
D2.1.4/D2.3.3
Proof of Concept Infrastructure /

Implementation of Security Configuration
and Policy Management

Project number: 257243

Project acronym: TClouds

Project title:
Trustworthy Clouds - Privacy and Re-
silience for Internet-scale Critical Infras-
tructure

Start date of the project: 1st October, 2010

Duration: 36 months

Programme: FP7 IP

Deliverable type: Prototype

Deliverable reference number: ICT-257243 / D2.1.4/D2.3.3 / 1.0
Activity and Work package contributing
to deliverable: Activity 2 / WP 2.1, WP 2.3

Due date: April 2013 – M31

Actual submission date: 29th April, 2013

Responsible organisation: IBM, SRX

Editor: Sören Bleikertz, Norbert Schirmer

Dissemination level: Public

Revision: 1.0

Abstract:
Accompainying document for prototypes
Trustworthy OpenStack and TrustedInfras-
tructure Cloud

Keywords: prototypes, trustworthy infrastructure

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Editor

Sören Bleikertz, Norbert Schirmer (IBM, SRX)

Contributors

Roberto Sassu, Paolo Smiraglia, Gianluca Ramunno (POL)

Alexander Buerger, Norbert Schirmer (SRX)

Sören Bleikertz, Zoltan Nagy (IBM)

Imad M. Abbadi, Anbang Ruad (OXFD)

Johannes Behl, Klaus Stengel (TUBS)

Mihai Bucicoiu, Sven Bugiel, Hugo Ideler, Stefan Nürnberger (TUDA)

Disclaimer
This work was partially supported by the European Commission through the FP7-ICT program
under project TClouds, number 257243.

The information in this document is provided as is, and no warranty is given or implied that the
information is fit for any particular purpose.

The user thereof uses the information at its sole risk and liability. The opinions expressed in this
deliverable are those of the authors. They do not necessarily represent the views of all TClouds
partners.

TClouds D2.1.4/D2.3.3 I

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Executive Summary

This report accompanies the prototype deliverables D2.1.4 and D2.3.3 which are about the im-
plementation and integration of subsystems of Activity 2 and provides the documentation of
these prototypes. It is a revision of the documentation that has been presented earlier in Part
II of D2.4.2. This report documents the subsystems of both the prototype deliverable D2.1.4,
for the single trusted cloud, as well as D2.3.3, for the security management. A combined report
captures the integration that has been done on the implementation level, since the subsystems of
WP2.1 and WP2.3 are now integrated into the prototypes Trustworthy OpenStack and Trusted-
Infrastructure Cloud.

TClouds D2.1.4/D2.3.3 II

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Contents

1 Introduction 1

2 Trustworthy OpenStack Prototype 2
2.1 LogService . 3

2.1.1 Platform Setup . 3
2.1.2 LogService Subcomponents . 4
2.1.3 Trustworthy OpenStack configuration 7

2.2 Remote Attestation Service . 8
2.2.1 Operating Environment Setup . 8
2.2.2 Prototype Build and Installation Instructions 9
2.2.3 Prototype Execution Instructions . 10

2.3 Ontology-based Reasoner . 13
2.3.1 Operating Environment Setup . 13
2.3.2 Prototype Build and Installation Instructions 13
2.3.3 Prototype Execution Instructions . 14

2.4 Access Control as a Service . 14
2.4.1 Platform Setup . 14
2.4.2 Management Console . 18

2.5 Cryptography-as-a-Service (Caas) . 20
2.5.1 Operating Environment Setup . 20
2.5.2 Prototype Execution Instructions . 23

2.6 Resource-efficient BFT (CheapBFT) . 24
2.6.1 Operating Environment Setup . 24
2.6.2 Prototype Execution Instructions . 26

2.7 Simple Key/Value Store (hsMemcached) . 27
2.7.1 Introduction . 27
2.7.2 System Requirements . 27
2.7.3 Installation . 28

2.8 Security Assurance of Virtualized Environments (SAVE) 30
2.8.1 Operating Environment Setup . 30
2.8.2 Prototype Build and Installation Instructions 30
2.8.3 Prototype Execution Instructions . 30

3 TrustedInfrastructure Cloud Prototype 32
3.1 TrustedObjectsManager setup . 32

3.1.1 Using the management console . 32
3.1.2 Creating a company . 32
3.1.3 Creating a location . 34
3.1.4 Adding users . 34
3.1.5 Network configuration . 35
3.1.6 Creating and configuring VPNs . 36

TClouds D2.1.4/D2.3.3 III

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

3.1.7 Attaching appliances . 36
3.1.8 Creating TrustedVirtualDomains . 38
3.1.9 Adding compartments to TVDs . 38
3.1.10 Adding external cloud storage to TrustedServer 39
3.1.11 Connecting everything together . 40

Bibliography 40

TClouds D2.1.4/D2.3.3 IV

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

List of Figures

2.1 CaaS installation overview . 21
2.2 CaaS OpenStack dashboard integration . 24

3.1 The TrustedObjectsManager Login screen . 33
3.2 The TrustedObjectsManager overview screen after login 33
3.3 Creating a “Company” . 33
3.4 Creating a “Location” . 34
3.5 Adding a user, step 1 . 34
3.6 Adding a user, step 2 . 35
3.7 Adding networks . 35
3.8 Adding a VPN . 36
3.9 Add a new appliance to the company . 37
3.10 Dialog to download the configuration for the specific appliance 37
3.11 Dialog to create a new TVD . 38
3.12 Adding a new compartment . 39
3.13 Attaching external S3-storage to TrustedServer 39
3.14 Installing a registered compartment to TrustedServer 40
3.15 Attaching networks to compartments installed on TrustedServer 41
3.16 Editing VPN membership of TrustedServer 42

TClouds D2.1.4/D2.3.3 V

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

List of Tables

TClouds D2.1.4/D2.3.3 VI

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Chapter 1

Introduction

This report accompanies the prototype deliverables D2.1.4 and D2.3.3 which are about the im-
plementation and integration of subsystems of Activity 2 and provides the documentation of
these prototypes. It is a revision of the documentation that has been presented earlier in Part
II of D2.4.2. This report documents the subsystems of both the prototype deliverable D2.1.4,
for the single trusted cloud, as well as D2.3.3, for the security management. A combined report
captures the integration that has been done on the implementation level, since the subsystems of
WP2.1 and WP2.3 are now integrated into the prototypes Trustworthy OpenStack and Trusted-
Infrastructure Cloud.

Both prototypes are hosted by partner Sirrix and in the remainder of the project the bench-
mark applications from Activity 3 are deployed on top of them. The following subsystems are
associated with WP2.1:

• LogService §2.1

• Remote Attestation Service §2.2

• Cryptography-as-a-Service (Caas) §2.5

• Resource-efficient BFT (CheapBFT) §2.6

• Simple Key/Value Store (hsMemcached) §2.7

And the following ones belong to WP2.3:

• Ontology-based Reasoner §2.3

• Access Control as a Service §2.4

• Security Assurance of Virtualized Environments (SAVE) §2.8

• TrustedObjectsManager §3.1

TClouds D2.1.4/D2.3.3 Page 1 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Chapter 2

Trustworthy OpenStack Prototype

The Trustworthy OpenStack prototype code is available either as a tarball, which can be down-
loaded from https://jenkins.tclouds-project.eu/tarballs or as a package which
URL is https://jenkins.tclouds-project.eu/packages. These files are generated
by our Jenkins infrastructure, described in detail in Appendix A of D2.4.2 deliverable, when-
ever a patch submitted by a partner successfully passes the tests. In this case, Jenkins merges
the submitted patch into the tclouds-stable-folsom branch (or the tclouds-2.9.0
branch, for python-novaclient) of the corresponding component repository on the TClouds GIT
server. It is also possible to set up an APT1 repository in order to automatically install Trust-
worthy OpenStack packages and their dependencies in the Ubuntu 12.04 LTS distribution. The
following instructions will refer to the latter installation method.

Before setting up the TClouds APT repository, it is necessary to configure Ubuntu 12.04
LTS to fetch OpenStack Folsom packages. By default, this distribution provides packages for
the Essex version. In order to do that, please follow the guide from the OpenStack documen-
tation at the URL http://docs.openstack.org/folsom/basic-install/content/

basic-install_controller.html. Then, execute the following instructions to set up the
TClouds APT repository.

Edit the $HOME/.ssh/config file and add the following lines:
Host jenkins.tclouds-project.eu

Port 1028

Copy your SSH public key into the Jenkins server (credentials are stored in the TClouds
SVN).

$ ssh-copy-id -i $HOME/.ssh/id rsa.pub tcloudsuser@jenkins.tclouds-project.eu

Create the file /etc/apt/sources.list.d/tclouds.list to include the TClouds
packages repository in the APT sources:
deb ssh://jenkins@jenkins.tclouds-project.eu/home/jenkins/packages precise main

Create the file /etc/apt/preferences.d/00-tclouds with the following content
to set the highest priority for packages contained in the TClouds APT repository:
Package: nova-*
Pin: version 2012.2.4+git*
Pin-Priority: 1001

Package: python-novaclient
Pin: version 2.9.0+git*

1https://help.ubuntu.com/12.04/serverguide/package-management.html

TClouds D2.1.4/D2.3.3 Page 2 of 44

https://jenkins.tclouds-project.eu/tarballs
https://jenkins.tclouds-project.eu/packages
http://docs.openstack.org/folsom/basic-install/content/basic-install_controller.html
http://docs.openstack.org/folsom/basic-install/content/basic-install_controller.html
https://help.ubuntu.com/12.04/serverguide/package-management.html

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Pin-Priority: 1001

Package: horizon-*
Pin: version 2012.2.4+git*
Pin-Priority: 1001

Package: quantum-*
Pin: version 2012.2.4+git*
Pin-Priority: 1001

Refresh the APT configuration by executing:

apt-get update

Then, you can install Trustworthy OpenStack normally by following steps described in
the documentation of the OpenStack Web site at the URL http://docs.openstack.org/

folsom/openstack-compute/install/apt/content. In order to use the Security Ex-
tensions of this prototype, you can refer to the documentation of specific subsystems in the
remaining of this chapter.

