevant facts and assumptions .. 3

2.1.1 Facts .. 3

2.1.2 Assumptions .. 3

2.2 Use Case Specification .. 4

2.2.1 Definitions .. 4

2.2.2 Actors .. 5

2.2.3 Use Case Overview ... 6

2.2.4 Use Case Model .. 7

2.2.4.1 End Users’ activities ... 7

2.2.4.2 App administrators’ activities ...13

2.2.4.3 Platform Administrators’ activities ..16

2.3 Legal analysis .. 17

Chapter 3 Existing Health PaaS offerings .. 18

3.1 Introduction of HealthVault ... 18

3.1.1 Utility ...18

3.1.1.1 User accounts ...18

3.1.1.2 Data collection ...18

3.1.1.3 Information usage..19

3.1.2 Security and Privacy ...19

3.1.2.1 Record sharing and access control ...19

3.1.2.2 Record deletion ...19

3.1.2.3 Authentication ...19

3.1.2.4 Others ...19

3.1.3 For developers ..19

3.1.3.1 3rd party integration..19

3.1.3.2 Libraries ..20

3.1.4 Comments ..20

3.2 Introduction of TPSC Cloud ... 20

3.2.1 Utility ...20

3.2.1.1 Cloud infrastructure ...20

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 IV

3.2.1.2 Platform management ...20

3.2.1.3 All about Apps ...21

3.2.2 Security and Privacy ...21

3.2.2.1 Infrastructure security ..21

3.2.2.2 Security and Privacy as Service ..21

3.2.3 For developers ..21

3.2.4 Comments ..21

Chapter 4 Proposed concept of health T-PaaS .. 22

4.1 T-PaaS ... 22

4.1.1 Description of the Health T-PaaS ..22

4.1.2 Application interfaces to the platform (PaaS) ..23

4.1.3 User interfaces to the platform (SaaS) ..24

4.2 Prototype and benchmark applications .. 25

4.2.1 Benchmark applications ..25

4.2.2 Usage example ...25

4.2.3 Benefits for the application and for the user ..26

4.3 Business Model.. 28

Chapter 5 Health T-PaaS API definition and application side trust protocols29

5.1 OAuth APIs .. 29

5.1.1 Step 1: Obtain request token ...29

5.1.2 Step 2: Direct user to authorization page ...30

5.1.3 Step 3: Obtain Access Token ..31

5.1.4 Step 4: Refresh access token. ..31

5.1.5 OAuth Error Code ...32

5.2 OpenID+OAuth API ... 33

5.3 CRUD operation via HTTPRest ... 34

5.3.1 Resource overview and behavior ..34

5.3.2 Use of OAuth with T-PaaS identity principles ..35

5.3.2.1 The application grants the rights ..35

5.3.2.2 Users access to her data via an application...35

5.3.2.3 User1 access to User2’s data via an application ...35

5.3.3 APIs ..36

5.3.3.1 GET...36

5.3.3.2 POST ..37

5.3.3.3 PUT ...39

5.3.3.4 DELETE ..40

Chapter 6 Overview of relevant TClouds security components 42

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 V

6.1 Log service .. 42

6.1.1 Main functionalities ...42

6.1.2 Security features useful for WP3.1 ..42

6.1.3 Usage of the component in WP3.1 ..42

6.1.4 Current status ...43

6.2 Tailored Cloud Services (Tailored memcached) .. 43

6.2.1 Main functionality ..43

6.2.2 Security features useful for WP3.1 ..43

6.2.3 Usage of the component in WP3.1 ..44

6.3 Resilient BPEL ... 45

6.3.1 Main Functionalities ..45

6.3.2 Dependability and Security Features ...45

6.3.3 Usage of the component in WP3.1 ..45

6.4 Secure Block Storage (SBS) .. 46

6.4.1 Main Functionalities ..46

6.4.2 Security features useful for WP3.1 ..46

6.4.3 Usage of the component in WP3.1 ..47

6.5 Trusted virtual domain (TVD) ... 47

6.5.1 Main Functionalities ..47

6.5.2 Security features useful for WP3.1 ..47

6.5.3 Usage of the component in WP3.1 ..48

6.6 Resilient Object Storage .. 48

6.6.1 Main Functionalities ..48

6.6.2 Security features useful for WP3.1 ..48

6.6.3 Usage of the component in WP3.1 ..49

6.7 Access Control as a Service (ACaaS) ... 49

6.7.1 Main Functionalities ..49

6.7.2 Security features useful for WP3.1 ..49

6.7.3 Usage of the component in WP3.1 ..50

6.8 Security Assurance for Virtual Environment (SAVE) 50

6.8.1 Main Functionalities ..50

6.8.2 Security features useful for WP3.1 ..50

6.8.3 Usage of the component in WP3.1 ..50

Chapter 7 Conclusions ... 51

Chapter 8 List of Abbreviations .. 52

Chapter 9 Bibliography .. 53

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 VI

List of Figures

Figure 1 - Relationship between User1->User2 (a). Relationship between User2->User1 (b).
Allowed relationships (c) .. 4

Figure 2 - privacy policies between app, user and related user (a). Use of privacy policy to
give a certain access to the app and whose is using it (b) ... 5

Figure 3 - End users use cases overview diagram .. 7

Figure 4 - App administrator use cases overview diagram ..13

Figure 5 - Platform administrator use cases overview diagram ...16

Figure 6 - Prototype architecture for Health T-PaaS ...23

Figure 7 - Overview of T-PaaS and relations with users ...28

Figure 8: OAuth Authorization Flow ..30

Figure 9 - Flow of OpenID+OAuth Hybrid Protocol ...34

file:///C:/SVN/TCLOUDS/trunk/ActivityA3-EvaluationAndTrials/Documents/D-EU-Deliverables/TC-D3.1.2/TClouds_D3.1.2_final.doc%23_Toc321126261
file:///C:/SVN/TCLOUDS/trunk/ActivityA3-EvaluationAndTrials/Documents/D-EU-Deliverables/TC-D3.1.2/TClouds_D3.1.2_final.doc%23_Toc321126261
file:///C:/SVN/TCLOUDS/trunk/ActivityA3-EvaluationAndTrials/Documents/D-EU-Deliverables/TC-D3.1.2/TClouds_D3.1.2_final.doc%23_Toc321126262
file:///C:/SVN/TCLOUDS/trunk/ActivityA3-EvaluationAndTrials/Documents/D-EU-Deliverables/TC-D3.1.2/TClouds_D3.1.2_final.doc%23_Toc321126262
file:///C:/SVN/TCLOUDS/trunk/ActivityA3-EvaluationAndTrials/Documents/D-EU-Deliverables/TC-D3.1.2/TClouds_D3.1.2_final.doc%23_Toc321126267

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 1 of 53

Chapter 1

Introduction

Chapter Authors:

Mina Deng, Ya Liu (PHI)

The main objective of the work package 3.1 “Cloud Applications Data Structures for Home
Healthcare Benchmark Scenario” is to define the cloud architecture and specification from
the application side of view, i.e., provide technical requirements for cloud computing in the
healthcare sector, especially in the area of home healthcare services and leverage this
application into an architecture, API, and protocols between application components and
clients. The cloud supported home healthcare application architecture will be closely linked
and integrated with WP2.1, WP2.2, WP2.3 and WP2.4.

1.1 Outline of the Work Done from M12-M18

This deliverable presents the work carried out for Task 3.1.2 “Definition of application
architecture: components, APIs and data structures”, and Task 3.1.5 “Integration between
Activities A2 and A3”. In the first year, WP3.1 mainly focuses on application layer (SaaS),
defining a number use cases including patient home monitoring and a preliminary patient
healthcare record portal. In the second year, we aim to bridge the gap between the results
from WP3.1 from year 1 and those from A2, by extending our contribution towards the
platform layering by introducing a Healthcare Trustworthy Platform as a Service (Health T-
PaaS), where a number of applications can be deployed (i.e. the healthcare applications
developed in year 1). We further try to address the integration between A3 and A2 by
deploying the Health T-PaaS on top of the TClouds infrastructure which is proposed from A2.

1.2 Structure of this deliverable

This deliverable aims at introducing Healthcare Trustworthy Platform as a Service (Health T-
PaaS) by defining and describing its use cases, platform architecture and security
components deployed on top of it. The objective of Health T-PaaS is to provide a secure and
resilient cloud environment for healthcare service enhancement as well as developer
oriented functionalities for 3rd part integration. The document is structured as follows:

In chapter 2 we provide a general overview of Health T-PaaS use cases by defining the role
of each involved actor and illustrating different functional packages which includes user
management, security and privacy management, application management, auditing,
monitoring and benchmarking.

An analysis of existing healthcare PaaS offerings in the market is offered in Chapter 3.
Specifically, a case study is conducted on Microsoft HealthVault and TPSC Cloud in utility,
security, privacy and development aspects.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 2 of 53

In Chapter 4, based on the exploration of existing healthcare PaaS providers, we introduce a
multilevel healthcare platform, Health T-PaaS, aiming to offer novel services for both users
and developers. The business model, prototype and benchmark applications of the platform
are illustrated as well.

In Chapter 5, a high level API document is provided, focusing on offering RESTful level APIs
for developers to implement Health T-PaaS compatible applications, including basic function
for authentication, authorization and resource access. Application side trust protocol is
described in details with extensive API support.

Chapter 6 specifies each security components embedded within the Health T-PaaS in
details, including security based infrastructure (e.g. secure block storage) and security based
services (e.g. access control as a service).

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 3 of 53

Chapter 2

Use cases of a health trustworthy PaaS

Chapter Authors:

Marco Nalin (HSR), Marco Abitabile (HSR)

2.1 Relevant facts and assumptions

2.1.1 Facts

Factors that have an effect on the product, but are not mandated requirements constraints.
They could be business rules, organizational systems, or any other activities that have an
effect on this product. Facts are things you want the reader of the specification to know.

Motivation: Relevant facts provide background information to the specification readers, and
might contribute to requirements. They will have an effect on the eventual design of the
product.

- T-PaaS can be physically installed in any EU country (in our case we are going to
deploy the platform on Sirrix Infrastructure based in Germany.

- Common Users (those who decide to store their data on) of the Platform, thus users
of the applications

- Applications:
o Can have local storage or remote storage, in this latter case we mean the use

of T-PaaS Platform to store data
o Can be desktop application, web application or mobile application

2.1.2 Assumptions

A list of the assumptions is proposed. These assumptions might be about the intended
operational environment, but can be about anything that has an effect on the product. As part
of managing expectations, assumptions also contain statements about what the product will
not do.

Motivation: To make people declare the assumptions that they are making. Also, to make
everyone on the project aware of assumptions that has already been made.

Will:

- T-PaaS platform will achieve its legal requirements at Infrastructure level by relying
on A2 findings, research and products

- T-PaaS platform will achieve its legal requirements at Platform and Software level by
implementing the requirements that the legal analysis will perform, based on this
document.

