
D2.1.5
Final Reports on Requirements, Architecture,
and Components for Single Trusted Clouds
Project number: 257243

Project acronym: TClouds

Project title:
Trustworthy Clouds - Privacy and Re-
silience for Internet-scale Critical Infras-
tructure

Start date of the project: 1st October, 2010

Duration: 36 months

Programme: FP7 IP

Deliverable type: Report

Deliverable reference number: ICT-257243 / D2.1.5 / 1.0
Activity and Work package contributing
to deliverable: Activity 2 / WP 2.1

Due date: September 2013 – M36

Actual submission date: 30th September, 2013

Responsible organisation: SRX

Editor: Norbert Schirmer

Dissemination level: Public

Revision: 1.0

Abstract: cf. Executive Summary

Keywords:

Trusted computing, remote attestation, se-
cure logging, confidentiality for commodity
cloud storage, efficient resilience, tailored
components

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Editor

Norbert Schirmer (SRX)

Contributors

Johannes Behl, Stefan Brenner, Klaus Stengel (TUBS)

Nicola Barresi, Gianluca Ramunno, Roberto Sassu, Paolo Smiraglia (POL)

Alexander Büger, Norbert Schirmer (SRX)

Tobias Distler, Andreas Ruprecht (FAU)

Sören Bleikertz, Zoltan Nagy (IBM)

Imad M. Abbadi, Anbang Ruad (OXFD)

Sven Bugiel, Hugo Hideler, Stefan Nürnberger (TUDA)

Disclaimer
This work was partially supported by the European Commission through the FP7-ICT program
under project TClouds, number 257243.

The information in this document is provided as is, and no warranty is given or implied that the
information is fit for any particular purpose.

The user thereof uses the information at its sole risk and liability. The opinions expressed in this
deliverable are those of the authors. They do not necessarily represent the views of all TClouds
partners.

TClouds D2.1.5 I

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Executive Summary

This deliverable summarizes the technical work of WP 2.1, where the technical artefacts are
integrated into two infrastructures, the Trusted Infrastructure Cloud and Trustworthy OpenStack.
The Trusted Infrastructure Cloud is constructed from ground up with security and trustworthiness
in mind, employing trusted computing technologies as a hardware anchor. With trusted boot
and remote attestation we ensure that only untampered servers with our security kernel are
started and that the sole way of administration is via the trusted channel from the management
component TOM. Hence no administrator with elevated privileges is necessary and hence this
functionality is completely disabled, abandoning the possibility for an administrator to corrupt
the system. On the contrary, Trustworthy OpenStack is based on OpenStack which has a strong
bias towards a scalable and decentralized architecture. We extend or embed new components
into the OpenStack framework to improve its security, these are Access Control as a Service,
Ontology-based Reasoner-Enforce, Remote Attestation Service, Cryptography as a Service, Log
Service, Ressource-efficient BFT, and Simple Key / Value Storage. With these two infrastructures
we can cover the needs of wide range of application scenarios. Trusted Infrastructure Cloud
is especially attractive for private or community clouds with high security demands, while
Trustworthy OpenStack is attractive for large-scale public clouds.

TClouds D2.1.5 II

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Contents

1 Introduction 1
1.1 TClouds — Trustworthy Clouds . 1
1.2 Activity 2 — Trustworthy Internet-scale Computing Platform 1
1.3 Workpackage 2.1 — Trustworthy Cloud Infrastructure 2
1.4 Deliverable 2.1.5 — Final Reports on Requirements, Architecture, and Com-

ponents for Single Trusted CloudsPreliminary Description of Mechanisms and
Components for Single Trusted Clouds . 3

I TClouds Prototypes for Single Trusted Cloud 6

2 Trustworthy OpenStack 7
2.1 Motivation . 7
2.2 Architecture . 8

3 Trusted Infrastructure Cloud 12
3.1 Motivation . 12
3.2 Architecture . 12
3.3 Conclusion . 15

II TClouds Subsystems 17

4 Remote Attestation Service 18
4.1 Architecture summary . 18
4.2 Update: Integrity Reports Optimization . 19
4.3 Update: Definition of New Analysis Types . 22
4.4 Update: Support for Ubuntu distributions . 24