Lastly, there are some remarks. First, after installing Nova or Quantum components it is nec-
essary to edit a Libvirt configuration file, as explained in the documentation of Ontology-based
Reasoner and, secondly, to use the TClouds theme in the Dashboard this additional command
must be executed:

apt-get install openstack-dashboard-tclouds-theme

2.1 LogService
The LogService is a Trustworthy OpenStack component providing secure logging capabilities.
In this section will be shown the procedure to install the LogService on a Debian-like system.
The instruction will be structured in three parts: the first one, will be on the setup of the the plat-
forms that will host the services, the second, will be on the installation and configuration of the
LogService sub-components and finally, the third will be focused on the Trustworthy OpenStack
configuration. All the .tar.gz archives mentioned in the instructions will be available online
in the official component page2 and locally in the tclouds-Y3-demo-<DATE>.tar.gz
archive.

2.1.1 Platform Setup
The old version of the LogService (presented in the Deliverable 2.4.2) was based on the library
called libsklog. Such library is no longer maintained, due to the issues mainly related to the
design of the code. For this reason a new library called libseclog has been developed. This
new library implements the same functionality provided by the previous one including some
new features as the incremental verification (necessary to mitigate the scalability issues) and
the driver-like management of the secure logging schemes.

2TORSEC Group - Libseclog: http://security.polito.it/secure-logging/libseclog

TClouds D2.1.4/D2.3.3 Page 3 of 44

http://docs.openstack.org/folsom/openstack-compute/install/apt/content
http://docs.openstack.org/folsom/openstack-compute/install/apt/content
http://security.polito.it/secure-logging/libseclog

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Core library. Before proceeding with the installation of libseclog it’s necessary to re-
solve several dependencies. All of them, except the Libumberlog library, could be installed
through the package manager. To install the dependencies execute the commands listed below:

sudo apt-get update
sudo apt-get install make autoconf libtool libssl-dev uuid-dev libjansson-dev git pkg-config
git clone https://github.com/deirf/libumberlog.git libumberlog
cd libumberlog
mkdir m4
autoreconf -i
./configure
make
sudo make install

Listing 2.1: libseclog dependencies installation

When all the dependencies are installed it’s possible to proceed with the installation of the
libseclog library. To do that, follow the instructions listed below:

tar zxvf libseclog-0.1.0.tar.gz
cd libseclog
./autogen.sh
./configure --enable-ceelog --with-umberlog=/urs/local --enable-python
make
sudo make install

Listing 2.2: libseclog installation

Python bindings. At this point, the library a has been installed and the Python package con-
taining the bindings has been generated to. To install it, run the following commands:

sudo apt-get update
sudo apt-get install python-pip
cd binding/python
sudo pip install pySeclog-0.1.0_<BUILD>.tar.gz

Listing 2.3: libseclog Python binding installation

2.1.2 LogService Subcomponents
The LogService is the composition of four components: LogCore, LogStorage, LogConsole
and LogService Module. The LogCore is the trusted party involved in the initialisation and
verification of a logging sessions. The LogStorage is the component that stores the log entries
produced by Cloud Components and groups them by logging session. The LogConsole is a web
based log management console merged in the OpenStack dashboard which can be used by an
external entity (auditor or user) to verify and retrieve logs. Finally, the LogService Module is a
software module that should be linked to the applications to interact withe the LogService.

LogService Module installation

This component is represented by a Python package called logservice-client. Such
package provides the classes to write the client applicatio for both LogStorage and LogCore. In
addition, it provides also Python logging handler implemented using the libseclog Python
bindings. To install the package, run the following commands:

TClouds D2.1.4/D2.3.3 Page 4 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

sudo apt-get update
sudo apt-get install python-pip
sudo pip install logservice-client-0.1.0.tar.gz

Listing 2.4: logservice-client Python package installation

LogCore installation

The LogCore requires, in addition to the logservice-client package, the installation of
some other dependencies: Python Tornado, Celery, RabbitMQ and SQLAlchemy. The com-
mands to install the dependencies and to install and run the service are listed below.

apt-get install rabbitmq-server
sudo /etc/init.d/rabbitmq-server start

sudo pip install tornado Celery SQLAlchemy
tar zxvf logcore-0.1.0.tar.gz
cd logcore
celeryd -l info -I tasks

python server.py --init-db (only the first time)
python server.py --host 0.0.0.0 --port 50001 --ls-host logstorage.example.com --ls-port 50002

Listing 2.5: LogCore installation and execution

The LogCore application is accessible only via HTTPS. In this way, the application will be
able to perform client filtering based on the X509 certificate. The accepted clients, identified by
the certificate subject, are specified in the file static/authorized clients as depicted
in the Listing 2.6.

/C=EU/ST=Italy/0=The Foo Company/OU=Foo Division/CN=Alice
/C=EU/ST=Italy/0=The Foo Company/OU=Foo Division/CN=Bob
/C=EU/ST=Italy/0=The Foo Company/OU=Foo Division/CN=Carol
...

Listing 2.6: authorized clients file example

To retrieve more information about the usable parameters of the LogCore application, run
the application with the option --help

python server.py --help

Usage:

./logcore [OPTIONS]

where OPTIONS must be one or more of these values

-h --host Listening address [0.0.0.0]
-p --port Listening port [50001]
-c --cert Certificate file [./static/cert.pem]
-k --key Private key file [./static/key.pem]
-C --CAcert CA certificate file [./static/cacert.pem]
-l --list Authorized clients file [./static/authorized_clients]

--ls-host LogStorage host [logstorage]
--ls-port LogStorage port [50002]

--init-db Initialize database
-H --help Show this help
-v --version Show version

TClouds D2.1.4/D2.3.3 Page 5 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Listing 2.7: LogCore help message

LogStorage installation

To install and run the LogStorage component it’s necessary to run the commands depicted in
the Listing 2.8. The same considerations done for the LogCore about the HTTPS settings must
be applied to the LogStorage.

sudo apt-get install python-pip
sudo pip install tornado
tar zxvf logstorage-0.1.0.tar.gz
cd logstorage
python server.py --host 0.0.0.0 --port 50002

Listing 2.8: LogStorage installation and execution

The base version of the LogStorage stores locally the log entries using files as storage sup-
port. To enable the CheapBFT capabilities, it’s necessary to run the application including the
--cheap-[host,port,path] options. In the Listing 2.9 is depicted the help message of
the LogStorage application.

python ./server.py --help

Usage:

python ./server.py [OPTIONS]

where OPTIONS should be one or more of these values

-h --host Listening address [0.0.0.0]
-p --port Listening port [50002]
-c --cert Certificate file [./static/cert.pem]
-k --key Private key file [./static/key.pem]
-C --CAcert CA certificate file [./static/cacert.pem]
-l --list Whitelist file [./static/authorized_clients]

--cheap-host CheapBFT listenning address [0.0.0.0]
--cheap-port CheapBFT listenning port [58080]
--cheap-path CheapBFT API path [/logservice]

-H --help Shows this help
-v --version Shows version

Listing 2.9: LogStorage application help

LogConsole installation

The LogConsole application is available in two modes: standalone and integrated. The former
is a standalone application that will be not documented here, while the latter is the integration
of the LogConsole code in the OpenStack dashboard application (Horizon). In any case, the
LogConsole requires the installation of the package logservice-client (see “LogService
Module installation” in Section 2.1.2)

TClouds D2.1.4/D2.3.3 Page 6 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

2.1.3 Trustworthy OpenStack configuration
In this section will be illustrated the procedure to configure Trustworthy OpenStack in order to
enable the secure logging facilities. In the following will be provided two sample configurations
to enable the logging administration tab in the dashboard (Horizon) and to enable the secure
logging in the OpenStack services (Nova).

Horizon

To enable the logging administration tab in the OpenStack dashboard it’s necessary to install
the Python package logservice-clients (see Section 2.1.2) on the server that hosts the
application. Before running the application, go at the end of the file local settings.py in
/etc/openstack-dashboard and configure the application as presented in the example
depicted in the Listing 2.10:

...

Logging Tab settings

LOG_CLI_SSL_OPTS = {
"certfile": "/path/to/file/logconsole.pem",
"keyfile": "/path/to/file/logconsole.key",
"ca_certs": "/path/to/file/cacert.pem"

}

LOG_CORE = {
"host": "logcore.example.com",
"port": 50001,
"timeout": 60,
"api_version": "0.1",

}

Listing 2.10: OpenStack Horizon local setting.py file

Nova

To enable the secure logging features for the Nova services, edit the section [secure logging]
in the nova.conf file at /etc/nova as depicted in the Listing 2.11.

...

[secure_logging]
use_secure_log = True
logcore_address = logcore.example.com
logcore_port = 50001
logcore_cert = /path/to/file/logcore.pem
logstorage_address = logstorage.example.com
logstorage_port = 50002
cert = /path/to/file/novaservices.pem
key = /path/to/file/novaservices.key
cacert = /path/to/file/cacert.pem
freq = 100
size = 500
debug = True
secure_log_services = nova-scheduler,nova-api

Listing 2.11: OpenStack nova.conf file

TClouds D2.1.4/D2.3.3 Page 7 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

2.2 Remote Attestation Service
This section provides the installation instructions for OpenAttestation and the documentation for
the RA Verifier component. More details about the former component can be found in the docs
folder of the official code repository (URL: https://github.com/OpenAttestation/
OpenAttestation). The following instructions refer to Ubuntu 12.04 LTS distribution.

2.2.1 Operating Environment Setup
A typical installation of the Remote Attestation Service requires the setup of two hosts or vir-
tual machines. One platform, called Database Node, is dedicated to run the Apache Cassandra
database and the other, named OpenAttestation Node, to execute OpenAttestation and RA Ver-
ifier. The former platform should satisfy at least the following hardware requirements: CPU
2.0 Ghz, RAM 2 GB or more, Hard Disk 500 GB. Instead, for the latter platform, there are no
particular needs.