- It may be possible to build a sample application to be connected to the platform to
show some of its functionalities (Marvin 2.0 – Y1 HSR results - can be a good
candidate)

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 4 of 53

- Since access to other user data is governed by strict privacy rules and relationships
among users, everyone that wants to access to someone else data needs a proper
account in the Platform

Will not:
- Be a complete and exhaustive business oriented system (so it may lack of some

business/economic aspects)

2.2 Use Case Specification

2.2.1 Definitions

Definition of relation: a connection of type user-user, user-prof or user-app that involves
sharing personal data. These relationships are governed by privacy policies.

Relations are Google+ like. The relation depicted in figure1a means that User1 is related with
User2 and User2 is able to access to User1 data (according to certain privacy policies that
User1 has set) but not vice versa.

In order to have both users to see each other data User2 should instantiate a relation with
User1, like in figure1b. Figure1c describes relations allowed that involve privacy policies.

 A generic user can have a relation with (see figure2a):

- any other generic user or prof-user

- any application

User1

Prof1

App1

User2

≠
User1 User2

User1 Prof1 User1

User1
App1 User1

User1 User2 User1 User2

(a) (b)

(c)

Figure 1 - Relationship between User1->User2 (a). Relationship between User2->User1 (b). Allowed
relationships (c)

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 5 of 53

 A related user can access to user’s data through a related App (see figure2b):

2.2.2 Actors

See Appendix to have an overview about how users and relations will be managed by the
platform

 End user

o Professional: it may be a doctor, a psychiatrist, a personal trainer, or any
other professional related with health.

 She has a proper account on the Platform (of type “professional”) or a
subtype of it (assigned by one App Manager and recognized only by
the specific App);

Generic user

Privacy
Policies

related user

related app

Privacy
Policies

Generic user

Privacy
Policies

Privacy
Policies

related user

related app

(a)

(b)

Figure 2 - privacy policies between app, user and related user (a). Use of privacy policy to give a
certain access to the app and whose is using it (b)

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 6 of 53

 She cannot store her personal data (in that case the individual needs
another “common User” account);

 She sees the personal data of the common user she is related to
(always in respect with the privacy policies that the common user has
chosen)

 She has only incoming relations

 It might happen that the Professional is only subscribed to an App, and
this will grant her rights to access patient’s data, even if no explicit
relationship exists in the platform between the Professional and the
patient.

o Common user: it is any person that wants to store her personal health data
into the T-PaaS.

 She has a proper account on the platform (of type “user”)

 She can store personal data

 She has relations with other user, professionals or applications

 She can see data of the users she is related with (those with an
incoming relation)

 She has only outgoing relations with apps

 Administrator

o Platform Administrator: she can be identified as the platform owner, who is
in charge to make it functioning

 she has a special account on the platform

 she has no rights to see private data of other user

o Applications Administrator

 Application Developer: she is a person that develops an application
that uses T-PaaS as identity, storage, policy, log service

 She has a proper account on the platform (of type “developer”)

 She has no ability to have relations with user, professionals or
apps

 She can register and manage her applications in the platform

 Application Manager: she is someone in charge of an application with
specific abilities like send request of creation of professional users
within an app instance

 She has a proper account into the platform (of type “app
manager”)

 She cannot have any relation between other users,
professional or app to share data.

2.2.3 Use Case Overview

In the following, the identified use cases are discussed grouped according to the following
functional packages. Each package represents a service.

- User mgmt. (UC 10, 20, 30, 40)

- Relations/privacy mgmt. (UC 50, 60)

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 7 of 53

- Auditing (UC 65, 160, 70, 80)

- App mgmt. (UC 110, 120, 60, 130, 140)

- Monitoring and benchmarking (UC 100)

2.2.4 Use Case Model

This section will explain in detail the scenario and the services described in the previous
Sections. The Use Cases methodology will be described to highlight the actors involved in
the system and their relationships and experience in using the final system, and they will be
used for the definition of the reference architecture for the home healthcare scenario.

The use cases in this section are non-extensive for the overall platform. They are written to
focus on the legal aspects that the platform can touch. The intention is to find new legal
requirements in order to be A1-compliant and integrate properly the platform into the overall
TClouds objectives and integration purposes.

2.2.4.1 End Users’ activities

Figure 3 - End users use cases overview diagram

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 8 of 53

Use case unique ID UC 10 – New User registration

Description A new user wants to join the Platform, and creates a new
profile.

Actors End User

Application Administrator (alternative flow 2)

PreConditions The user doesn’t have an already existing account

PostConditions The user is registered in the platform

Normal Flow 1) The user connects to the Platform web site

2) The user inputs all her information (including username
and password)

3) The user accepts terms and conditions for the platform
usage

4) The user confirms the new registration

Alternative Flow 1

Registration made by the
user through a third party
application

1) The entry point for the user is a third party application
which needs to save data in our Platform.

2) The application requests all the needed data for the
registration (as in the normal flow) to the user and post
it to the Platform

3) The Platform sends an email directly to the user, with a
password generated by the system, and with a link to
confirm the subscription

4) The user can have a look at the term and conditions
and must accept them to be subscribed.

5) The new registration is then confirmed.

Alternative Flow 2

Registration made by an
Application Manager
through a third party
application

1) The Application Manager of a third party application
needs to register the user (or several users) in our
Platform.

2) The Manager must input (manually or
programmatically) all the needed data for the
registration (as in the normal flow) for the user

3) The Platform sends an email directly to the user, with a
password generated by the system (and not known by
the application), and with a link to confirm the
subscription

4) The user can have a look at the term and conditions
and must accept them to be subscribed.

5) The new registration is then confirmed.

Use case unique ID UC 20 – User self-deletion from the system

Description An existing user wants to delete its account and all its data

Actors End User of a specific country

PreConditions The user have an already existing account

PostConditions The user can no longer login to the system

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 9 of 53

Use case unique ID UC 20 – User self-deletion from the system

Normal Flow 1) The user logins to the Platform web site

2) The user goes to her private area and selects the
“account deletion” link.

3) The system will logout the user and deletes the user
data. Login from the user will not be allowed anymore
unless a new registration is made (UC10).

Use case unique ID UC 30 – User self-deletion/update/write of single data

Description An existing user wants to delete/update/write some of her
data

Actors End User

PreConditions The user have an already existing account and some
health data are registered

PostConditions Some user heath data are inserted, are no longer available
or has been modified

Normal Flow: deletion 1) The user logins to the Platform (through the platform’s
web site or through an application)

2) The user selects the personal health data she wants to
remove and confirms its removal

3) The system will remove the selected data and it will not
be available anymore to the system.

Alternative Flow: update 1) The user logins to the Platform (through the platform’s
website or through an application)

2) The user selects the personal health data she wants to
update and confirms its changes

3) The system will update the selected data

Alternative Flow: write 1) The user logins to the Platform (through the platform’s
website or through an application)

2) The user inserts personal health data and confirms this
insertion

3) The system will write the new data in the database

Use case unique ID UC 40 – User deletes/updates single data of another
user

Description An existing user wants to delete/update some of a friend’s
data

Actors End User: User1, User2

PreConditions User1: has an existing account and a relation with User2
and has the rights to delete/update User2 data.

User2: has an existing account and a relation with User1.
User2 gave deletion/update rights on her data to User1

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 10 of 53

Use case unique ID UC 40 – User deletes/updates single data of another
user

PostConditions Some User2’s heath data are no longer available or has
been modified

Normal Flow: deletion 1) User1 logins to the Platform (through the platform’s
web site or through an application)

2) User1 selects the personal health data of User2 she
wants to remove and confirms its removal

3) The system will remove the selected data and it will not
be available anymore to the system.

Alternative Flow: Update 1) User1 logins to the Platform (through the platform’s
web site or through an application)

2) User1 selects the personal health data of User2 she
wants to update and confirms its changes

3) The system will update the selected data.

Use case unique ID UC 45 – User access to data

Description A user wants to access her data (or another user’s data)
through either the platform or an authorized application.

Actors End User: User1, User2

PreConditions - User1 and User2 are registered in the system

- User1 has an incoming relation with User2

- User1 has the rights to access User2 data.

PostConditions User1 sees her (or User2’s) data

Normal Flow: deletion 1) User1 logins to the Platform (through the platform’s
web site or through an application)

2) User1 selects the personal health data she wants to
see in a given time interval

3) The system (either the Platform or the Application) will
display the selected data

Alternative Flow: Update 1) User1 logins to the Platform (through the platform’s
web site or through an application)

2) User1 selects the personal health data of User2 she
wants to see

3) The system (either the Platform or the Application) will
display the selected data.

Use case unique ID UC 50 – Social relationship definition

Description An existing user wants to create a relationship with another
existing user

Note: relations between users are Google+ like (for which
the relation User1User2 is different to User2User1.
See Appendix)

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 11 of 53

Use case unique ID UC 50 – Social relationship definition

Actors End User: User1, User2

PreConditions User1: has an existing account and no relation with User2
(no User1User2)

User2: has an existing account (no matter if the relation
User2User1 exists)

PostConditions Some User2’s heath data are no longer available due to
data deletion

Normal Flow 1) User1 logins to the Platform (through the platform’s
web site or through an application)

2) Step1: User1 searches for User2 and inserts User2
among her friends.

3) Step2: User1 selects the privacy restrictions for the
new relation (User1User2). This privacy affects the
experience of User2 to make CRUD operations on
User1’s data (CRUD = Create, Read, Update, Delete)

Use case unique ID UC 60 – Add new relation between user and
application

Description A User wants to specify new privacy policies for a specific
application

Actors End User

PreConditions The application registered into the T-PaaS system.

The user is logged into the system (via the T-PaaS web
site).

PostConditions The application can access to User data according to the
policies defined by the user

Normal Flow 1) Step1: The user goes in the private area and
adds/selects a specific application among her app list.

2) Step2: the user selects the privacy policies that limits
the application’s access to her data

Use case unique ID UC 62 – App's privacy policy profile specification

Description A User wants a new application to access her data

Actors End User

PreConditions The application is registered into the T-PaaS system.

The user is logged into the system (via the T-PaaS web
site).

The application is not yet related with the user (no relation
UserApp)

PostConditions The application can access to User data according to the
policies defined.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 12 of 53

Use case unique ID UC 62 – App's privacy policy profile specification

Normal Flow 1) The user search in the app index on the system
website the application she wants to add.

2) Once selected the app, the system will show the
minimum policy requirements needed by the app to run
properly

3) The User can choose whether to accept the minimum
requirements (and thus create the new relation
between the user and the application) or deny the
minimum requirements (with the consequence to have
the app not related with the user.

Use case unique ID UC 65 – Data Access Auditing

Description A User wants to see the history of who has accessed to
which data

Actors End User

PreConditions The user is registered and logged in T-PaaS via the
platform website

PostConditions The user is able to see the log of her data access

Normal Flow 1) The user selects the page relative to history of data
access in her private area on the platform website

2) The platform provides a way to select the window time
and all the auditing data appear accordingly

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 13 of 53

2.2.4.2 App administrators’ activities

Figure 4 - App administrator use cases overview diagram

Use case unique ID UC 110 – Provider registration

Description A third party subject wants to register into the system as
provider to deploy her application

Actors Third party developer

PreConditions The third party is not yet registered into the system

PostConditions The third party is registered into the system

Normal Flow 1) The third party developer access to the platform’s
developer sign-on area

2) She inserts all the useful information about the third
party (such as email and company name) and confirms
them

3) The Platform sends an email directly to the developer,
with a password generated by the system, and with a
link to confirm the subscription

4) The developer can have a look at the term and
conditions and must accept them to be subscribed.

5) The new registration is then confirmed.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 14 of 53

Use case unique ID UC 120 – App registration

Description A third party’s developer wants to add a new application’s
minimum policy requirements to allow the app, once
deployed, to be recognized by the platform

Actors Developer

PreConditions The third party’s developer is registered and logged into
the system while the app is not yet registered

PostConditions The application is registered into the system and grants the
rights to dialog with the platform.

Normal Flow 1) The third party’s developer goes to a specific page
within her personal area in which she can add a new
“app signature”

2) She inserts all the useful information about the app
(such as name, version, minimum policy grants
needed, …)

3) The system registers it in the index of the official apps
of the system.

Use case unique ID UC 130 – Modification of app signature (new app
version)

Description A third party’s developer has added new functionalities to
the app and needs to extend/modify the minimum policy
requirements of the app

Actors Developer, users of the app

PreConditions The third party’s developer is registered and logged into
the system and the app is already registered

PostConditions The new app profile is registered into the system with the
new related privacy policies

Normal Flow 1) The third party’s developer goes to a specific page
within her personal area in which she can see all her
app registered in the system and she selects the app of
which she wants to modify the privacy policy.

2) The system asks the new App signature info (version,
new privacy policies, …)

3) The responsible confirms the changes.

4) The system will send a notification to the app’s users
(those users that already have a relation with the app)
and asks them to accept the new privacy policies

User can either

o accept the new policies

o deny the new policy and maintain the old
privileges (this might lead to app
malfunctioning, but it will be responsibility of
the app providers to solve the issue)

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 15 of 53

Use case unique ID UC 140 – App deletion

Description A third party’s developer wants to delete permanently her
app to the platform

Actors Third party developer, users of the app

PreConditions The third party’s developer is registered and logged into
the system and the app is already registered

PostConditions The app is not registered anymore

Normal Flow 1) The developer goes on a specific page in the restricted
area on the platform website to remove apps

2) She selects the app she wants to remove and confirms
it

3) The system will send a notification message to all the
app’s user with the reminder that within a certain period
of time (e.g., 30 days) the application will be
permanently deleted from the platform

4) After a given time period (e.g., 30 days), the system:

a. Will remove automatically the app signature and
the app will no longer be able to use the T-
PaaS API.

b. Will remove the relation between the users and
the app

Use case unique ID UC 160 – App Manager requests the access log

Description The Manager of the application asks an audit to the
platform at API level for the specific application she
administer

Actors The app’s Manager

PreConditions The app’s Manager is logged in the platform website

PostConditions The app’s Manager can see the access log of the app

Normal Flow 1) The Manager goes to a specific page within her private
area and performs an access audit, given a specific
time window, of a specific application she administers.

2) The platform website provides a log (which integrity is
guaranteed) with the information about which
professional user of the app has accesses which data.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 16 of 53

2.2.4.3 Platform Administrators’ activities

Figure 5 - Platform administrator use cases overview diagram

Use case unique ID UC 100 – Check load balancing and performance
monitoring

Description The platform administrator wants to perform a performance
monitoring of the system

Actors The platform’s administrator

PreConditions The platform’s administrator is logged into the system

PostConditions The administrator is able to see the monitoring she needs
to do

Normal Flow 1) The administrator goes to a specific page within her
private area in the app website to see the dashboard of
all the platform performances

2) She can decide whether to instantiate new VM or
manage single node of the platform in order to increase
the performances

Use case unique ID UC 80 – Platform Auditing (IaaS Level)

Description The Platform’s owner wants to perform an audit at
Infrastructure level to retrieve the log about the images
instantiated / running app servers…

Actors Platform owner

PreConditions The owner is logged into the running system

PostConditions The owner is able to see the log of the system image(s)
instantiated on the infrastructure

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 17 of 53

Use case unique ID UC 80 – Platform Auditing (IaaS Level)

Normal Flow 1) The platform’s owner access to a specific page within
her personal area in the platform’s website.

2) She selects the data range and starts the audit session

3) The system shows a secure log that certify its integrity
and shows the info at Infrastructure level

Use case unique ID UC 70 – Platform Auditing (PaaS Level)

Description The Platform’s owner needs to perform an audit on users’
data access (e.g., asked by a tribunal)

Actors Platform owner

PreConditions The owner is logged into the system

PostConditions The owner is able to see the log of data access of a
selected user

Normal Flow 1) The platform’s owner access to a specific page within
her personal area in the platform’s website.

2) She selects the data range and the username to make
the audit to.

3) The system shows the log entries and highlights those
entries that are exploited

2.3 Legal analysis

By analyzing the use cases, several questions arise regarding legal implications, specially
related with cross border data transfer (transferring of data within EU country and outside),
deletion/update of data and data ownership. An eye has to be thrown also on the fact that the
platform, the applications and the databases can be located in three different sites around
the globe thus has to be analyzed the scenario in which storage (DB level), aggregations
(platform level) and elaboration (app level) of data might arise three different legal issues.

A deep legal analysis is demanded in D3.1.3 and the implementation of T-PaaS will take into
account all the requirements that the Legal Experts will find.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 18 of 53

Chapter 3

Existing Health PaaS offerings

Chapter Authors:

Ya Liu (PHI), Mina Deng (PHI)

An ever-growing list of personal health records service providers have adopted Cloud
computing for service improvement and security enhancement. According to OpenCrowd,
the top healthcare and wellness service providers in cloud computing market are
HealthVault, TPSC (the patient safety company) Cloud, WebMD, HeritageDigital and Google
Health, among which HealthVault, TPSC Cloud and Google Health provide platform-based
healthcare service.

Platform-based healthcare service or Health PaaS is a technology for managing and sharing
personal health records with hospitals, healthcare professionals and other 3rd parties.
Different from traditional web-based personal healthcare service, health PaaS applies secure
and resilient cloud infrastructure for computing capability and storage, on top of which it
generally provides identity management, access control for user records and an open
platform for 3rd party integration to enrich its healthcare service. Since Google Health
discontinued its service in 2011, this chapter will provide an overview of HealthVault and
TPSC Cloud in utility, security, privacy and development aspects.

3.1 Introduction of HealthVault

Launched on October 4, 2007, HealthVault is a platform-based free personal health record
(PHR) service from Microsoft providing storage for user’s health data, basic health
information management and an open platform for 3rd party integration.

3.1.1 Utility

3.1.1.1 User accounts

Currently HealthVault accepts Windows Live ID, Facebook account and OpenID from certain
identity providers. However, the registration of HealthVault is currently available only in the
following regions/countries: US, American Samoa, Guam, Northern Mariana Islands, Puerto
Rico, Virgin Islands and UK. With one account, user can manage the health of a child,
parent, or other family members, by adding records for them.

3.1.1.2 Data collection

HealthVault provides a few ways to upload health information. User can type it in manually
and upload documents including pictures and patient records. HealthVault also integrates
applications that can be used to aggregate and transform user record into digital data.
Various authenticated devices, like pedometers and blood pressure monitors, can be applied
to add data directly. Meanwhile, user can authorize pharmacies, labs, hospitals, and clinics
online to send existing information to HealthVault.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 19 of 53

3.1.1.3 Information usage

The services users can benefit from HealthVault highly depend on 3rd party applications. A
variety of health tools authenticated by HealthVault can help user to generate reports, offer
health-related education and professional recommendations. User can track records and
analyze trends and even receive prediction and suggestion from 3rd party applications.
Currently, there are 107 3rd party applications and 21 compatible devices authorized by
HealthVault.

3.1.2 Security and Privacy

3.1.2.1 Record sharing and access control

Once user creates an account, he/she will be the owner of this account with access to all the
records including read, write and delete. In addition, the owner can grant to other users
different level of access to the record and revoke the access of anyone to a certain record.

User can also share personal and health information with 3rd party services by authorizing
their access. The access request will be shown to the user when he/she applies a new
service. The request includes what and how the application will access the user’s
information. A complete log of how the record is accessed can be monitored by users.
(Solutions, 2011)

3.1.2.2 Record deletion

Data deletion in HealthVault can be either permanent or temperate. Once the record is
deleted by the owner, the record will be removed from all sharing points temperately.
HealthVault will keep the deleted data for 90 days before permanently revoke in order to
avoid accidental or malicious deletion of any critical health information. (Solutions, 2011)

3.1.2.3 Authentication

For 3rd party applications, both web applications and desktop applications need to be
associated with security certificates that need to be issued by the HealthVault Application
Manager. Therefore, the integration is within a trusted domain where user credentials for
HealthVault will never be leaked to untrustworthy3rd parties.

3.1.2.4 Others

All communications sent by HealthVault, except e-mail, is through encrypted channel.

3.1.3 For developers

3.1.3.1 3rd party integration

HealthVault platform offers different level integration for developers. Application can just use
the storage provided by HealthVault (similar to IaaS) as integration, or establish a full links
between its own PHR and HealthVault record. The list below illustrates the difference of each
integration level: (Sean, 2010)

 Native HealthVault: the application uses HealthVault user authentication, data types
and storage.

 Linking: The user authorizes an application to link to their HealthVault record so that
the application can read from or write data to HealthVault with or without user
interventions.

 Patient connect: The user authorizes an application to read or write data to their
HealthVault record via an experience on HealthVault.com

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 20 of 53

 Drop-off/Pick-up: The application drops off data to HealthVault and user picks it up
and adds it to their record.

 Software on Device Authentication: Software on Device Authentication (SODA)
applications are client applications whereby each install of application has a unique
identity in HealthVault.

3.1.3.2 Libraries

Microsoft HealthVault only provides a .NET Developer SDK for development. Even though
there are some independent groups building Java and Ruby library for Microsoft HealthVault
integration, the functionality is limited for other programming language. Further, Microsoft’s
HealthVault Application Manager, which need to be uploaded to the platform and used with
the library, is only .NET compatible.

3.1.4 Comments

Highlights:

 Outstanding market awareness for its IT services

 Easy sign-up for users (in US and UK)

 High flexibility of data collection and sharing

 Secure and various 3rd party integration

 Extensive APIs and documents for a better developer experience

Cautions:

 Limited service area

 Only .NET SDK is provided

3.2 Introduction of TPSC Cloud

The TPSC Cloud1 is a PaaS provider for healthcare organization management and
application development. Different from HealthVault which is a user oriented service, TPSC
Cloud is a developer oriented service for healthcare system management and application
development by offering its cloud infrastructure.

3.2.1 Utility

3.2.1.1 Cloud infrastructure

Different from HealthVault, TPSC Cloud provides cloud infrastructure for customers, which
includes DB storage, Objects storage, network traffic and etc. In addition, data backup and
restore are also offered as service as well as technical support.