Regarding the software requirements, it is necessary to configure in the Database Node a
new APT repository by creating a file called cassandra.list in the /etc/apt/sources.list.d/
directory:
deb http://www.apache.org/dist/cassandra/debian 11x main
deb-src http://www.apache.org/dist/cassandra/debian 11x main

Refresh the APT cache by executing:

apt-get update

Then, install the following packages through APT:

• Database Node

– python2.7-dev (python development files)

– python-pip (utility to install the pycassa library)

– pycassa python library (install it by executing pip install pycassa)

– openjdk-6-jdk (OpenJDK JAVA development kit)

– gcc and make (development tools)

– python-rpm (tool to parse RPM packages)

– debmirror (tool to download Ubuntu packages)

• OpenAttestation Node

– python2.7-dev (python development files)

– python-pip (utility to install the pycassa library)

– pycassa python library (install it by executing pip install pycassa)

– python-matplotlib (python library)

– python-networkx (python library)

– mysql-client (MYSQL client)

– mysql-server (MYSQL server)

TClouds D2.1.4/D2.3.3 Page 8 of 44

https://github.com/OpenAttestation/OpenAttestation
https://github.com/OpenAttestation/OpenAttestation

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

2.2.2 Prototype Build and Installation Instructions

Database Node

In order to use RA Verifier it is necessary to setup the database. First, install Apache Cassandra
by executing the command:

apt-get install cassandra

Extract the files from the tarball of the ratools software in the target directory (e.g. /srv):

$ tar zxf ratools-1.1.0.tar.gz -C /srv

Install the custom libraries for Apache Cassandra by calling the install cassandra libs.sh

script and by providing the directory path of Cassandra libraries:

$./install cassandra libs.sh /usr/share/cassandra

Restart Apache Cassandra:

service cassandra restart

Install the database schema by executing cassandra-cli in the bin directory of Apache
Cassandra:

$ cassandra-cli -h localhost -B -f db/cassandra/schema/cassandra-schema-common.txt
$ cassandra-cli -h localhost -B -f db/cassandra/schema/cassandra-schema-deb.txt
$ cassandra-cli -h localhost -B -f db/cassandra/schema/cassandra-schema-rpm.txt

Create the /etc/ra directory, copy the configuration files in the db/conf directory of the
ratools software to /etc/ra and remove the suffix .sample:

$ mkdir /etc/ra
$ cp db/conf/ra.conf.sample /etc/ra.conf
$ cp db/conf/pkgs download list.conf.sample /etc/ra/pkgs download list.conf

Edit the file /etc/ra/ra.conf and set the following BASH variables:

• RABASEDIR to the directory where the ratools tarball was extracted (e.g. /srv/ratools-1.1.0)

• TARGETBASEDIR to a temporary directory in a large partition (at least 100 GB) where
packages will be downloaded (e.g. /srv/ratools-1.1.0/Packages).

• CASSANDRAURL to the <IP:port> of the Apache Cassandra database

Create the temporary directory specified in the TARGETBASEDIR variable:

$ mkdir /srv/ratools-1.1.0/Packages

Edit the file /etc/ra/pkgs download list.conf and configure the repositories of the
Linux distributions from which the update pkgs.sh script will download the packages and
insert the information from extracted files into the database. The file has the following format:
<distro name> <distro version> <distro archs> <repo dir> <repo hostname> <subdir of \

TARGETBASEDIR> <update type>

where the distro archs parameter may contain multiple architectures separated by comma.
Allowed values will be introduced in Section 2.2.3.

TClouds D2.1.4/D2.3.3 Page 9 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

OpenAttestation Node

Install the OpenAttestation DEB package with POL patches from the TClouds repository through
the apt-get command:

apt-get install oat-appraiser-base-oatapp

Then, install the RA Verifier component by following the instructions for the Database Node.
For the configuration, it is necessary to set only the RABASEDIR variable in the configuration
file /etc/ra/ra.conf to the directory where ratools was extracted.

Cloud Nodes

In order to perform the measurement of software executed in Cloud Nodes it is necessary to
perform the following steps.

Extract the ratools package as done for the Database Node and copy the script ima load policy.sh

located in the ima boot scripts/ubuntu directory of the ratools package into
/usr/share/initramfs-tools/scripts/init-bottom:

cp /srv/ratools-1.1.0/ima boot scripts/ubuntu/ima load policy.sh
/usr/share/initramfs-tools/scripts/init-bottom

Then, install the custom Linux kernel (with IMA enabled) from the TClouds repository:

apt-get install linux-image-3.2.0-40-ima linux-headers-3.2.0-40-ima

Create the /etc/ima directory and put into it the IMA policy file named ima-policy

which content should be:
measure func=BPRM_CHECK mask=MAY_EXEC
measure func=FILE_MMAP mask=MAY_EXEC

Finally, edit the file /etc/fstab and add the mount option i version to the root filesys-
tem.

2.2.3 Prototype Execution Instructions

Database Node

Insert data from packages of the configured Linux distribution into the database by executing
the update pkgs.sh script from the ratools software directory:

$ db/scripts/update pkgs.sh

In addition, the script update pkgs.sh allows to insert data from packages in a given
directory by executing:

$ db/scripts/update pkgs.sh -d <packages directory> -n <distro name> -q <distro
ver> -c <distro archs> -t <update type>

where allowed values for the options are:

• <distro name>: Fedora, Ubuntu

• <distro ver>: 17, 18, ... (for Fedora) or precise, quantal, ... (for Ubuntu)

• <distro archs>: i686, x86 64 (amd64 for Ubuntu), all (only for Ubuntu)

• <update type>: newpackage, updates, security (only for Ubuntu), testing

TClouds D2.1.4/D2.3.3 Page 10 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

OpenAttestation Node

In order to configure OpenAttestation it is necessary to send commands from the command line
interface e.g. by using the utility curl. Alternatively, we added some scripts, to ease the config-
uration task, that build requests to OpenAttestation by taking as input a small set of parameters.
In the following, we use these scripts for the configuration.

Get the certificate of the Appraiser:

oat cert -h localhost

Register a Cloud Node (allowed values for Cloud Node OS are: Fedora<version>, precise):

oat host demo -h localhost -t <Cloud Node hostname> -a <Cloud Node IP> -o
<Cloud Node OS>

Add a PCR to the whitelist for the added Cloud Node:

oat pcrwhitelist demo -h localhost -t <Cloud Node hostname> -o <Cloud Node OS>
-n <PCR #> -v <PCR value>

Before using the OpenAttestation Node with OpenStack, it is recommended to try the RA
Verifier component alone by testing the verification of an IMA measurements file. Obtain it by
booting a Cloud Node with the updated configuration and executing:

cat /sys/kernel/security/ima/ascii runtime measurements >
ima measurements.txt

The file ima measurements.txt should be similar to:
10 821...8fd ima bfc...5d2 boot_aggregate
10 1e1...0ae ima 481...be8 /proc/self/exe
10 232...182 ima 16b...ec4 ld-linux-x86-64.so.2
10 1d6...7b5 ima 5c4...d86 libc.so.6
10 f1c...f9f ima 231...b2f /bin/run-init
10 80e...712 ima ce7...d81 klibc-bhN-zLH5wUTKSCGch2ba2xqTtLE.so
10 19e...9b8 ima f98...b15 /sbin/init
10 ba6...3d6 ima 16b...ec4 ld-2.15.so
10 064...fd1 ima 317...251 libnih.so.1.0.0
10 0fc...36e ima 444...ae7 libnih-dbus.so.1.0.0
10 d66...f88 ima cde...037 libdbus-1.so.3.5.8
10 dfd...5db ima c5f...10d libpthread-2.15.so
10 3ca...96e ima 28e...f9c librt-2.15.so
10 d0f...6ed ima 5c4...d86 libc-2.15.so
10 0e5...955 ima 9df...f20 libnss_compat-2.15.so
10 a86...0a5 ima ba5...be3 libnsl-2.15.so
10 2b1...c0f ima 413...84e libnss_nis-2.15.so
10 1c6...fb2 ima c18...286 libnss_files-2.15.so
10 d8a...545 ima 5c8...27a /bin/hostname
10 dd1...def ima def...af1 /bin/sh

Then, copy this file to the OpenAttestation Node and verify the IMA measurements by
executing the ra verifier.py script from the ratools software directory:

$ verifier/ra verifier.py -i ima measurements.txt -q precise -t openattestation
-a IMA STANDARD

It should return an output like:

ok: 501, unknown: 0, pkg security: 0, pkg not security: 0

TClouds D2.1.4/D2.3.3 Page 11 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

If the number of unknown measurements is greater than zero, it is possible that the digest
of the file ld.so.cache is present in the measurement list due to the READ IMPLIES EXEC
flag set in the process personality (see http://lwn.net/Articles/94068 for more details).
If the above flag is set, the ld.so.cache file is measured by IMA even if the only protection
flag set by the application that issued an mmap() system call is PROT READ (the IMA policy
created before should trigger the measurement of files executed or mmapped with protection
flag PROT EXEC set).

A workaround to temporarily address this issue is to disable services that have this behav-
ior. At the moment discovered services are grub-common and zfs-fuse. To disable these
services, execute the following command:

update-rc.d <service> disable

Further, also the file /etc/rc.local will cause the detection of unknown digests because
it is not included in any package. For this reason, since it is not mandatory as it is called by the
/etc/init.d/rc.local script to execute users’ provided commands, it should be moved to
another location, like the user’s home directory.

Finally, it is necessary to add to the database the files installed in the Cloud Node by Ope-
nAttestation during the enrollment phase. To perform this task it is necessary to execute the
following commands.

Create a temporary directory called oat-rpm:

$ mkdir oat-rpm

Copy the OpenAttestation RPM from the provided tarball to the created directory:

$ cp <tarball dir>/Trustworthy-OpenStack/POL/NIARL OAT Standalone-2.0-1.x86 64.rpm
oat-rpm

Insert content of the OpenAttestation RPM into the database:

$ db/scripts/update pkgs.sh -d $(pwd)/oat-rpm -n Ubuntu -q precise -c amd64 -t
testing

Trustworthy OpenStack Management Node

Edit the configuration file /etc/nova/nova.conf and add the following lines at the end of the
[DEFAULT] group so that Nova Scheduler filters the Cloud nodes that can run a VM depending
on the integrity level specified by users:
scheduler_available_filters=nova.scheduler.filters.trusted_filter.TrustedFilter
scheduler_default_filters=TrustedFilter

Then, add these lines at the end of the same file to tell Nova Scheduler that it should contact
the OpenAttestation Node at the specified address in order to obtain the current integrity level
of a Cloud Node:
[trusted_computing]
server=<IP of OpenAttestation Node>
port=8443
api_url=/AttestationService/resources

TClouds D2.1.4/D2.3.3 Page 12 of 44

http://lwn.net/Articles/94068

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

2.3 Ontology-based Reasoner

2.3.1 Operating Environment Setup
In order to install Ontology-based Reasoner, it is necessary to install the package
openvswitch-datapath-dkms by executing the command:

apt-get install openvswitch-datapath-dkms

If the platform where this software is installed is also a Cloud Node for the remote attesta-
tion, it is necessary to rebuild the module for the custom kernel with IMA enabled. By assuming
that this kernel was selected at boot time, the command to rebuild the module is:

apt-get install --reinstall openvswitch-datapath-dkms

2.3.2 Prototype Build and Installation Instructions
Before installing the Ontology-based Reasoner subsystem, follow the documentation to install
OpenStack Quantum until the step at the URL http://docs.openstack.org/folsom/

openstack-network/admin/content/install_quantum_server.html. Instead of in-
stalling the standard Open vSwitch agent, as described in the next step, execute the command:

apt-get install quantum-plugin-openvswitch-libvirt-agent

In order to use the Ontology-based Reasoner within Ubuntu 12.04 LTS, it is necessary to
modify the configuration of the Open vSwitch init script, to clear the list of bridges stored in
the persistent database. To perform this task it is sufficient to add following line in the file
/etc/default/openvswitch-switch:
DELETE_BRIDGES=yes

If the Quantum L3 Agent is being used, it is necessary to properly configure network inter-
faces to allow virtual machines deployed with Trustworthy OpenStack to connect to Internet.
To perform the configuration, it is sufficient to edit the file /etc/network/interfaces and
to replace the name of the interface with public IP address with br-ex, the name of the bridge
used by the L3 Agent.

Then, append the following lines to the configuration of br-ex:
pre-up ifconfig <public interface> up
pre-up /etc/init.d/openvswitch-switch start
pre-up ovs-vsctl add-br br-ex
pre-up ovs-vsctl add-port br-ex <public interface>

After that, disable the automatic start of Open vSwitch daemons, by executing:

update-rc.d openvswitch-switch disable

Lastly, to fix a problem with Libvirt, edit the file /etc/libvirt/qemu.conf and set the following
variable :
security_driver = "none"

TClouds D2.1.4/D2.3.3 Page 13 of 44

http://docs.openstack.org/folsom/openstack-network/admin/content/install_quantum_server.html
http://docs.openstack.org/folsom/openstack-network/admin/content/install_quantum_server.html

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

2.3.3 Prototype Execution Instructions
In order to use Ontology-based Reasoner together with Trustworthy OpenStack, it is necessary
to slightly modify some configuration files, in respect to what is written in the official OpenStack
documentation.

Edit the file /etc/nova/nova.conf and set the following variable:
libvirt_vif_driver=nova.virt.libvirt.vif.LibvirtTVDOpenVswitchVirtualPortDriver

Edit the files /etc/quantum/dhcp agent.ini and /etc/quantum/l3 agent.ini (in the node where
the DHCP and L3 agents are running) and set the following variable:
interface_driver = quantum.agent.linux.interface.OVSLibvirtInterfaceDriver

Edit the file /etc/quantum/plugins/openvswitch/ovs quantum plugin.ini and set the follow-
ing variables:
tenant_network_type = gre
enable_tunneling = True
tunnel_id_ranges = 1:1000
local_ip = <your public IP>
local_interface = <network interface with IP set in the local_ip variable>

2.4 Access Control as a Service

2.4.1 Platform Setup
Ubuntu 12.10 is deployed as the base system on every node, installed and configured with
default packages . The prototype relies on a complete deployment of OpenStack with ACaaS
patches, and the Trusted Computing Infrastructure. A typical deployment includes deploying
one node as the management nodes, and several nodes as the compute nodes.

ACaaS Setup

ACaaS prototype is implemented on OpenStack Folsom release. Its building and installation
are as simple as applying ACaaS patch to Folsom source codes, and then following the general
python software building procedure. As described above, two major components are modified:
the OpenStack Nova Compute, and the python-novaclient.

1. OpenStack Nova

• Fetching nova source code

$apt-get source nova-compute

• Applying ACaaS patches

$cd nova-2012.1
$patch -p1 < nova-acaas.patch

• Build and install
$python setup.py build
$sudo python setup.py install

TClouds D2.1.4/D2.3.3 Page 14 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

• Restart the services (For management node)

$sudo restart nova-api
$sudo restart nova-scheduler

(For compute node)

$sudo restart nova-compute

2. Python-novaclient

• Fetching python-novaclient source code

$apt-get source python-novaclient

• Applying ACaaS patches

$cd python-novaclient
$patch -p1 < novaclient-acaas.patch

• Build and install
$python setup.py build
$sudo python setup.py install

Trusted Computing Infrastructure Setup

The management node is deployed with the nova-scheduler, nova-api, central database, rab-
bitmq. A compute node is deployed with nova-compute, and optionally nova-volume and nova-
network. These deployments and configurations follow the general OpenStack settings, which
are well documented and can be found online, e.g. the ”OpenStack Install and Deploy Manual”
(http://docs.openstack.org/essex/openstack-compute/install/apt/content/index.html)

To enable ACaaS, the ACaaSScheduler should be specified as the computer scheduler driver,
which can be achieved by modifying the /etc/nova/nova.conf to have the corresponding field set
as follows:

compute scheduler driver = nova.scheduler.acaas scheduler.ACaaSScheduler

Trusted Computing Infrastructure is deployed for enabling the Trusted-based scheduling,
providing by ACaaS prototype. It is composed of the integrity measurement and reporting
service on the compute nodes, and the remote attestation service on the management node.

1. Measurement Services

The measurement services build the chain-of-trust on every compute node from its Core-
Root-of-Trust-for-Measurement, a specific piece of code in it BIOS up to every software
component running on top of it. The chain-of-trust is built in an iterative method during
the bootstrapping procedure of the node, i.e. every component participating in the booting
procedure measure the next component before loading and giving control to it. The term
’measure’ in TCG terminology stands for taking the hash value of the target software
component and store the value into the TPM.

Consequently, every software component responsible for booting a platform should be
modified to support the measurement services, namely the BIOS, bootloader, and the OS
kernel. First of all, the integrity measurement service should be turned on in the BIOS
to enable the first-step measurement for measuring the bootloader. Secondly, the trusted

TClouds D2.1.4/D2.3.3 Page 15 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

BIOS should be installed to implement the trusted boot for measuring the kernel, e.g. the
TrustedGrub (http://sourceforge .net/projects/trustedgrub/). Finally the Linux kernel on
our base system should have its IMA component built and enabled, for implementing the
measurement of every software component loaded on the platform. To implement this,
the kernel of the base system (Ubuntu 12.04) should be re-configured and compiled with
the IBM IMA configuration turned on. The kernel-arg entry in the grub configuration
should also be added with the ”ima tcb” argument.

2. Remote Attestation Service

Remote attestation service is implemented by the OpenPTS system in our prototype. The
deployment of OpenPTS includes the measurement reporting sub-system on the compute
nodes, and attestation sub-system on the management node:

(a) Setting up the compute nodes

• Installing OpenPTS components

$sudo apt-get install trousers tpm-tools libtspi-dev libtspi1
$sudo dpkg -i openpts-0.2.6-2.x86 64.deb

• Setting up TPM

$tpm take ownership -y -z

• Configure ptsc
Adjust the configuration le /etc/ptsc.conf, choosing/configuring the appropriate
reference models (rm). The detailed rm configurations are specific to each plat-
form and are out of scope of this documents. Detailed information can be found
at
http://sourceforge.jp/projects/openpts/. An exemplar is as follows:

irm.num=2
rm.model.1.pcr.4=grubpcr4hdd.uml
rm.model.1.pcr.5=grubpcr5 uml
rm.model.1.pcr8=grubpcr8.uml
rm.model.1.pcr.10=f12imapcr10.uml

• Initialize Collector ptsc

$/usr/sbin/ptsc -i

• Selftest the target platform

$/usr/sbin/ptsc -s

• Startup tcsd and ptsc

$service trousers start
$service ptsc start

• Set whether ptsc should run on startup

$chkconfig --add ptsc

(b) Setting up the management nodes

• Installing OpenPTS components

TClouds D2.1.4/D2.3.3 Page 16 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

$sudo apt-get install trousers tpm-tools libtspi-dev libtspi1
$sudo dpkg -i openpts-0.2.4-1.x86 64.deb

• Setup SSH public key authentication between compute nodes and management
node

$ssh-keygen
$ssh-copy-id ptsc@compute node N

• Enrollment with trust collector

$openpts -if compute node N

• Testing attestation with trust collector

$openpts -l ptsc -v compute node N

(c) Setting up the nova periodically attestation
To enable the periodically attestation supported by ACaaS Scheduler, ACaaS Sched-
uler Manager should be enabled, which can be achieved by modifying the /etc/no-
va/nova.conf to have the corresponding field set as follows:

scheduler manager=nova.scheduler.manager integrity.SchedulerManager

SchedulerManager is a modification to the OpenStach TrustedComputingPool. In-
stead of using the RESTful API, the SchedulerManager in ACaaS performs attesta-
tion directly. In our prototype this is achieved by invoking the OpenPTS facilities as
described above. The following parameters can be specified in /etc/nova/nova.conf
for controlling the openpts operation, with the default values given:

i. Enabling openpts When openpts is disabled, attestation in ACaaS is in demo
mode: simply output text indicating the operation to invoke. Without a well-
configured openpts infrastructure, enabling it will cause ACaaS to hang.

openpts enabled = False

ii. Path of openpts command

openpts bin = ’/usr/bin/openpts’

iii. Path for storing aide db for openpts The aide db is used as the white-list, repre-
senting the expected trusted properties of a target node

openpts aide path = ’/var/lib/aide/aide.gz’

iv. ssh username required by openpts

openpts username =’ptsc’

v. ssh port number required by openpts

openpts port = ’’

vi. ssh key file required by openpts

openpts key = ’’

TClouds D2.1.4/D2.3.3 Page 17 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

By modifying the configuration files, and if necessary, a minor portion of the sched-
uler manager source codes, other attestation facilities can easily be switched to.

2.4.2 Management Console

Requirement Management

Requirement management facilities provide functionalities for creating, removing and query-
ing specifies user requirements for VM scheduling. The management interfaces are listed as
follows:

• List all requirements

$nova-manage requirement list

• Create new requirement, with a string as the name of the requirement (e.g. location)

$nova-manage requirement create --requirement=NAME

• Remove the requirement with specific ID (e.g. 9)

$nova-manage requirement remove --id=ID

Trusted Requirement Management

Trusted Requirement management facilities provide functionalities for adding, removing, query-
ing trusted properties (the while list database). These properties represent the expected config-
uration (or state) of a node. They can be trustworthy examined (attested to) by the trusted
computing remote attestation as described above. Any violation of the attestation result to the
white list (the expected configuration) indicates the untrusted state of the node, and will result
in the node to be examined and re-initiated (in current prototype, the state-changed host with be
removed with the white list property).