3.2.1.2 Platform management

Various standard modules (TPSC Document, TPSC Task, TPSC Investigate, TPSC
Anticipate and TPSC Improve) above the infrastructure give customers a wide range of
business and healthcare functionality. For instance, user can track the tasks by creating
graphical overview and setting E-mail notifications. TPSC Document provides various ways

1
 TPSC Cloud - The Patient Safety Company: http://www.patientsafety.com/nl/tpsc-cloud

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 21 of 53

to manage the file system of the platform, including operations like create, distribute, modify
and search.

3.2.1.3 All about Apps

Standard integrated applications are offered by default, such as AHRQ(Adversary event) for
healthcare event reporting and Complaints for collecting managing and monitoring patient
complaints. More applications can be purchased from App Center. Meanwhile, developers
can also design and create applications using tools from TPSC platform. By easy “drag &
drop”, developers can design workflow and create online forms.

3.2.2 Security and Privacy

3.2.2.1 Infrastructure security

The security and resilience of physical environment of its data centers is enhanced by UPS
(Uninterruptible Power Supply) power with HVAC (Heating Ventilation Air Conditioning)
system. Data backup and restore is provided as default service for all users with different
backup zones and 14 recovery points. All the communication within the Cloud is secured by
SSL. In addition, TPSC Cloud has obtains industry compliance based certifications includes
SAS 70 Type II and HIPAA. However, the data isolation and network security management
are not specified from web resource.

3.2.2.2 Security and Privacy as Service

The development platform of TPSC Cloud offers managed or standard tools for developers
to enhance security and privacy of their applications. It includes user authentications, user
location management, application-based firewall configuration and role-based access
control.

3.2.3 For developers

Since TPSC Cloud is developer-oriented, it offers a full range of support from application
development to task and file management. Especially, a considerable amount of work will be
reduced for the developers by its “drag & drop” feature. However, this advantage limits the
flexibility of customization, which means developers can only create their own applications
over this platform but nothing else.

3.2.4 Comments

Highlights:

 Ideal for private and customised healthcare management.

 No programming task for app development

 Full range of control for the platform administrator

Cautions:

 Unclear cloud infrastructure, especially for security related features

 Limited 3rd party application to choose from (only from App Center)

 Poor documents and technical information on web

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 22 of 53

Chapter 4

Proposed concept of health T-PaaS

Chapter Authors:

Marco Nalin (HSR), Marco Abitabile (HSR)

4.1 T-PaaS

4.1.1 Description of the Health T-PaaS

This section describes the details of the functionalities and services offered at the Platform
as a Service (PaaS) layer, trying to outline what can be called a Health Trusted PaaS, or
Health T-PaaS. Indeed, some of the services actually have an interface also toward end
users, and we can consider them Software as a Service (SaaS). The Health T-PaaS wants to
be a multilevel platform whose aim is to provide novel services as:

- Stores trustworthily health-related data (relying on a trusted IaaS);
- Provides API for 3rd party apps to access to users’ health data, in a privacy-

preserving manner (PaaS);
- Provides API for 3rd party apps to use identity/role management services (PaaS);
- Provides an interface to allow 3rd party apps’ developers to register their

application(s) in order to access the users’ data (SaaS);
- Allows End Users to manage their data and specify privacy policy about which data a

particular application/ user can access (SaaS).

A first draft architecture of this platform has been produced in the TClouds project, and it is
shown in figure 1. Even if the picture is very high level, it shows the boundaries of the Health
T-PaaS, with its interfaces both toward users (being actual end users of applications or
developers of third parties applications) and toward applications using this platform, as well
as toward the lower infrastructure layers, offered by a Trustworthy IaaS cloud, described in
section.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 23 of 53

Figure 6 - Prototype architecture for Health T-PaaS

4.1.2 Application interfaces to the platform (PaaS)

It is expected that many different external applications (#6 in figure 1) will be deployed by
different Service Providers, using their own infrastructure (or the Trustworthy IaaS cloud, but
this isn’t mandatory), and they will be able to access through ad hoc web services to the
functionalities offered by the platform. The middleware part of the platform (#11 to #20) is the
core of the Health platform. Basically it provides:

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 24 of 53

- An interface for applications to retrieve roles and identities of the platform users
(OpenID-like APIs, with improved privacy protection, as once the user will be logged,
just basic information will be provided and not the full access to patients’ data);

- Interface for applications to CRUD (Create, Read, Update, and Delete) operations
over the users’ personal data.

o Applications must be authenticated (with OAuth like features (see Chapter 6
for more details about OAuth))

o Applications can access only to a subset of patient’s record, where information
are filtered based on the privacy policy specified by the end users.

It is important to underline the difference between the two functionalities offered. Most of the
personal information will not available to all the applications once the user logs in through her
OpenID-like account. Just a small subset of the data is made available (username, name and
surname, role in platform, etc.) while the rest must be retrieved by the applications through
dedicated web services. These web services will require an OAuth like authentication
protocol (most likely an extension of this protocol), and the access to specific CRUD
operations will be granted only depending on users’ privacy settings.
The databases represented (#11 to #14, and #19) are just an indication of the models that
the platform will be able to handle. There is the concept of Service Provider (#11), meaning
an external provider who wants to leverage on the features offered by the Health T-PaaS.
Every Service Provider can deploy one or more Applications (#14), actual software
developed and offered directly to their customers.
Of course also the Users (#12) are adequately represented with all the needed information to
access the portal (e.g., username, passwords, profile image, etc.). All the personal
information that the platform can hold are saved in the Personal Health Record database
(PHR, #19). Another important database is the access log (#20), which, among the other
things, will save all the accesses to personal data, and will be the base for the auditing tool.
An interesting functionality of the Health T-PaaS is indeed the possibility to provide logs both
to the applications and to the end users. In case of controversies related to privacy and
personal data protection, the end user will have full transparency on who accessed their
data, as well as the Service Providers, if sued by end users of infringing privacy laws, can
require a log to the Health T-PaaS and demonstrate that its access to the data was always
lawful and approved by the user.

4.1.3 User interfaces to the platform (SaaS)

As mentioned before, the end users need to have also a direct access to the platform, and
for this reason we can define a SaaS layer to manage and control the platform. There are in
particular two types of users:

1) Application developers: These are the actual developers working for the Service
Provider (or for the technology provider of a Service Provider, like for example the
Electronic Health Record provider for a hospital). Developers will have means to
access the platform, register themselves with all the legal information of their
company, and register new applications. When registering an application, the
developer must specify which type of data this application will access, and this step
(which will be enforced by the authentication layer, #16) will create a sort of signature
of the application. When an end user will authorize this application to operate with her
personal data, she will be able to define exactly to which information the application
will have access to. This is particularly useful to avoid for example a physical activity
application to access to protected medical data, without the user’s explicit consent, or
forcing her to accept this compromise (i.e., everything or nothing) in order to use the
application. With the registration step, the App is inserted into an application list,
which can work also as a Yellow Pages index when users are looking for specific
applications to manage specific activities related to lifestyle (e.g., diet, sleep, etc.).

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 25 of 53

2) End users: The actual persons who will insert their personal data into the portal, as
well as healthcare and wellbeing professionals (from doctors, to nutritionists, to
personal trainers, etc.) who will monitor patients/customers’ data. The users will have
full control over their personal data, which means that they will be empowered to
enable/inhibit other users, applications or service providers to access their data, as
well as to decide the access level (read, write, delete, etc.) for every actor and, most
important, to monitor and audit at any time who, when and how accessed their data.
Should a user lose confidence in a given provider, user or application, she will be
able to immediately inhibit it from accessing her data. Furthermore, if a given
application changes its signature (for example asking to access to more data than
originally planned and authorized), the user will be immediately notified and the
application won’t have access to the data until the user explicitly authorizes it.

4.2 Prototype and benchmark applications

The first prototype of the Health T-PaaS is under development in the TClouds project, it is
leveraging on the TClouds IaaS, and it will be tested by some benchmark applications. The
purpose is to demonstrate how it’s possible to take advantage from the platform, through the
usage of the APIs, with clear examples of applications that work on it and clarifying how the
sharing of data could takes place.

4.2.1 Benchmark applications

The two health benchmark applications developed in the TClouds project are created to
illustrate a process that includes the collection of data from a personal device, storing them in
the platform, and sharing them with proper privacy management. In particular, a first
application is centered on a device that collects sleep and light data, which is very significant
for depressed patients. Sometimes these information need to be shared with other
applications that provide actual services, using medical data collected, as, for example, the
second health benchmark application, which provides a Well-Being Portal for the depressed
patients.

1) The personal device application: The first application is a basic example of software
created to upload data collected by an external device. In general, given the device
selected (Philips-Respironics Actiwatch) the upload could be done only by a doctor,
but this application allows the patient to manage her data and to ensure its trusted
redistribution to others Services Providers, if needed.

2) The Wellbeing Portal application: The second prototype application is a portal which
allows the depressed patients to self-manage their disease. It contains a lot of
services to collect and analyze data, including the possibility to show the trends of
sleep activity, light exposure and mood variations. The patient can authorize her
doctor (e.g., her psychiatrist) to watch her data, and the application allows to the
patient to specify privacy policies to limit the information that should be displayed to
the doctor. To add data in her personal records, the patient has two possible ways:
the system can reuse data uploaded from other Service Providers properly registered,
authenticated and authorized (e.g., the personal device application described above),
or the patient can insert manually data in the system, through the Wellbeing Portal
application.

4.2.2 Usage example

To clarify how the actual platform could be used, we describe a brief use case, involving the
two prototype applications described above. The use case includes the following steps:

- Philips wants to upload data collected with the devices in its portfolio (e.g., the
ActiWatch) to the Health T-PaaS. A developer from Philips registers himself to the

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 26 of 53

Health T-PaaS and insert all the information about his company. After this step
Philips is officially registered as a Service Provider in the Health T-PaaS.

- The developer can now start to create the ActiWatch application, and he registers it in
the Health T-PaaS, by declaring to which data and with which methods (create, read,
update, delete) the application will access to.

- A new patient, Alice, is subscribed to the Health T-PaaS, and she can manage her
applications, contacts (e.g., friends, doctors, etc.), and privacy settings.

- The patient notices the ActiWatch application (i.e., the personal device application
described above) and decides to authorize it to access her data.

- The patient now accesses the Actiwatch application provided by Philips, the data is
periodically downloaded from the device and transferred to the Health T-PaaS.

- The patient adds also the Wellbeing Portal to her group of applications and
authorizes it to use her data (specifying which data are allowed through the Health T-
PaaS privacy settings interface). Now she (and the other authorized users, like her
doctor) is able to monitor the data using the Wellbeing Portal as interface, with all the
services provided on top of the patient’s information.

- Philips decides to add also physical activity monitoring to the ActiWatch application.
The Philips developer can implement the new features, but he must specify the new
data access policy for the same application.

- Alice is immediately notified of a change in the application requirements, and the
ActiWatch application is blocked from accessing Alice’s data until she provides an
explicit consent.

4.2.3 Benefits for the application and for the user

The Health T-PaaS offers many services which provide benefits both to the end-user side
and to the application Service Providers.
The major interest for the end-user is to ensure the security for her own data (in particular,
medical data are very sensitive and need to be stored and managed with more accuracy),
and to check that her privacy rights are guaranteed. The Health T-PaaS offers three principal
benefits:

1) Trusted platform: the whole structure of the platform is studied to ensure a trusted
environment, compared with the general services offered by the others Cloud
Providers. The trusted platform is necessary to preserve data from malicious users
and to grant that the system will distribute the data accordingly to the patient’s
wishes.

2) Full control over personal data: When the end-user is a patient, she can specify which
applications and which persons can see her data, and she can change these settings
at any time. This ensures the patient to own the full control over her personal data.
Moreover, every time an application, or a different user (e.g., the psychiatrist) wants
to access a new kind of data, an alert is sent to the patient, and she can decide to
issue or not the permission.

3) Data access control: The third benefit for the end users is the monitoring of the user’s
data accesses. A patient can check if the privacy settings are observed by looking at
the list of the accesses to her personal data, and she can be fully aware about which
applications/ persons actually observed the data and how frequently (e.g., useful to
check possible misuses).

There are several benefits also for the applications Service Providers to use this platform
instead of developing their own repository to store PHR data. These benefits are:

1) Increase potential number of users: As several Service Providers can use the
platform, a newcomer can benefit from a quite large pool of already available users
as potential customers for its application. Furthermore the platform offers an
application indexing feature, which will provide a distribution channel for new
applications.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 27 of 53

2) Single Sign On: The login is granted by an OpenID-like mechanism, with some
improvements to ensure more privacy. The applications don’t need to create an
identification mechanism for their users, they take advantage form the structure given
by the platform.

3) Unique data structure: If two applications want to communicate among them, it’s not
required to agree on a common data exchange format, as they can communicate in a
secure way through the platform. The applications that want send or receive data
have to use the APIs available from the platform, where the data format is well
established and univocal for all the applications subscribed.

4) Dynamic service composition: The platform is studied to support different Service
Providers that can produce or make use of patients’ personal data, allowing a more
dynamic service composition and marketing strategy. This makes it easier for a
provider to change the commercial partner if needed, as this will not impact the
software development.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 28 of 53

4.3 Business Model

In the image below is depicted the relation between final users, third party developers,
applications and the platform.

The underlying idea is that every actor that interacts with the platform has to be recognized

This will allow the platform to have a complete control of the data and the accesses to it.

Platform

App

Generic User

Professional
User

Device
Developer

Third party

Attached to

develops

Ask to develop
an app to

App as result

Recognized by Recognized by

uses

App Manager

Platform Admin

manages

App

develops

uses

Figure 7 - Overview of T-PaaS and relations with users

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 29 of 53

Chapter 5

Health T-PaaS API definition and application side

trust protocols

Chapter Authors:

5.1 Ya Liu, (PHI), Sebastian Banescu (PHI), Marco Nalin (HSR), Marco Abitabile

(HSR)OAuth APIs

In order to establish a relationship between user and application, the user is able to authorize
certain applications to access his/her data through OAuth2. Figure 2 presents the
authorization flow of OAuth. It involves three entities: the user, the third party application and
the Trusted PaaS. The API for the requests in each step is presented in the following
subsections.

5.1.1 Step 1: Obtain request token

After the application has been registered on the platform it receives a Customer Key and a
shared secret is established between the two entities. In order to initiate the user
authorization step, a request token first needs to be obtained by the application from the
platform.

Request:

URL oauth/get_request_token

Method GET/POST

Parameters Description

oauth_consumer_key (required) Consumer Key. It is provided by T-PaaS during app
registration.

oauth_nonce (required) Nonce. A random string.

oauth_signature_method (required) The signature method should be “HMAC-SHA1” here.

oauth_signature (required) Signature which is signed by the consumer secret that
was issued to the application.

oauth_timestamp (required) Timestamp. Current timestamp of the request

oauth_callback (required) Call back URL. The value specified here will be used
as the URL that users are redirected to after they authorize
access to their private data

oauth_scope (optional) list of URLs identifying the services offered by T-PaaS
that need to be accessed

oauth_version (required) The oauth_version is 1.0

2
 http://oauth.net/

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 30 of 53

Figure 8 - OAuth Authorization Flow

Response:

Parameters Description

oauth_token_secret The secret associated with the request token.

oauth_expires_in The lifetime of the request token in seconds.

oauth_request_auth_url The URL to the T-PaaS authorization page.

oauth_token The Request Token that T-PaaS returns

oauth_callback_confirmed It is always “true”

5.1.2 Step 2: Direct user to authorization page

After obtaining the request token the application can redirect the user to the T-PaaS
authorization page. Once user authorizes the third party application to access his/her data,
T-PaaS will respond to the application with oauth_token (Request Token) and oauth_verfier
which is a code tied to Request Token.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 31 of 53

Request:

URL oauth/authorize

Method GET

Parameters Description

oauth_token (required) Request Token obtained from Step 1.

oauth_nonce (required) Nonce. A random string.

5.1.3 Step 3: Obtain Access Token

In order to obtain access to the actual user data, the application needs to exchange the
request token for an access token from the platform. The access token tells the platform that
the user has allowed the application to access his/her data.

Request:

URL oauth/get_request_token

Method GET/POST

Parameters Description

oauth_consumer_key (required) Consumer Key. It is provided by T-PaaS during app
registration.

oauth_nonce (required) Nonce. A random string.

oauth_signature_method (required) The signature method should be “HMAC-SHA1” here.

oauth_signature (required) Signature which is signed by the consumer secret that
was issued to the application.

oauth_timestamp (required) Timestamp. Current timestamp of the request

oauth_verifier (required) Verification code. It is obtained from Step 2. For
OpenID+OAuth, verifier is not needed.

oauth_token (required) Request Token

oauth_version (required) The oauth_version is 1.0

Response:

Parameters Description

oauth_token The Access Token that T-PaaS returns

oauth_token_secret The secret associated with the Access Token.

oauth_expires_in The lifetime of the request token in seconds.

5.1.4 Step 4: Refresh access token.

An access token can be used for a limited amount of time (e.g. 1 hour). In order to obtain a
new access token, the old token has to be sent as a parameter when calling the
oauth/get_request_token method.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 32 of 53

Request:

URL oauth/get_request_token

Method GET/POST

Parameters Description

oauth_consumer_key (required) Consumer Key. It is provided by T-PaaS in registration.

oauth_nonce (required) Nonce. A random string.

oauth_signature_method (required) The signature method should be “HMAC-SHA1” here.

oauth_signature (required) Signature which is signed by the consumer secret that
was issued to the application.

oauth_timestamp (required) Timestamp. Current timestamp of the request

oauth_token (required) Expired Access Token

oauth_version (required) The oauth_version is 1.0

Response:

Parameters Description

oauth_token The Access Token that T-PaaS returns

oauth_token_secret The secret associated with the Access Token.

oauth_expires_in The lifetime of the request token in seconds.

5.1.5 OAuth Error Code

Error code Description

400 Error Bad Request. It might be due to absence of parameters, rejected OAuth
version, invalid signature and expired token.

401 Error Unauthorized. This can be caused by unverified OAuth signature and wrong
OAuth tokens.

403 Error Forbidden. This error happens when the application sends a request
without user permission.

500 Error Internal Error. This is generated within the healthcare T-PaaS.

501 Error Unsupported Method. The application send a request with wrong method.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 33 of 53

5.2 OpenID+OAuth API

The hybrid protocol, which is the composition of OpenID and OAuth, can enable user to
approve login and service access at the same time.

Request:

URL openid/oauth

Method POST/GET

Parameters Description

openid.mode (required) Interaction mode. Valid values are “checkid_setup”
(interaction allowed) and “checked_immediate” (No interaction
allowed).

openid.ns (required) Protocol version. This parameter should always be
http://specs.openid.net/auth/2.0 for OpenID 2.0 requests.

openid.return_to (required) Return URL. After signing in, the user is taken to this
URL.

openid.assoc_handle (optional) Association handle. Developer can set this association if
the app and T-PaaS have established an association

openid.claimed_id (optional) Claimed identifier. This should always be
http://specs.openid.net/auth/2.0/identifier_select

openid.realm (required) Authenticate realm. URL pattern of the domain that a
user should trust

OAuth extension: If OAuth is required for service access

openid.ns.oauth (required) Indication of OAuth token. OAuth-specific parameter
should always be: http://specs.openid.net/extensions/oauth/1.0

openid.oauth.consumer (required) Consumer key. OAuth-specific parameter is the OAuth
Consumer Key provided by T-PaaS in registration.

openid.oauth.scope (optional) list of URLs identifying the services offered by T-PaaS
that need to be accessed

Response:

Parameters Description

openid.ns.oauth The value is always:
http://specs.openid.net/extensions/oauth/1.0

openid.oauth.request_token Request Token. It is obtained from T-PaaS to start OAuth

After Request Token is obtained, it can be exchanged to an Access Token, which can be
continued with Step 3. Figure 2 describes the basic flow of the hybrid protocol.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 34 of 53

Figure 9 - Flow of OpenID+OAuth Hybrid Protocol

5.3 CRUD operation via HTTPRest

5.3.1 Resource overview and behavior

The following table shows all the API resources available from the platform to access users’
data. Developers can use a list of RESTful web services to perform basic CRUD (Create
Read Update Delete) operations over the data. They all work only with a valid OAuth
tokens/secrets, thus the entire following API will not be accessible with the wrong credentials.

Resource/HTTP method POST

(create)

GET

(read)

PUT

(update)

DELETE

(delete)

/users/{access_token}/{data_type}

Rationale: it has to be considered as a resource from
which you can make operations on a set of data of type
data_type.

Create
new data
of type
data_type

Show list of data
of type data_type

If exists update
data.

If not, error

Delete data

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 35 of 53

5.3.2 Use of OAuth with T-PaaS identity principles

In order to understand properly how every single API works, it is important to underline some
principles that have been adopted in building the T-PaaS platform.

More specifically, OAuth is considered as a tool to allow application to see data on behalf to
a specific user (that has previously set her privacy policy details). For better understanding,
the following examples show the mechanism that an app needs to adopt in order to access
to a certain user’s data.

5.3.2.1 The application grants the rights

In order to let an application access to a certain user’s data, these are the needed steps:

- The app developer registers its app and the platform provides the consumer key and

secrets

- The user selects the App to access her data and accepts the minimum policy

requirements in order the app to work, the system will produce the request token that

the app has to use in combination with the consumer’s keys/secrets

- The system grants to the App an access token that can be used as a key to access

patient’s data

5.3.2.2 Users access to her data via an application

This is the normal flow, in which the application asks for User1’s data and User1 is the actual
user using the app.

This flows involes that:

- User1 has expressed her privacy policy about how the App has to access her data

- As soon as User1 asks to the App to see her data, the application uses the access

token of User1 to connect to the platform.