• List all white-lists

$nova-manage white-lists list

• Create new white-lists With a string as the name of the white-lists and the location for
storing the white-list database as value for the name

$nova-manage white-lists create --white-list=white-list-file-path

• Remove the white-lists with specific WL ID

$nova-manage white-lists remove --id=WL ID

TClouds D2.1.4/D2.3.3 Page 18 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Security Properties Management

Security Properties management facilities provide functionalities for adding, removing, query-
ing properties of a compute node. The management interfaces are listed as follows:

• Query a HOST for its security properties

$nova-manage host get properties --host=HOST

• Add a security properties to a HOST Specified by NAME and VALUE. When NAME
equals to ”trusted-host”, it represented the trusted properties and its VALUE should iden-
tifies one of the TP IDs

$nova-manage host add properties --host=HOST --properties="’NAME’: ’VALUE’,
..."

• Specify white-list White-list is specified to a host as a requirement to provide a same
management interface. In current implementation, the name for the white-list requirement
should be: whitelist.

$nova-manage host add properties --host=HOST --properties="’whitelist’:
’WL ID’"

• Remove a security properties from a HOST, specified by NAME

$nova-manage host remove properties --host=HOST --properties="[’NAME’, ...]"

Requirement-based VM Instantiation

• Initiating a VM with with general requirement matching The REQ ID represents the re-
quirement id for each requirement defined by the requirement management component,
and the REQ VALUE will be the expected value matching the specific requirement.

$nova boot --flavor XXX --image XXX --key name XXX --security group XXX
--req="REQ ID:’REQ VALUE’" IMAGE NAME

• Staring VMs with exclude-user requirements A predefined alphabic REQ ID is specified
for these type of requirement matchings. The ’exclude-user’ is represented by ’x’ or ’X’
as REQ ID to specified the VM can only be launch on the compute host with NO other
VMs belonging to the users identified by USER IDs.

$nova boot --flavor XXX --image XXX --key name XXX --security group XXX
--req="’x’:[’USER ID1’, ’USER ID2’, ...]" IMAGE NAME

• Staring VMs with trusted-hosts requirements A predefined REQ ID is specified for these
type of requirement matching. The ’trusted-host’ is represented with ’t’ or ’T’ as REQ ID
to specified the VM can only be launch on the compute host with a target attestation
white-list (representing a set of trusted properties) identified by TP ID.

$nova boot --flavor XXX --image XXX --key name XXX --security group XXX
--req="’w’:TP ID" IMAGE NAME

TClouds D2.1.4/D2.3.3 Page 19 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

2.5 Cryptography-as-a-Service (Caas)

2.5.1 Operating Environment Setup

Hardware Prerequisites

Cryptography-as-a-Service requires (in a minimal configuration) two platforms: a computing
platform, on which the user’s VMs are deployed, and verifying platform (short Cloud Verifier),
which delegates management tasks between user and computing platform and which verifies the
trustworthiness of the computing platform. The computing platform requires certain capabilities
from the underlying platform:

Trusted Platform Module v1.2 A TCG TPM in version 1.2 must be present on the platform.
Moreover, the module must be activated and owned. The owner and Storage Root Key
(SRK) authentication values must be made available to the CaaS software.

Hardware Virtualization Support The CPU and chipset must support hardware virtualiza-
tion, e.g., Intel VT-d or AMD-V. In the current version of CaaS only Intel VT-d is sup-
ported.

Download and Installation

CaaS builds on the Xen hypervisor in version 4.1.2, which can be retrieved from the Xen project
webpage3, the MiniOS (from the Xen 4.1 source tree), and Intel tboot4 for a measured launch of
the software stack. The corresponding patches (libxl and libxc) for Xen 4.1.2 and MiniOS
to enable CaaS support and install a basic configuration/templates for a domain builder and
crypto-service VM can currently only be retrieved upon request from partner TUDA5.

CaaS can be easily integrated with OpenStack dashboard Horizon. Figure 2.1 depicts the
components needed in order to run CaaS. For brevity, we will only focus on installing the CaaS
modified components, the rest of them can be compiled and installed according to the default
documentation.

Installation

For our prototype we use Ubuntu 12.04 as the base system, installed and configured with the
default packages.

1. Install dependencies

$ sudo apt-get install build-essential bcc bin86 gawk bridge-utils iproute
libcurl3 libcurl4-openssl-dev bzip2 module-init-tools transfig tgif
texinfo texlive-latex-base texlive-latex-recommended texlive-fonts-extra
texlive-fonts-recommended pciutils-dev git subversion mercurial make gcc
libc6-dev zlib1g-dev python python-dev python-twisted libncurses5-dev patch
libvncserver-dev libsdl-dev libjpeg-dev iasl libbz2-dev e2fslibs-dev git-core
uuid-dev ocaml ocaml-findlib libx11-dev bison flex xz-utils libyajl-dev gettext
exuberant-ctags libc6-dev-i386 python3 python3-crypto libtspi-dev debootstrap
tpm-tools trousers

3http://www.xen.org/
4http://sourceforge.net/projects/tboot/
5mihai.bucicoiu@trust.cased.de

TClouds D2.1.4/D2.3.3 Page 20 of 44

http://www.xen.org/
http://sourceforge.net/projects/tboot/

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Figure 2.1: CaaS installation overview

TClouds D2.1.4/D2.3.3 Page 21 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

2. Build and install CaaS-Xen kernel

$make
$sudo make install

3. Build and install CaaS domT

$cd stubdom
$make domt-stubdom
$sudo cp mini-os-x86 64-domt/mini-os /boot/domt

• Verify domT file

$file /boot/domt
$/boot/domt: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically
linked, not stripped

4. Build and install CaaS domC

$make
$make domc-stubdom
$sudo mkdir -p /usr/local/xen-domc
$sudo cp -p mini-os-x86 64-domc/mini-os.gz /usr/local/xen-domc/domc.gz

5. Set up some userspace helpers

$cd tools/libxlc && make && sudo make install && sudo ldconfig
$cd tools/xenvfsd && make
$sudo cp xenvfsd /usr/local/bin/
$cd tools/xenkicker && make
$sudo cp xenkicker /usr/local/bin/

6. Compile and install CaaS OpenStack Horizon

$sudo make install

Configuration

In order to make the system functional, some post-installation configuration need to be applied.

1. Fix a problem with compiled libs

$echo /usr/lib64 | sudo tee -a /etc/ld.so.conf
$sudo ldconfig

2. Start Xen related daemons at bootime

$sudo update-rc.d xencommons defaults

3. Start CaaS userspace tools

$sudo vim /etc/rc.local
$LOGKICK=/var/log/xen/kicker
$OGVFSD=/var/log/xen/vfsd
$TMPVAL=/tmp/val
$dat=$(date)
$echo 1 > "$TMPVAL"
$echo "starting xenkicker $dat" > $LOGKICK
$tools/xenkicker/xenkicker >> $LOGKICK 2>&1
$echo "starting xenvfsd $dat" > $LOGVFSD
$tools/xenvfsd/xenvfsd /tmp/val >> $LOGVFSD 2>&1

TClouds D2.1.4/D2.3.3 Page 22 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

4. Configure grub boot-loader

$sudo rm -rf /boot/xen-4.1.gz /boot/xen-4.gz /boot/xen.gz /boot/xen-syms-4.1.2
$sudo update-grub
$sudo vim /etc/grub.d/20 (add "module $rel dirname/domt" after the line with
"multiboot")
$sudo mv /etc/grub.d/20 linux xen /etc/grub.d/09 linux xen
$echo "GRUB CMDLINE XEN=n̈o-real-mode dom0 mem=2048M loglvl=all guest loglvl=all
console timestamps iommu=verbose com1=115200,8n1,0x3f8,0 console=com1
caas enforcing=1"̈ | sudo tee -a /etc/default/grub
$sudo update-grub

5. Configure TBoot

The configuration of the Intel Trusted boot follows the same steps explained in the soft-
ware’s documentation. One must be very careful when configuring the SINIT, this should
be downloaded 6 for the architecture where CaaS is deployed. After this final step the
grub booting menu should be similar to the following

$kernel /boot/tboot.gz logging=serial,vga,memory vga delay=0
$module /boot/xen.gz no-real-mode dom0 mem=2048M loglvl=all guest loglvl=all
console timestamps iommu=verbose com1=115200,8n1,0x3f8,0 console=com1
caas enforcing=1
$module /boot/domt
$module /boot/vmlinuz-linux root=/dev/sda7 ro
$module /boot/initramfs-linux.img
$module /boot/pol/list.data
$module /boot/SINIT.BIN
$savedefault 5

One very important last step that needs to be accomplish before booting into CaaS Xen
hypervisor, consist of configuring the TPM so that it can be used by domT. In order to do this,
the user must have physical access to the running server, enter the BIOS, enable and clear the
TPM. After enabling, boot into dom0, issue the following command and then reboot so that
domT will be enabled.

$sudo tpm takeownership -z -y

For the first boot, the default steps for booting a vanilla Xen with Intel tboot should be
followed. During boot, the domain builder and management domain will automatically be
launched. On first boot, the domain builder VM will automatically create a new TPM binding
key, which is bound to the measurement of the platform and provided at a world-wide readable
location. This key has to be provided to the user to enable encryption of VM images and secrets
deployed in the cloud by the user.

2.5.2 Prototype Execution Instructions
After the system has booted and the configuration was completed, the workflow looks as fol-
lows:

• Cloud Verifier attests the Xen-based computing machine, and receives the public key of
the certified binding key for this configuration. Figure 2.2

6http://software.intel.com/en-us/articles/intel-trusted-execution-technology/

TClouds D2.1.4/D2.3.3 Page 23 of 44

http://software.intel.com/en-us/articles/intel-trusted-execution-technology/

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

• The user uploads his VM image to the cloud, and sends his user secret encrypted under
the public TPM binding key to the CV.

• The computing platform asks the CV for the user secret in order to run the VM image.

• The CV sends the encrypted secret to the computing platform.