5.3.2.3 User1 access to User2’s data via an application

This flow involves that:

- User1 has expressed her privacy policy about how the App has to access her data

OAuth: App asks for User1 data on

her behalf using User1 Access Key
App User1

OAuth: App asks for User2’s data on

her behalf using User2 Access key
App User1

User1 wants to

see User2’s data

User1 App policies Sleep

Mood

Personal data

…

Key = nhowaehcvpw98fywfbpwoeuch

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 36 of 53

- User2 has expressed her privacy policy about how the App has to access her data

- It exists the relation: User2User1 that allows User1 to access User2’s data

(according to certain policies)

- As soon as User1 asks to the App to see User2’s data, the application uses the

access token of User2 to connect to the platform.

5.3.3 APIs

The methods to retrieve the data will have the following structure:

/users/{access_token}/{data_type}

It has to be considered as a resource from which you can make operations on a set of data
of type data_type.

5.3.3.1 GET

Show list of data of type data_type. Search filter data are passed through the URI as well to
allow the addressability of each single data.

URL: users/{access_token}/{data_type}{?asker_access_token, start_datetime,
end_datetime, serial_num, id_data}

Method: GET

Auth: OAuth credentials (e.g. consumer_key, access_token, nonce, …)

Parameters: asker_access_token: Username of who is asking the request (same as

{access_token} if it’s a user watching her data)

start_datetime

end_datetime

serial_num

id_data

the parameters has to respect the following RegEx:

(asker_username, ((start_datetime, end_datetime, serial_num?)|id_data+))

Returns: The output is an XML, which structure is described with the following DTD:

If there are no errors it returns the data contained between start_datetime
and end_datetime (with a specific serial_num) or the data correspondent to
the specific id_data

<?xml version="1.0"?>

<!DOCTYPE T-PaaS_response [

<!ELEMENT T-PaaS_response (data*|error+)>

<!ELEMENT error (id_error, error_description)>

<!ELEMENT data (id_data, data_type, unit_of_measure,

serial_num, value, start_datetime, end_datetime,

note)>

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 37 of 53

<!ELEMENT id_data (#PCDATA)>

<!ELEMENT data_type (#PCDATA)>

<!ELEMENT unit_of_measure (#PCDATA)>

<!ELEMENT serial_num (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT start_datetime (#PCDATA)>

<!ELEMENT end_datetime (#PCDATA)>

<!ELEMENT note (#PCDATA)>

<!ELEMENT id_error (#PCDATA)>

<!ELEMENT error_description (#PCDATA)>

]>

HTTP errors:

- 404 - not found: username not found
- 404 - not found: data_type not found
- OAuth errors

Other return
errors:

- Invalid asker_username – ERR_INVALID_ASKER_USERNAME

- Invalid start_datetime – ERR_INVALID_START_DATETIME

- Missing start_datetime – ERR_MISSING_START_DATETIME

- Invalid end_datetime – ERR_INVALID_END_DATETIME

- Missing end_datetime – ERR_MISSING_END_DATETIME

- App not allowed to retrieve the data due to policy restrictions –
ERR_APP_NOT_ALLOWED

- {username} not allowed to retrieve the data due to policy

restrictions – ERR_USER_NOT_ALLOWED

- {username} has no relation with the user that is asking the request
– ERR_USER_NOT_RELATED

- App has no relation with the user that is asking the request –
ERR_APP_NOT_RELATED

5.3.3.2 POST

Create new data of type data_type

URL: users/{username}/{data_type}

Method: POST

Auth: OAuth credentials (e.g. consumer_key, access_token, nonce, …)

Parameters
(body):

Request DTD:

<?xml version="1.0"?>

<!DOCTYPE T-PaaS_request [

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 38 of 53

<!ELEMENT T-PaaS_request (asker_access_token, data+)>

<!ELEMENT asker_access_token (#PCDATA)>

<!ELEMENT data (unit_of_measure, serial_num?, value,

start_datetime, end_datetime, note?)>

<!ELEMENT unit_of_measure (#PCDATA)>

<!ELEMENT serial_num (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT start_datetime (#PCDATA)>

<!ELEMENT end_datetime (#PCDATA)>

<!ELEMENT note (#PCDATA)>

]>

Returns: This service returns an XML, which is described with the following DTD:

<?xml version="1.0"?>

<!DOCTYPE T-PaaS_response [

<!ELEMENT T-PaaS_response (data+)>

<!ELEMENT data (id_data|error+)>

<!ELEMENT error (id_error, error_description)>

<!ELEMENT id_error (#PCDATA)>

<!ELEMENT error_description (#PCDATA)>

]>

HTTP errors:

- 404 - not found: username not found
- 404 - not found: data_type not found
- OAuth errors

Other return
errors:

- Invalid asker_username – ERR_INVALID_ASKER_USERNAME

- Invalid unit of measure (for the given data_type) –

ERR_INVALID_UNIT_OF_MEASURE

- Invalid value (for the given data type/ unit of measure) –

ERR_INVALID_VALUE

- Invalid start_datetime – ERR_INVALID_START_DATETIME

- Invalid end_datetime – ERR_INVALID_END_DATETIME

- Missing start_datetime – ERR_MISSING_START_DATETIME

- Missing end_datetime – ERR_MISSING_END_DATETIME

- App not allowed to retrieve the data due to policy restrictions –
ERR_APP_NOT_ALLOWED

- {username} not allowed to retrieve the data due to policy

restrictions – ERR_USER_NOT_ALLOWED

- {username} has no relation with the user that is asking the request
– ERR_USER_NOT_RELATED

- App has no relation with the user that is asking the request –
ERR_APP_NOT_RELATED

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 39 of 53

5.3.3.3 PUT

If exists update data. If not, error

URL: users/{username}/{data_type}

Method: PUT

Auth: OAuth credentials (e.g. consumer_key, access_token, nonce, …)

Parameters
(body):

<?xml version="1.0"?>

<!DOCTYPE T-PaaS_request [

<!ELEMENT T-PaaS_request (asker_access_token, data+)>

<!ELEMENT data (id_data, unit_of_measure?,

serial_num?, value?, start_datetime?, end_datetime?,

note?)>

<!ELEMENT asker_access_token (#PCDATA)>

<!ELEMENT id_data (#PCDATA)>

<!ELEMENT unit_of_measure (#PCDATA)>

<!ELEMENT serial_num (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT start_datetime (#PCDATA)>

<!ELEMENT end_datetime (#PCDATA)>

<!ELEMENT note (#PCDATA)>

]>

Returns: The output is an XML, which structure is described with the following DTD:

<?xml version="1.0"?>

<!DOCTYPE T-PaaS_response [

<!ELEMENT T-PaaS_response (data+)>

<!ELEMENT data (id_data|error+)>

<!ELEMENT error (id_error, error_description)>

<!ELEMENT id_error (#PCDATA)>

<!ELEMENT error_description (#PCDATA)>

]>

HTTP errors:

- 404 - not found: username not found
- 404 - not found: data_type not found
- 404 - not found: id_data not found
- OAuth errors

Other return
errors:

-

- Invalid asker_username – ERR_INVALID_ASKER_USERNAME

- Invalid unit of measure (for the given data_type) –

ERR_INVALID_UNIT_OF_MEASURE

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 40 of 53

- Invalid value (for the given data type/ unit of measure) –

ERR_INVALID_VALUE

- Invalid start_datetime – ERR_INVALID_START_DATETIME

- Invalid end_datetime – ERR_INVALID_END_DATETIME

- Invalid serial_num – ERR_INVALID_SERIAL_NUM

- App not allowed to update the data due to policy restrictions –
ERR_APP_NOT_ALLOWED

- {username} not allowed to update the data due to policy restrictions
– ERR_USER_NOT_ALLOWED

- {username} has no relation with the user that is asking the request
– ERR_USER_NOT_RELATED

- App has no relation with the user that is asking the request –
ERR_APP_NOT_RELATED

5.3.3.4 DELETE

Delete data

URL: users/{username}/{data_type}.format{?asker_access_token, id_data,
start_datetime, end_datetime, serial_num}

Method: DELETE

Auth: OAuth credentials (e.g. consumer_key, access_token, nonce, …)

Parameters: asker_access_token: Username of who is asking the request (same as

{access_token} if it’s a user watching her data)

start_datetime

end_datetime

serial_num

id_data

the parameters has to respect the following RegEx:

(asker_username, ((start_datetime, end_datetime, serial_num?)|id_data+))

Returns: The output is an XML, which structure is described with the following DTD:

<?xml version="1.0"?>

<!DOCTYPE T-PaaS_response [

<!ELEMENT T-PaaS_response (error*)>

<!ELEMENT error (id_error, error_description)>

<!ELEMENT id_error (#PCDATA)>

<!ELEMENT error_description (#PCDATA)>

]>

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 41 of 53

HTTP errors:

- 404 - not found: username not found
- 404 - not found: data_type not found
- 404 - not found: id_data not found
- OAuth errors

Other return
errors:

-

- Invalid asker_username – ERR_INVALID_ASKER_USERNAME

- App not allowed to delete the data due to policy restrictions –
ERR_APP_NOT_ALLOWED

- {username} not allowed to delete the data due to policy restrictions
– ERR_USER_NOT_ALLOWED

- {username} has no relation with the user that is asking the request
– ERR_USER_NOT_RELATED

- App has no relation with the user that is asking the request –
ERR_APP_NOT_RELATED

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 42 of 53

Chapter 6

Overview of relevant TClouds security components

Chapter Authors:

Mina Deng (PHI), Paolo Smiraglia, Davide Vernizzi (POL), Klaus Stengel (FAU), Johannes Behl
(FAU), Stefan Nürnberger (TUDA), Norbert Schirmer (SRX), Imad M. Abbadi (OXFD), Sören Bleikertz
(IBM)

6.1 Log service

6.1.1 Main functionalities

The main focus of the Log Service3 is to log and track events originated at the Cloud
infrastructure layer, such as creation, destruction or migration of a Virtual Machine (VM), or
allocation and deletion of a bucket of storage. However, this component could also be used
by applications deployed on TClouds to log and audit events happen in the application layer.
For instance, Log Service can be used as basis for auditing or reporting the Service Level
Agreement (SLA) compliance to the User. This is, the User paid for some exclusive access
to the physical nodes and verifies that such a SLA policy is in compliance by accessing the
log that lists the VMs running on these nodes.

6.1.2 Security features useful for WP3.1

The Log Service guarantees that concerned events from the infrastructure layer should be
logged. In addition, the Log Service shall ensure integrity, privacy, access control and
availability of log entries. This Log Service is mainly based on secure logging schemes, such
as the ones proposed by Schneier and Kelsey (Bruce Schneier, 1999), and Ma and Tsudik
(Di Ma, 2009). It provides most of the security features required by a logging system, and
namely integrity, privacy and access control of log entries. Moreover, Log Service relies on a
resilient storage4 to guarantee availability of logs, also for long periods of time.

6.1.3 Usage of the component in WP3.1

Primarily, the Log Service from A2 provides the logging for events from the IaaS layer. A3
would extend this logging feature into the platform and application layer, in order to provide
accountability and auditability for the healthcare applications deployed on TClouds. Actors
from A3 act as consumers of the cloud and therefore can access the Log Service. For
instance, an A3 healthcare administrator may want to check if his application deployment
complies with the SLA and the patient’s consent, using the Management Console provided

3
 Chapter 6 Log Service, TClouds deliverable D2.1.1 Technical Requirements and Architecture for Privacy

enhanced and Resilient Trusted Clouds
4 Chapter 6 Object Storage, TClouds deliverable D2.2.1 Preliminary Architecture for Middleware for Adaptive
Resilience

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 43 of 53

by TClouds. Moreover, developers of A3 applications could take advantages from Log
Service to create secure log entries without having to setup own log system.

6.1.4 Current status

The current API is only intended to be used by IaaS and PaaS Cloud Components (i.e., by
A2 components), but this can be extended to be used by applications as well. At the
moment, the Log Service only implements Symmetric key cryptographic scheme (Bruce
Schneier, 1999) which provides most of the security features required by a logging system,
but it lacks the protection against particular attacks, namely truncation attack and delayed
deletion attack (Di Ma, 2009).

6.2 Tailored Cloud Services (Tailored memcached)

6.2.1 Main functionality

The memcached5 is a simple network service to save and retrieve any kind of binary data in
ephemeral RAM of computing nodes. It is typically used to save smaller bits of information
that would otherwise require computational effort to regenerate on each request, for example
rendered HTML documents from a content management system.

The cached data is mainly organized using a flat namespace, where each entity has a
unique name (called key) assigned by the user of the service. While keys are restricted to
250 characters and must be in plain-text format, there are no such limitations imposed on the
actual data (called values) stored in the cache. Additionally, memcached offers a "flags" field,
which allows the user to store 16 bits (32 bits in newer versions) of auxiliary data together
with the actual cached data value.

When storing or updating an entry, it is also possible to specify an absolute or relative
expiration time, after which it will be removed automatically. In order to track changes and
allow automatic updates, the service maintains a version counter for each entry that can be
queried but not manipulated.

The memcached offers usual functions for storing, retrieving and updating entries given their
secret key. Three different mechanisms are responsible for removing data from the cache:
Entries can be deleted on request or automatically. Such automatic deletions happen either
by the expiration mechanism mentioned in the previous paragraph or if the cache runs out of
memory. To determine which entries to remove for the latter case, the service maintains
internal usage statistics and selects the least frequently accessed items.

6.2.2 Security features useful for WP3.1

The service is designed to improve availability and performance by utilizing type-safety in the
programming language and a custom tailoring process to remove unnecessary features
based on the deployment scenario. In combination with a minimal operating system layer,

5
 Chapter 10 Tailored Cloud Services, TClouds deliverable D2.1.1 Technical Requirements and Architecture for

Privacy enhanced and Resilient Trusted Clouds

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 44 of 53

the trusted computing base (TCB) of the final component is considerably smaller than in a
traditional deployment. Encryption and authentication functions could be added in order to
provide additional layers of security compared to the original memcached implementation.
With the original memcached, anyone who can reach the service on the network may
read/alter cached data, which means there is currently no support for authentication or
encryption. For this reason, these security functions might be some useful configurable
extensions for the service, such as by using passwords to protect the cached data.

Regarding the differences between the proposed components comparing with the one from
the original memcached6, the external protocol will be basically. However, the difference is
that there is no need to use a complete operating system to run it and a safer programming
language to implement it. Therefore, it is much more unlikely that the proposed
implementation will have security critical issues like buffer overflows, which would allow
information to leak. The original implementation had such a bug at least once.

6.2.3 Usage of the component in WP3.1

The improved memcached could possibly be used to improve performance for frequently
accessed, dynamically updated web pages in the end-user web-frontend.

The memcached can cache results of arbitrary functions. An example is used to present a
typical usage pattern for the memcached. Assume a function to create a dynamic section of
a website with average statistics over the last month. The generation requires some
expensive database queries. To improve performance when this page is accessed frequently
(e.g. a patient's personalized start page), it is possible to feed the results into a memcached
instance. Dedicated Java code might look like this:

String getUserStatistics(String user_id) {
 String result;
 Float avg_doses_taken, avg_sleep;
 avg_sleep = querySqlDatabaseSleep(user_id, LAST_MONTH);
 avg_doses_take = querySqlDataBaseDoses(user_id, LAST_MONTH);
 result = "<div id=\"sleep\">Average Hours of sleep: "
 + avg_sleep + "</div>"
 + "<div id=\"doses\">Average number of doses"
 "taken:" + avg_doses_taken + "</div>";
 return result;
}

Next one can add a simple query to the cache service and check if the data was already
calculated recently and use that information instead:

String getUserStatistics(String user_id) {
 String result = queryMemcache("statistics-" + user_id);
 if (result != NULL) return result;
 /* else not cached yet... */

 Float avg_doses_taken, avg_sleep;
 avg_sleep = querySqlDatabaseSleep(user_id, LAST_MONTH);
 avg_doses_take = querySqlDataBaseDoses(user_id, LAST_MONTH);

6
 Memcached: http://memcached.org/

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 45 of 53

 result = "<div id=\"sleep\">Average Hours of sleep: "
 + avg_sleep + "</div>"
 + "<div id=\"doses\">Average number of doses"
 "taken:" + avg_doses_taken + "</div>";

 saveMemcached("statistics-" + user_id, result, 12*HOURS);
 return result;
}

6.3 Resilient BPEL

6.3.1 Main Functionalities

RBPEL7 is a platform for the fault-tolerant execution of Web-service-based workflows
particularly within clouds. These workflows have to be described in a special language,
namely the Web Services Business Process Execution Language (WS-BPEL or short BPEL).
BPEL is XML-based and allows specifying Web services that are composed of other Web
services. These special Web services are also called composite Web services and their
corresponding BPEL descriptions are called process definitions. Within RBPEL, engines
responsible for the execution of such composite Web services are replicated actively. The
same holds for the Web services the composite Web services are based on. All work
necessary for the active replication is done totally transparent to the process definitions of
the composite Web services. This means, existing process definitions can be reused without
manual intervention and new definitions can be written as intended for standard, non-
replicated BPEL platforms.

BPEL’s main purpose is the definition of Web services that realize their functionality on basis
of other Web services. Thus, it mainly offers means to receive and handle standard Web
service requests from clients, to invoke other Web services and process the results of such
invocations and to send replies to the calling clients. Furthermore, BPEL has many aspects
from general purpose programming languages. It has control flow expressions, e.g. for
branches and loops, variables, exception handling etc. Besides that, BPEL allows easy
access to and transformation of SOAP messages, the protocol usually used for the
communication with Web services. RBPEL is only about tolerating crash failures but not
tolerating Byzantine that is arbitrary failures. The current RBPEL infrastructure is able to
tolerate crashes of a certain number of its components, but it isn't able to detect or mask, for
instance, intrusions or bit flips.

6.3.2 Dependability and Security Features

In its current form, RBPEL uses active replication in order to tolerate web service crashes
and for providing a highly available Web services from the TClouds healthcare platform.

6.3.3 Usage of the component in WP3.1

RPBEL can be used whenever highly available composite Web services are needed. If there
are multiple Web services that need to be coordinated, orchestrated or combined in whatever

7
 Chapter 8.2 Fault-tolerant Workflow Execution (FT-BPEL), TClouds deliverable D2.2.4 TClouds Prototype

Architecture, Quality Assurance Guidelines

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 46 of 53

way, the required code required to put all these Web services together could be written in
BPEL. The benefit would be that RBPEL can be used in order to make the whole system
highly available and tolerant to crashes of subsystems. In the medical use case, one possible
location for the integration of RBPEL could be the A3 middleware, maybe within the Health
Management Application. If traditional Web services were used for the communication
between the different components (Management Application, Patient Application, Paten PC
etc.) instead of RESTful ones, there could be the chance to identify workflows that can be
modelled as composite Web services.

6.4 Secure Block Storage (SBS)

6.4.1 Main Functionalities

Secure Block Storage (SBS)8 will provide a transparent layer
that provides security properties, such as confidentiality,
integrity, and authenticity for block devices. Block storage is
non-linear raw memory attached to VM instances as block
device (virtual hard disk, e.g. iSCSI). The SBS is also
responsible for user-centric key management.

The focus is on an open source cloud, because SBS cannot influence either the storage
backend or VM images deployed to a commodity public cloud. The latter solution furthermore
has the advantage, that legacy VMs (i.e. VMs not aware of security objectives) can be used,
as the modified hypervisor then functions as a translation layer between ciphertext and
plaintext.

6.4.2 Security features useful for WP3.1

The SBS is able to provide security properties including confidentiality, integrity and
authenticity, and version control and replay attacks prevention. Here we assume a secure
and attestable hypervisor. Otherwise it must be blindly trusted.

 For confidentiality, the data stored on block devices inside the VM shall be transparently
encrypted by the hypervisor so that the stored data at rest cannot be eavesdropped.
Using encryption the stored data, mounted as a file system inside the VM, is only
accessible in plaintext by those authorized to have access.

 For Integrity and Authenticity, the data stored on block devices inside the VM shall be
transparently integrity-protected by the hypervisor so that tampering with the stored data
can be detected. This is achieved with digital signatures (or Message Authentication
Codes, MACs) such that the stored data can be checked for authenticity and tampering.

 SBS also provides Version Control (or Replay Attacks Prevention). Even though an
adversary cannot read encrypted data, it is possible for her to replay previously saved
encrypted data. Possible adversaries are: Local/remote administrators of the cloud
provider.
This is achieved with hardware/virtual counters (e.g. provided by the TPM), which is
possible to enable version control for encrypted data chunks.

8 Chapter 7.3 Secure Block Storage (SBS), TClouds deliverable D2.4.1 TClouds Prototype Architecture, Quality
Assurance Guidelines, Test Methodology and Draft API

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 47 of 53

6.4.3 Usage of the component in WP3.1

From the infrastructure layer, the SBS scheme requires trusted platform as required an
external component. SBS will rely on a trusted platform (hardware) with a hardware root of
trust. The platform shall provide a hardware Trusted Platform Module (TPM).

As SBS is transparent to the application or platform layer, it will not influence Activity3.
However, a slightly modified interaction with the actors from A3 is necessary, because they
have to additionally provide a cryptographic key.

6.5 Trusted virtual domain (TVD)

6.5.1 Main Functionalities

A TVD9 is a set of compartments that trust each other, share a common security policy and
enforce it independently of the particular physical hardware platform they are running on.
Moreover the TVD infrastructure contains a hypervisor, also called VMM, and physical
components, such as CPU, memory, and hardware security modules, on which the
compartments rely to enforce the policy.

Major strength of TVDs is the transparent data protection and enforcement of access control
policies. The TVD ensure that platforms and users logically assigned to the same TVD can
access distributed data storage, network services, and remote servers without executing any
additional security protocols, while the resources belonging to different TVDs are strictly
separated. Those resources remain inaccessible for unauthorized participants. Moreover,
data that is stored on mobile storage devices is automatically protected by encryption and
can only be decrypted within the same TVD the device has been assigned to. Hence, users
cannot forget to employ encryption, and data on mobile storage devices such as memory
sticks cannot be used outside the TVD.