• The domain building code on the computing platform uses the TPM to decrypt the user
secret, the VM image by using the secret, and starts building the domain.

Figure 2.2: CaaS OpenStack dashboard integration

For a detailed description of the inner workings during user VM launch, we refer to deliver-
able D2.1.2 [ea12b].

2.6 Resource-efficient BFT (CheapBFT)

2.6.1 Operating Environment Setup

Hardware Prerequisites

A system setup of CheapBFT comprises at least four machines. Three server systems are re-
quired with the following specification:

• x86 (better x86-64) machines with identical or at least similar hardware specs; at least
Intel Pentium 4 class processor

• 4 GB RAM

• PCI bus (necessary for the FPGA-cards, see below)

TClouds D2.1.4/D2.3.3 Page 24 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

• 1 Gigabit/s or better IP-network connectivity

• Enterpoint ”Raggedstone 1” FPGA card

In order to programm the FPGA cards, a Xilinx JTAG programmer with USB interface is nec-
essary.

Further, one or two additional computer with similar specification as the server system (ex-
cept the FPGA cards) are required for running the benchmark tools.

Software Environment

Following software should be installed on all test machines:

• Linux distribution with kernel 2.6.32 or better (e.g. Ubuntu 10.04), 32- or (preferably)
64-bits.

• xz data compression tools

• Eclipse 3.6 (Indigo) or better

• Java Runtime environment 6.0 or better

• Secure Shell Server (OpenSSH) with key-based authentication to enable scripted remote-
logins

• screen terminal multiplexer

• Xilinx ISE WebPack 13.x for Linux

• Header files and build environment for the running Linux kernel

Installation

The required files are provided as a GNU tarball, packed with the xz data compression util-
ity. In order to unpack it on a GNU/Linux system, use the following command: xzcat
cheapbft.tar.xz | tar xf -All files are extracted into the subdirectory cheapbft/.
The following subsections will describe the necessary steps to configure and translate the pro-
gram code to get it into a working state. All specified paths are relative to the cheapbft directory,
unless beginning with a forward slash (/), or mentioned otherwise.

FPGA Hardware The source code for the FPGA firmware and associated Linux kernel driver
is located in the directory cash/pci base. In order to build the firmware image, the Xilinx
ISE tools must be configured properly and present in the search path of the Linux shell. This can
be usually accomplished running the command source settings32.sh in the installation
directory of the Xilinx suite.

Each of the three FPGA boards must be assigned an unique identifier so that they gen-
erate different signatures. This ID can be adjusted in the file fpga/pci base/source/
adrdec.vhd in the line starting with constant SYS ID. The value is at the end of this
line, enclosed in double quotes and must be a 16-bit hexadecimal number.

To compile the firmware image, change into the directory fpga/pci base and simply
call make. The shipped Makefile will create a .bit file suitable for the FPGA chip of the

TClouds D2.1.4/D2.3.3 Page 25 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

“Raggedstone 1” board. This build process can take up to an hour, even on fast machines, as
the logic is quite complex and requires expensive optimization processes to fit onto the FPGA.

When the build process has finished, the next step is to load the firmware onto the card.
Make sure the USB programmer is connected to the Raggedstone board. There are two possible
modes to store the firmware: The command make load will just reconfigure the FPGA and
keep it until the host PC is turned off. The command make i-really-want-to-flash
can be used to additionally save the image in persistent flash memory, so that it will survive
when the machine is powered down. Just loading the firmware is the preferred mode when
working on the FPGA code, as the flash memory has a limit on the number it can be erased.
The host PC has to be rebooted before.

As each card requires an unique ID embedded in its firmware, the image has to be rebuilt
and loaded for each of the three FPGA boards individually. After programming the FPGA,
the PC hosting the card should be rebooted as soon as possible, otherwise the card won’t be
detected properly and may interfere with the operation of the machine in unpredictable ways.

Kernel Driver In order to use the cards from any Linux application software, it is necessary
to install a kernel driver that can interface with the hardware registers on the FPGA board.
The driver provides a device node called /dev/counter for the protocol implementation. To
compile the driver, change into the directory fpga/pci base/kernel and edit the Makefile
so that the KDIR variable points to the directory containing the header files for your current
kernel version.

Type make (using your regular user account) in order to build the driver. When the module
counter.ko was built successfully, switch to the root account (e.g using su or sudo). Now
the driver can be loaded using make device. This command will also create the necessary
device node and allows everyone to use it. For security reasons it is advisable to change per-
missions for /dev/counter, so that access is restricted to the user account(s) that will run
the application protocol later.

Userland applications The userland software is entirely written in the Java language (except
for a few programs for testing purposes) and ships in form of Java archive (jar) files.

2.6.2 Prototype Execution Instructions
The benchmark suite is implemented as a set of bash scripts that connect to the participating
machines via SSH and set up the required services. The progress can be monitored by switching
between terminals in the screen software that is used to manage the parallel execution of
aforementioned scripts. The required files are all stored in the directory cheap/bin/.

There is a script for each test scenario. For instance, run micro.bash can be used to
start micro benchmarks. However, the main functionality is implemented in system.bash,
which is imported in every script for a scenario in order to provide consistent use.

The behavior of the running system is configured via three configuration files which are
stored in cheap/bin/config: system.config is the main configuration file, which
contains, for example, settings concerning the used consensus protocol. hosts.config
contains a list of all replica endpoints and logging.properties can be used to config-
ure the logging output generated during a run. Instead of editing these configuration files di-
rectly, the scenario scripts (or system.bash) should be used in conjunction with configura-
tion templates (also contained in cheap/bin/config) to set up the system. For instance,

TClouds D2.1.4/D2.3.3 Page 26 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

system.config.cheap is a template for a configuration with CheapBFT as consensus
protocol. The same holds for system.config.cheap.soft, with the exception that a
software module is employed for the message verification instead of an FPGA.

Before a test run can be started, the addresses of the hosts executing servers and clients
have to be configured. The addresses are usually stored in files named according to the pattern
hosts.config.*. These files contain two variables: ENDPOINT SERVERS and HOSTS
CLIENT. The former is a list of machines equipped with the FPGA boards together with a base

port. The specified machines act as servers and server sockets are opened with port numbers
starting from the given base port as required. (For that purpose, at least five ports starting from
the base port should be available.) The latter of the two variables is a list of host addresses
only. Here, the clients for the test run are executed. Please ensure that your current user account
can login to all specified server and client hosts via SSH, without being asked for a password.
This can be accomplished by either deploying host-based authentication or (probably easier)
just supplying proper SSH keys for the user.

After the host addresses have been provided, the test configuration has to be set up. For
example, the command ./system.bash setup prot cheap sets system.config.
cheap as protocol configuration, hence selects CheapBFT as consensus protocol. ./system.
bash setup hosts <yourhosts> initializes the server and client hosts according to the
file hosts.config.<yourhosts>. With ./system.bash setup logging con
logging output is redirected to the console.

Next, a screen environment can be started by running ./system.bash screen This
should start the screen program with a basic configuration from which the individual client
and server programs will be launched.

The actual benchmark can be started, for example, using ./run micro.bash start
This will connect to the previously configured host machines and run a minimal performance
benchmark. Statistics are printed in regular intervals to the screens.

All available commands and their options can be obtained by ./run micro.bash help
(or ./system.bash help).

2.7 Simple Key/Value Store (hsMemcached)

2.7.1 Introduction
This file describes the installation procedure for the hsMemcached prototype. hsMemcached
is a reconfigureable and secure implementation of the Memcached protocol designed to run on
top of a thin operating system layer in a virtualized environment, currently supporting the Xen
hypervisor.

2.7.2 System Requirements
• 64-bit x86 machine with 64-bit Linux, version >= 2.6.32, glibc >= 2.7, 1 GB RAM,

about 5 GB disk space, Internet connection

• C/C++ compiler from the GNU Compiler Collection (GCC), version >= 4.4

The version shipped with recent Linux distributions is usually fine, older versions are
known to miscompile gmplib.

TClouds D2.1.4/D2.3.3 Page 27 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

• GNU Autoconf, version 2.59

• GHC Haskell compiler version 6.12, generic 64-bit Linux binaries

HaLVM is still based on an older version of the GHC compiler. Newer version introduced
incompatible changes to some of the language extensions used across the software stack.

Download: http://www.haskell.org/ghc/download ghc 6 12 3

• GNU Multiple Precision Arithmetic Library (gmplib), version 4.3.2

The GHC 6.12 compiler expects the 4.x version of the library interface but most Linux
distributions nowadays only ship with 5.x versions.

Download: http://ftpmirror.gnu.org/gmp/gmp-4.3.2.tar.bz2

• Xen Hypervisor version 4.0.3 or better for building/executing VM image

Earlier versions have a bug in the virtual memory manager that will cause the hypervisor
to panic with certain workloads.

Download: http://www.xen.org/download/index 4.0.3.html

2.7.3 Installation

Prerequisites

In order to build the system, it is necessary to ensure that proper versions of all the build re-
quirements are available. The following subsections describe additional steps that may have to
be taken on current Linux systems to make these available.

GMP Library The first thing needed is probably the GMP library, as many current Linux
distributions no longer ship with the required older version. We suggest to query the your
Linux distribution’s package database whether any of the available packages provides the file
/usr/lib/libgmp.so.3. If so, it is recommended just to install that package. Otherwise
the following paragraph provides instructions for setting up the library from source code. After
downloading the GMP package, unpack and install it to a temporary directory:

$ tar xfj gmp-4.3.2.tar.bz2
$ pushd gmp-4.3.2
$./configure --prefix=/tmp/ghc-6
$ make && make check && make install
$ popd

Now the library has to be added to the search list of the dynamic linker, which can be done
by setting the following environment variable:

$ LD LIBRARY PATH=/tmp/ghc-6/lib
$ export LD LIBRARY PATH

TClouds D2.1.4/D2.3.3 Page 28 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Xen header files If the machine used to build doesn’t already have a recent Xen version
installed as part of the Linux distribution, it is at least necessary to partially compile the Xen
source archive, so that HaLVM has access to the header files for the hypervisor interface. Just
unpacking the Xen source code is not sufficient, as the exact contents of the header files depend
on information about the machine and a set of configurable options. The Xen build process
has its own set of prerequisites, which are described in the README file included with the Xen
source archive. If these are met, we just do a local build of the hypervisor, which will create the
necessary configuration and header files in the process.

$ tar xfz xen-4.0.3.tar.gz
$ pushd xen-4.0.3
$:>.config
$ make tools
$ popd

Unpacking the source

The source code of the prototype is contained in the file sources.tar.bz2 and can be un-
compressed using the following command line:

$ tar xfj sources.tar.bz2

This will create a directory sources with three subdirectories with the required parts to
build the service: HaLVM, HaNS and hsMemcached. The installation of each of these required
components is described in the next sections.

HaLVM – Xen/Haskell Library OS

The interface to the Xen Hypervisor is provided by the HaLVM layer. The build process essen-
tially downloads the source code of the GHC Haskell compiler from the Internet and builds a
customized version and some libraries that provide access to Xen’s low level driver interface.
In case HaLVM can use the Xen version shipped with the Linux distribution on the build ma-
chine (i.e. the manual preparation of Xen was skipped), the --with-xen-tree option must be
omitted from the configure command. We also add the resulting compiler wrappers (halvm-*)
in the search path so that other haskell packages can use them.

$ pushd sources/HaLVM
$ autoconf2.59
$./configure --with-xen-tree="$PWD/../../xen-4.0.3"
$ make
$ PATH="$PWD/dist/bin:$PATH"
$ popd

HaNS – Network stack

In this step we will build the TCP/IP stack for HaLVM. This subsystem is based on the cabal, a
package manager for Haskell. Thus, the cabal utility will take care of resolving all external de-
pendencies and download any missing libraries from the Internet. The package will be installed
into HaLVM’s dist/ directory.

$ pushd sources/HaNS
$ halvm-cabal install -f halvm
$ popd

TClouds D2.1.4/D2.3.3 Page 29 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

hsMemcached – Configurable memcache service

Now that all operating system components are available, the final step is about configuring and
installing the hsMemcached demo application. The service is also a cabal package, so it can be
built almost the same way as HaNS from the previous subsection. The reconfigurable aspects of
the memcache service can be found in HsMemcached/Main.hs. Changing the configuration
parameters is done by editing the corresponding *Config and *Advice settings in that file.

$ pushd sources/hsMemcached
$ halvm-cabal install -f halvm
$ popd

The compiled binary will be installed into HaLVM/dist/bin/memcached. This is not a
regular Linux executable, but a Kernel that can be booted as a Xen paravirtual instance, con-
taining the hsMemcached application.

2.8 Security Assurance of Virtualized Environments (SAVE)
The SAVE prototype can either operate with access to the compute nodes and their hypervisor
management interface directly, or using a modified version of OpenStack that collects hyper-
visor configurations of the compute nodes on SAVE’s behalf. In the following we describe
the latter version, although the former one can be used simply by adding the hostnames of the
compute nodes (and appropriate credentials) to the probe configuration of § 2.8.3.

2.8.1 Operating Environment Setup
In order to enable the SAVE discovery using OpenStack, OpenStack needs to be modified. The
environment has to fulfill the following requirements:

• OpenStack’s cactus release patched with the TClouds API patch.

• Access to the OpenStack management interface.

After patching OpenStack, it can collect hypervisor configuration data on behalf of SAVE. To
leverage the full capabilities of SAVE, the OpenStack cloud infrastructure should have a size
and complexity which are exceed the capabilities for a manual assessment by an administrator.

2.8.2 Prototype Build and Installation Instructions
• Unzip the cactus release of OpenStack

• patch -p1 < openstack-save.patch

• start up and operate OpenStack as normally

2.8.3 Prototype Execution Instructions
SAVE relies on using probes to communicate with target systems. Such a probe must be con-
figured either for OpenStack, or hypervisor types. An example configuration for OpenStack:

TClouds D2.1.4/D2.3.3 Page 30 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

<?xml version="1.0" encoding="UTF-8"?>
<DiscoverConfig>

<Host hostname="openstack1" address="127.0.0.1" enabled="true">
<Credential type="API" username="openstack-admin" password="secretpassword" port="8775"/>

</Host>
</DiscoverConfig>

Upon starting up SAVE, one can select the project to execute. This should be a directory con-
taining the above XML in a ”discovery.xml” file. Once that is loaded, executing the probe and
showing the discovery result in a visual way can be done from the GUI.

TClouds D2.1.4/D2.3.3 Page 31 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Chapter 3

TrustedInfrastructure Cloud Prototype

This chapter describes the TrustedInfrastructure Cloud prototype based on the subsystems Truste-
dObjects Manager, TrustedServer, Trusted Management Channel and the Confidentiality Proxy
for S3. We focus on the description of the TrustedObjects Manager, as this provides the inter-
face to the other subsystems.

3.1 TrustedObjectsManager setup
Essentially the TrustedObjectsManager (TOM) is a webserver that provides the necessary man-
agement and administrative functions via a web interface.
The managment console holds the complete set of configuration-files for all TrustedDesktops
and TrustedServers, which are attached to the TOM. These appliances establish a permanent
secure tunnel to the management console and get their dedicated initial configuration, as well
as configuration changes via this tunnel automatically (TrustedChannel).
The mentioned appliances derive the settings (firewall-, router-, security-, user-settings, etc.)
which have to be applied, from the centrally downloaded configuration and apply them au-
tonomously.

This chapter describes the steps to be done in order to attach a TrustedServer and a Trusted-
Desktop to the TOM in order to start, stop install and remove a compartment (an virtual machine
(VM) associated with a trusted virtual domain (TVD)) and to use its provided services.

3.1.1 Using the management console
The web interface of a newly installed TOM is reachable via the https-adress 192.168.1.11 from
any client’s webbrowser within the same network, showing the login screen as in Figure 3.1.
The TOM’s IP-address can be changed later on. After logging in with the predefined credentials
the screen appears as shown in Figure 3.2.

3.1.2 Creating a company
At first a “company”-object has to be created, to store the essential structures like VPNs, (local)
networks, users, TVDs, compartments and their relationships within a company or a project. In
Figure 3.3, the company “TCLOUDS” is created via a right-click on “Management Console”
and selecting “New”.

TClouds D2.1.4/D2.3.3 Page 32 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Figure 3.1: The TrustedObjectsManager Login screen

Figure 3.2: The TrustedObjectsManager overview screen after login

Figure 3.3: Creating a “Company”

TClouds D2.1.4/D2.3.3 Page 33 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Figure 3.4: Creating a “Location”

Figure 3.5: Adding a user, step 1

3.1.3 Creating a location
Within this newly created company one has to create a new location in order to logically sort
different company branches. Here the location “Bochum” is created by expanding the sub-tree
menu, selecting “Locations” and a right-click choosing “New...” and “Location”.

3.1.4 Adding users
Choose the newly created location “Bochum” and open the sub-tree by a left-click. The appear-
ing “Users”-entry allows to add users to the infrastructure via a right-click selecting “New”,
“User”. The form has to be filled out with a real-name and an existing email-address (Fig-
ure 3.5). After clicking “Apply”, three additional tabs appear, whereat the “Login Name”,
a “Password” which has to be confirmed, and a “Hold-back time” has to be entered. The
“Expiry Date” is calculated based on the value entered in the “Hold-back time” field (Fig-
ure 3.6).
Only those users entered in the “Users” sub-tree are granted access to the whole infrastructure.

TClouds D2.1.4/D2.3.3 Page 34 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Figure 3.6: Adding a user, step 2

Figure 3.7: Adding networks

3.1.5 Network configuration
Within the newly created location, the local networks have to be defined, choosing “Locations”,
“Bochum” and a right-click on ”Networks (Figure 3.7). Here, the 4 networks “TD-ConfidentialNet”,
“TD-PublicNet”, “TS-ConfidentialNet” and “TS-PublicNet” are created with different IP-
ranges. These networks i.e. IP-adress-ranges, will be attached to the virtual machines’ net-
work interfaces running on the TrustedServer (TS) and on the TrustedDesktop (TD). Further-
more the “Confidential”-networks, as well as the “Public”-networks will reside within the
“Confidential”- or “Public”-VPN respectively, which themselves will be part of the “Confidential”
or “Public”-TrustedVirtualDomain (TVD). The assignment of networks to VPNs and TVDs en-
sures a separation of information-flow on the network level.

TClouds D2.1.4/D2.3.3 Page 35 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Figure 3.8: Adding a VPN

3.1.6 Creating and configuring VPNs
Logical VPNs are created by choosing “VPNs & Internet Groups”, “New”, “VPN”. The ap-
pearing dialog (Figure 3.8) requires in this step just a name, here “ConfidentialVPN”. The
assignment of networks to VPNs (see: Section 3.1.5), takes place in a later step (see: Sec-
tion 3.1.11).

3.1.7 Attaching appliances
Adding appliances like TrustedServer or TrustedDesktop to the company takes place within the
sub-entry “Appliances” of a “Location”. Right-clicking “Appliance” and choosing “New”,
“Appliance” opens a window like in Figure 3.9. The appliance has to be named, and the “Serial
number” has to be entered. Here the TrustedServer is created. This 5x5 alphanumeric number
has to gathered from the console of a newly installed TrustedDesktop or TrustedServer. The
“Interface” field is greyed out and set statically to “eth0 - external network interface”. This
cannot be changed currently. If the appliance to attach is reachable via a static IP-address the
“Static” radio-button has to be chosen and the appropriate fields “IP / Mask”, “Gateway” and
“DNS 1 / DNS 2” have to be filled. In case, the appliance gets its IP-address from a DHCP-
server, the “Dynamically using DHCP”-option has to be chosen.
After clicking the “Apply” button, the “Download configurations / software update”-button
will become active. By clicking this, a dialog opens, where the “configurations”-file can be
downloaded. This file has to be stored on the root-folder of an USB-drive.
Attaching the USB-drive to the newly installed TrustedServer or TrustedDesktop, the configu-
ration will be found and applied to this dedicated machine. Not till then, the appliance is able
to connect to the TrustedObjectsManager, getting additional configuration settings after that the
integration of the appliance to the infrastructure will be finished.

TClouds D2.1.4/D2.3.3 Page 36 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Figure 3.9: Add a new appliance to the company

Figure 3.10: Dialog to download the configuration for the specific appliance

TClouds D2.1.4/D2.3.3 Page 37 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Figure 3.11: Dialog to create a new TVD

3.1.8 Creating TrustedVirtualDomains
To create a new TVD, “TrustedVirtualDomains” can be chosen from the context menu, right-
clicking and choosing “New”, “TrustedVirtualDomain”. The TVD has to be named and a
color has to be chosen from the color palette (Figure 3.11). The chosen color will appear as an
visual border around the running compartment on TrustedDesktop. As shown in the Figure 3.11,
in this scenario the TVDs “Confidential” and “Public” are created.