6.5.2 Security features useful for WP3.1

The relevance to the WP3.1 medical use case is straightforward. The main features of the
TVD infrastructure are:

 Isolation of tenants: Isolation of stakeholders within the TClouds healthcare applications
(such as HSR and PHI) and enforcement of information flow rules. Containment
boundaries to compartments from different TVDs are provided by the underlying secure
hypervisor (Security Kernel and VMM), allowing an isolated execution of several different
TVDs on the same physical hardware platform.

 Secure communication channels: Compartments belonging to the same TVD are
connected through a virtual network that can span over different platforms and that is
strictly isolated from the virtual networks of other TVDs.

 Information flow control: information can only flow between compartments belonging to
the same TVD. This is defined by the information flow policies.

 Central management: as the main feature of the Trusted Infrastructure, different TVDs,
their infrastructure, trust relationships, and security policies are centrally manageable.

9 Chapter 12.5 Trusted Virtual Domains, TClouds deliverable D2.1.1 – Technical Requirements and Architecture
for Privacy enhanced and Resilient Trusted Clouds

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 48 of 53

Centralized infrastructure management allows registration and authentication of all
hardware platforms, security services and VMs.

6.5.3 Usage of the component in WP3.1

For year 2 there are no requirements to WP3.1 as we will deploy the complete application
(possibly several VMs) within the same TVD. Benefits from running the healthcare platform
on a Trusted Infrastructure (TVD) are separation from other customers on the cloud, and
encryption of data and of the communication between our virtual machines.

The vision for year 3 can become more ambitious and separate the different virtual machines
of healthcare platform and applications to different TVDs (e.g. one for each stakeholder) and
define the allowed information flows between the TVDs.

In this scenario, to allow communication between TVDs according to the information flow
policy, the VMs cannot directly communicate but are intercepted by an information flow
manager. A2 will provide a generic information flow manager framework that has to be
instantiated to work with the communication channels of the healthcare TVDs. In case of
using REST protocol within the healthcare platform and applications, this means that A2 and
A3 jointly have to develop proxies that intercept the communication at the boundaries of a
TVD, such that the TVD manager can take control and govern the communication.

6.6 Resilient Object Storage

6.6.1 Main Functionalities

Resilient Object Storage10 builds reliable and secure storage through a federation of object
storage services from multiple providers. Multiple clients may concurrently access the same
remote storage provider and operate on the same objects.

This is done through an interface that contains common operations of object cloud storage.
The software is libraries run by each client before it accesses cloud storage; the
management and setup is the same as for accessing one storage provider, and the library
does not require client-to-client communication. The library requires some cryptographic
credentials (public keys) of all clients to be present.

6.6.2 Security features useful for WP3.1

The storage system provides confidentiality through encryption, integrity through
cryptographic data authentication, and reliability through data replication and erasure coding.
Key management for encryption and authentication keys is integrated.

 Availability is provided via exploiting replication and diversity to store the data on several
clouds, it allows access to the data as long as a subset (generally, a large enough
majority) of them is reachable.

 Integrity is ensured that data can be retrieved correctly even if some of the clouds corrupt
data, lose it, or adversarial manipulate it. The system builds on so-called Byzantine fault-
tolerant replication that stores data on several providers.

10

 Chapter 8.3 Resilient Object Storage, TClouds deliverable D2.4.1 TClouds Prototype Architecture, Quality
Assurance Guidelines, Test Methodology and Draft API

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 49 of 53

 Confidentiality of the stored data against disclosure to one or more cloud providers is
ensured through encryption. The system may use a novel secret sharing scheme,
whereby encryption keys are maintained collaboratively by a (sufficiently large) majority
of the cloud providers. No (or sufficiently small) faulty minority can learn anything about

the stored data, not even by colluding.

6.6.3 Usage of the component in WP3.1

The system can be used to store medical data that is critical in terms of availability, integrity
and confidentiality. Moreover, this data can be shared by multiple (trusted) parties (such as
PHI and HSR) using the untrustworthy clouds as coordination media.

6.7 Access Control as a Service (ACaaS)

6.7.1 Main Functionalities

ACaaS11 provides a component that considers user requirements during normal operations
as well as in incidents. Example of user requirements includes the following: enforce location
restrictions, manage the hosting of dependent applications (e.g. group a set of applications to
be hosted within physical proximity and, simultaneously ensure they do not run on the same
Computing Node), and exclude certain physical properties from hosting a user application.

The objective of ACaaS is to act as a policy decision point to manage the hosting of VM
instances at an appropriate Computing Node. ACaaS component verifies that a Computing
Node satisfies User requirements when hosting its VM instance. User requirements include
technical properties, QoS/SLA requirements (e.g. system availability, reliability measures,
and lower/upper resource limits), and security and privacy requirements (e.g. location of data
distribution and processing).

6.7.2 Security features useful for WP3.1

Security feature that ACaaS can provide is to consider user requirements during normal
operations as well as in incidents. Example of user requirements includes the following:
enforce location restrictions, manage the hosting of dependent applications (e.g. group a set
of applications to be hosted within physical proximity and, simultaneously ensure they do not
run on the same Computing Node), and exclude certain physical properties from hosting a
user application.

A number of assumptions hold for this component. Although, we do not assume that all cloud
employees are trusted, we assume that cloud providers trust a set of employees who interact
and manage the ACaaS. Moving physical Computing Node across physical locations is
controlled by the set of trusted cloud Admin who are trusted to reflect such movement in the
ACaaS. The hardware of Computing Node is secure and trusted, incorporating a Trusted
Platform Module chip (TPM).

11

 Chapter 9.1 Access Control as a Service (ACaaS), TClouds deliverable D2.4.1 TClouds Prototype Architecture,
Quality Assurance Guidelines, Test Methodology and Draft API

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 50 of 53

6.7.3 Usage of the component in WP3.1

Managing clouds’ hosting environment based on real user requirements is one of the
important A3 security and privacy requirements. WP3.1 need to supply the security and
privacy requirements when instantiating the VM, or when there is a need to update the above
requirements.

In Year 2 the component will take two forms of input:

 Infrastructure properties and policies (will be provided manually at this stage).

 User properties defining application components dependencies, e.g. two VMs should be
hosted in physical proximity but must not use the same physical platform; the VMs should
not be hosted on certain VMs, etc.

6.8 Security Assurance for Virtual Environment (SAVE)

6.8.1 Main Functionalities

SAVE (Security Assurance for Virtual Environment)12 is a tool for automated validation of
isolation of cloud users. It extracts configuration data from multiple virtualization
environments, transforming the data into a normalized graph representation, and subsequent
analysis of its security properties. An information flow analysis on the virtualized
infrastructure topology will be employed that forms the basis for an isolation breach
diagnosis.

6.8.2 Security features useful for WP3.1

This automated audit mechanism is able to validate that isolation of different tenants in the
cloud infrastructure is given by analyzing the current configuration. The assumption is that
the automated validation requires access to the configuration information on the physical
nodes or through a central management interface. The OpenStack infrastructure could be
extended and used to extract the information.

6.8.3 Usage of the component in WP3.1

The current technology will be integrated and adapted based on OpenStack. WP3.1 could
use this component to validate isolation of cloud tenants.

12

 Chapter 9.5 Automated Validation of Isolation of Cloud Users, TClouds deliverable D2.4.1 TClouds Prototype
Architecture, Quality Assurance Guidelines, Test Methodology and Draft API

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 51 of 53

Chapter 7

Conclusions

Chapter Authors:

Mina Deng (PHI), Ya Liu (PHI)

In this deliverable we introduce Health T-PaaS, a multilevel healthcare platform, with its
overview concept, utility, architecture and value added security components as well as its
legislation analysis.

Different from traditional web-based and platform-based personal healthcare services in the
market, Health T-PaaS applies secure and resilient cloud infrastructure for computing
capability, secure storage, and security/privacy management, on top of which an open
platform generally provides identity management, access control as a service, log as a
service for users and developers.

The use cases of the health trustworthy PaaS described. The document highlights the actors
involved in the system and their relationships in various scenarios, which include both SaaS
and PaaS use cases. In terms of SaaS oriented scenarios, it offers user registration, data
operation by user, user relationship definition and account deletion. In order to provide PaaS
functionality, PaaS-based scenarios are described, such as application’s privacy policy
profile specification, data access auditing, application registration and PaaS/IaaS level
monitoring.

The high level RESTful APIs provided, intended to describe the possibility and flexibility of 3rd
party integration with Health T-PaaS. By applying OAuth and OpenID application side trust
protocols, user authentication and application authentication and authorization can be
achieved in a secure and trust way with high compatibility.

The benefits of adopting Health T-PaaS are largely based on applying the trustworthy cloud
environment, the feature of which can be easily inherited. For instance, log service is to log
and audit events happen in the both infrastructure and application layers, RBPEL can
provide a fault-tolerant execution of Web-service-based workflows particularly within clouds
and TVD ensures that platforms and users logically assigned to the same domain can
access distributed data storage, network services, and remote servers.

we discuss the integration between A2 and A3 by proposing a list of A2 security components
to be embedded within the Health T-PaaS. These security components include Log Service,
Tailored Cloud Services (Tailored memcached), Resilient BPEL (RPEL), Secure Block
Storage (SBS), Trusted Virtual Domain (TVD), Resilient Object Storage, Access Control as a
Service (ACaaS), and Security Assurance tool for Virtual Environment (SAVE).

The outcome of this work is the fundamental of our future plan in establishing and
implementing a healthcare trustworthy platform in TClouds. Our next objective is to
implement its functionalities above the TClouds proposed infrastructure, starting from the
APIs described in Chapter 5.

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 52 of 53

Chapter 8

List of Abbreviations

ACaaS Access Control as a Service

API Application programming interface

App Applications

CRUD create, read, update, delete operations

IaaS Infrastructure as a Service

OAuth open standard for authorization

PHR Personal Health Record

RBEPL Resilient BPEL

SaaS Software as a Service

SAVE Security Assurance for Virtual Environment

SBS Secure Block Storage

T-PaaS Trusted Platform as a Service

TPSC The Patient Safety Company

TVD Trusted Virtual Domain

D3.1.2 - Application API and first specification on application side trust protocols

TClouds D3.1.2 Page 53 of 53

Chapter 9 Bibliography

Bruce Schneier, J. K. (1999). Secure Audit Logs to Support Computer Forensics. ACM
Trans. Inf. Syst. Secur. 2(2) , 159-176.

Di Ma, G. T. (2009). A new approach to secure logging. ACM Transactions on Storage,
Volume 5 (1) .

Sean, N. (2010, February 19). HealthVault Application Integration Recommendations.
Retrieved from Microsoft MSDN: http://msdn.microsoft.com/en-us/library/ff803594.aspx

Solutions, M. H. (2011, October). Microsoft HealthVault Account Privacy Statement.
Retrieved from Microsoft HealthVault:
https://account.healthvault.com/help.aspx?topicid=PrivacyPolicy