3.1.9 Adding compartments to TVDs
In order to add a virtual machine disk image to a TVD, one chooses for example “TrustedVirtualDomains”,
“Confidential”, “Compartments” and right-clicks on “New”. The new compartment screen
(Figure 3.12) asks for the name, and a description of the compartment. The “Availability”
checkbox has to be checked, in order to allow clients to download and use the compartment.
Furthermore the virtual disc image template has to uploaded. If there are already files registered
at the underlying database, one of these can be selected. Otherwise a new virtual disc image
can be uploaded via the “Manage”-button. Press “Add local file”, if the *.file is already on the
TOM’s harddisk or “Upload” in order to upload a *.vdi-file from remote.
An explaining comment of the image’s content is optional. The “Last change” field in the
“New compartment” window is automatically filled with the derived virtual disc image’s
timestamp.

TClouds D2.1.4/D2.3.3 Page 38 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Figure 3.12: Adding a new compartment

Figure 3.13: Attaching external S3-storage to TrustedServer

3.1.10 Adding external cloud storage to TrustedServer
It is possible, though not necessary to add external cloud storage to the TrustedServer. This
storage can be accessed from within the compartments running on the TrustedServer natively,
or can be provided to affiliated TrustedDesktops via a service (smb/sshfs/nfs). In all cases, files
written to the attached cloud-storage (Amazon S3 storage as an example in figure 3.13) are
transparently encrypted with a TVD-specific key, so the files can only be accessed from a TVD,
they were initially written from.

From the ”Appliance” - ”Properties” submenu, the user chooses the S3 Storage tab and
enters the URL to the S3-bucket, created via ”Amazon AWS Console” beforehand. The URL-
pattern follows the form s3://<BUCKET NAME>. The backend login and password for ac-
cessing S3 are not the user id and password used to login into Amazon Webpage, but the AWS
access key id and AWS secret access key provided by the users’ AWS ”MyAccount/Access
Identifiers”. Clicking ”OK” results in an mount of the S3-bucket on TrustedServer.

TClouds D2.1.4/D2.3.3 Page 39 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Figure 3.14: Installing a registered compartment to TrustedServer

3.1.11 Connecting everything together
The available compartments, uploaded to the TOM in Section 3.1.9 can now be installed to the
TrustedServer by choosing the “Properties” of the appliance (Figure 3.14). Switching to the
“Compartments”-tab allows the user to choose “Install new...” and select the desired com-
partment. The remote installation of the compartment starts immediately after a click on “OK”
in case the TrustedServer is online.
Now, the corresponding network, defined in Section 3.1.5 has to be attached to the installed
compartment. For that purpose, the registered appliance has to be modified via “Properties”.
The networking-tab, lists all installed compartments of the chosen appliance. Choosing one of
them (“TS-ConfidentialNet” in Figure 3.15) leads to the selection of an “Interface”, which is
an entry like “tun1280 - internal compartment interface”. All upcoming fields and check-
boxes are automatically set to the values already defined during the step of creating networks.
See Section 3.1.5. Pressing “Set” and “OK” applies all changes made to this tab. The installed
compartment on the TrustedServer will now get a network connection after startup.
In order to separate the information-flow between different TVDs on different machines the
VPNs are now set up finally. Dragging the TrustedServer-appliance from the list to the previ-
ously created “ConfidentialVPN”-entry in the “VPNs & Internet Groups” opens a window
like in Figure 3.16. Checking “This appliance connects to all other appliances” is manda-
tory. Furthermore the “Policy” for the “Share”-networks have to be choosen, which is “IP
forwarding (bidirectional)” in this case. Clicking “OK” closes the dialog and the setup is
complete.

The procedure described in this section has to be repeated for the “Public”-TVD and the
containing VPNs, networks and compartments.

The compartments can now be started, stopped or removed remotely by clicking the appro-
priate button in the “Compartments”-tab of an appliance (see Figure 3.14).

TClouds D2.1.4/D2.3.3 Page 40 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Figure 3.15: Attaching networks to compartments installed on TrustedServer

TClouds D2.1.4/D2.3.3 Page 41 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Figure 3.16: Editing VPN membership of TrustedServer

TClouds D2.1.4/D2.3.3 Page 42 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

Bibliography

[AN12] Marco Abitabile and Marco Nalin. D3.3.3 - Validation Protocol and Schedule for the
Smart Power Grid and Home Health Use Cases. Technical report, FSR, September
2012. TClouds deliverable.

[BACF08] Alysson N. Bessani, Eduardo P. Alchieri, Miguel Correia, and Joni S. Fraga.
DepSpace: a Byzantine fault-tolerant coordination service. In Proc. of the 3rd ACM
European Systems Conference – EuroSys’08, pages 163–176, April 2008.

[BGJ+05] Anthony Bussani, John Linwood Griffin, Bernhard Jansen, Klaus Julisch, Genter
Karjoth, Hiroshi Maruyama, Megumi Nakamura, Ronald Perez, Matthias Schunter,
Axel Tanner, and et al. Trusted virtual domains: Secure foundations for business
and it services. Science, 23792, 2005.

[ea11a] Alysson Bessani et al. D2.2.3 Proof-of-concept of Middleware for Adaptive Re-
silience. Technical report, FFCUL et al., September 2011. TClouds deliverable.

[ea11b] Christian Cachin et al. D2.3.1 - Requirements, Analysis, and Design of Security
Management. Technical report, IBM et al., October 2011. TClouds deliverable.

[ea11c] Emanuele Cesena et al. D2.4.1 - Clouds Prototype Architecture, Quality Assur-
ance Guidelines, Test Methodology and Draft API. Technical report, Politecnico di
Torino et al., September 2011. TClouds deliverable.

[ea11d] Marcelo Pasin et al. D2.2.1 - Preliminary Architecture of Middleware for Adaptive
Resilience. Technical report, FFCUL et al., October 2011. TClouds deliverable.

[ea12a] Alysson Bessani et al. D2.2.2 - Preliminary Specification of Services and Protocols
of Middleware for Adaptive Resilience. Technical report, FFCUL et al., September
2012. TClouds deliverable.

[ea12b] Norbert Schirmer et al. D2.1.2 - Preliminary Description of Mechanisms and Com-
ponents for Single Trusted Clouds. Technical report, SRX et al., September 2012.
TClouds deliverable.

[ea12c] Sor̈en Bleikertz et al. D2.3.2 - Components and Architecture of Security Config-
uration and Privacy Management. Technical report, IBM et al., September 2012.
TClouds deliverable.

[Gel85] David Gelernter. Generative communication in linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, January 1985.

[GHSS11] Ruediger Glott, Elmar Husmann, Matthias Schunter, and Ahmad-Reza Sadeghi.
D1.1.1 - Draft Scenario and Requirements Report. Technical report, UMM et al.,
April 2011. TClouds deliverable.

TClouds D2.1.4/D2.3.3 Page 43 of 44

D2.1.4/D2.3.3 – Proof of Concept Infrastructure / Implementation of
Security Configuration and Policy Management

[GVM00] Garth A. Gibson and Rodney Van Meter. Network attached storage architecture.
Communications of the ACM, 43(11):37–45, November 2000.

[KS12] Anil Kumar and Jerry St.Clair. A Unit Testing Framework for C. Retrieved from:
http://cunit.sourceforge.net/, September 2012.

[Lev12] Peter Levart. FUSE-J: A Java binding for FUSE. Retrieved from: http:
//sourceforge.net/projects/fuse-j/, 2012.

[Mil12] Stewart Miles. A lightweight library to simplify and generalize the process of writ-
ing unit tests for C applications. Retrieved from: http://code.google.com/
p/cmockery/, September 2012.

[MT09] Di Ma and Gene Tsudik. A new approach to secure logging. Trans. Storage, 5:2:1–
2:21, March 2009.

[NF12] Gergely Nagy and Zoltán Fried. CEE-enhanced syslog() API. Retrieved form:
https://github.com/deirf/libumberlog, September 2012.

[OvT12] Open vSwitch Team. Open vSwitch. Retrieved form: http://openvswitch.
org/, September 2012.

[SK99] Bruce Schneier and John Kelsey. Secure audit logs to support computer forensics.
ACM Trans. Inf. Syst. Secur., 2:159–176, May 1999.

[SV12] Paulo Santos and Paulo Viegas. D3.2.3 - Smart Lighting System Draft Prototype.
Technical report, EFACEC ENG, September 2012. TClouds deliverable.

TClouds D2.1.4/D2.3.3 Page 44 of 44

http://cunit.sourceforge.net/
http://sourceforge.net/projects/fuse-j/
http://sourceforge.net/projects/fuse-j/
http://code.google.com/p/cmockery/
http://code.google.com/p/cmockery/
https://github.com/deirf/libumberlog
http://openvswitch.org/
http://openvswitch.org/

	Introduction
	Trustworthy OpenStack Prototype
	LogService
	Platform Setup
	LogService Subcomponents
	Trustworthy OpenStack configuration

	Remote Attestation Service
	Operating Environment Setup
	Prototype Build and Installation Instructions
	Prototype Execution Instructions

	Ontology-based Reasoner
	Operating Environment Setup
	Prototype Build and Installation Instructions
	Prototype Execution Instructions

	Access Control as a Service
	Platform Setup
	Management Console

	Cryptography-as-a-Service (Caas)
	Operating Environment Setup
	Prototype Execution Instructions

	Resource-efficient BFT (CheapBFT)
	Operating Environment Setup
	Prototype Execution Instructions

	Simple Key/Value Store (hsMemcached)
	Introduction
	System Requirements
	Installation

	Security Assurance of Virtualized Environments (SAVE)
	Operating Environment Setup
	Prototype Build and Installation Instructions
	Prototype Execution Instructions

	TrustedInfrastructure Cloud Prototype
	TrustedObjectsManager setup
	Using the management console
	Creating a company
	Creating a location
	Adding users
	Network configuration
	Creating and configuring VPNs
	Attaching appliances
	Creating TrustedVirtualDomains
	Adding compartments to TVDs
	Adding external cloud storage to TrustedServer
	Connecting everything together

	Bibliography