5 Log Service 26
5.1 New features . 27

5.1.1 Incremental and Asynchronous verification 27
5.1.2 Secure communication . 27
5.1.3 New core library . 28

5.2 Design and implementation . 28
5.2.1 Building blocks . 28
5.2.2 Integration in OpenStack “Folsom” 30

6 Cheap BFT 33
6.1 Introduction . 33
6.2 Background and Related Work . 34

6.2.1 Basics of BFT Systems . 34

TClouds D2.1.5 III

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

6.2.2 CheapBFT . 35
6.2.3 Spinning . 36
6.2.4 Comparison of CheapBFT and Spinning 36

6.3 RotatingCheap . 37
6.3.1 Initialization . 37
6.3.2 Communication . 37

6.4 Evaluation . 40
6.4.1 Throughput . 40
6.4.2 CPU Load . 41
6.4.3 Network Load . 43
6.4.4 Result . 44

6.5 Conclusion . 44

7 Tailored VMs: Key / Value Store 45
7.1 Introduction . 45
7.2 Related Work . 46

7.2.1 Programming languages . 46
7.2.2 Aspects . 47
7.2.3 Operating Systems . 47

7.3 Current Software Stacks . 48
7.4 Security and Reliability . 48

7.4.1 Type Safety . 48
7.5 Tailoring . 49

7.5.1 Cloud provider environments . 49
7.5.2 Application requirements . 50
7.5.3 Implementation strategies . 50

7.6 Towards Software Verification . 51
7.7 System Architecture . 52

7.7.1 Overview . 52
7.7.2 Runtime implementation . 52
7.7.3 Current Prototype Work . 52

7.8 Conclusion . 53

8 S3 Confidentiality Proxy 54
8.1 S3 Proxy Appliance . 54

8.1.1 Overview . 54
8.1.2 Technical implementation . 55

8.2 S3 Proxy functionality within TrustedServer 58
8.2.1 Overview . 58
8.2.2 Technical implementation . 58

Bibliography 58

TClouds D2.1.5 IV

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

List of Figures

1.1 Graphical structure of WP2.1 and relations to other workpackages. 3

2.1 The Trustworthy OpenStack architecture . 10

3.1 Trusted Infrastructure Cloud Architecture . 13
3.2 TrustedServer Layers . 14
3.3 Transparent Encryption of Commodity Cloud Storage 15
3.4 Extending the Trusted Infrastructure to Endpoints 16

4.1 Remote Attestation Service architecture . 19
4.2 Optimization mechanism if the Controller can’t find a report for the node . . . 20
4.3 Optimization mechanism if the Controller already owns a report for the node . 21
4.4 Controller behaviour on analysis request . 24

5.1 LogService high level view . 26
5.2 Logging session verification procedure . 27
5.3 LogSorage example API call . 28
5.4 Log Storage architecture . 29
5.5 Log Core architecture . 29
5.6 LogService integration in OpenStack Folsom 30
5.7 Nova configuration file . 31
5.8 Horizon configuration file . 32

6.1 Three agreement rounds in RotatingCheap, f = 1 39
6.2 Three agreement round for f = 2 . 39
6.3 Comparison of throughput . 41
6.4 Comparison of CPU load . 42
6.5 Comparison of data volume sent . 43

7.1 Software layers of HsMemcached prototype architecture 51

8.1 Principal functionality of the S3 confidentiality proxy 54
8.2 Internal functionality of the S3 Proxy Appliance 55
8.3 Configuration interface of the S3 Proxy Appliance 57
8.4 S3 Confidentiality Proxy within TrustedServer 59

TClouds D2.1.5 V

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

List of Tables

2.1 Mapping of Trustworthy OpenStack Security Extensions to TClouds subsystems 8

5.1 Log Core API . 29
5.2 Configuration flags of the secure_logging group 31
5.3 LOG_CLI_SSL_OPTS dictionary settings 32
5.4 LOG_CORE dictionary settings . 32

7.1 Comparison of Source Lines of Code (SLoC) of different software components 52

TClouds D2.1.5 VI

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Chapter 1

Introduction

1.1 TClouds — Trustworthy Clouds
TClouds aims to develop trustworthy Internet-scale cloud services, providing computing, network,
and storage resources over the Internet. Existing cloud computing services today are generally
not trusted for running critical infrastructures, which may range from business-critical tasks
of large companies to mission-critical tasks for the society as a whole. The latter includes
water, electricity, fuel, and food supply chains. TClouds focuses on power grids and electricity
management and on patient-centric health-care systems as its main applications.

The TClouds project identifies and addresses legal implications and business opportunities of
using infrastructure clouds, assesses security, privacy, and resilience aspects of cloud computing
and contributes to building a regulatory framework enabling resilient and privacy-enhanced cloud
infrastructure.

The main body of work in TClouds defines an architecture and prototype systems for
securing infrastructure clouds, by providing security enhancements that can be deployed on
top of commodity infrastructure clouds (as a cloud-of-clouds) and by assessing the resilience,
privacy, and security extensions of existing clouds.

Furthermore, TClouds provides resilient middleware for adaptive security using a cloud-
of-clouds, which is not dependent on any single cloud provider. This feature of the TClouds
platform will provide tolerance and adaptability to mitigate security incidents and unstable
operating conditions for a range of applications running on a clouds-of-clouds.

1.2 Activity 2 — Trustworthy Internet-scale Computing Plat-
form

Activity 2 carries out research and builds the actual TClouds platform, which delivers trustworthy
resilient cloud computing services. The TClouds platform contains trustworthy cloud components
that operate inside the infrastructure of a cloud provider; this goal is specifically addressed by
WP2.1. The purpose of the components developed for the infrastructure is to achieve higher
security and better resilience than current cloud computing services may provide.

The TClouds platform also links cloud services from multiple providers together, specifically
in WP2.2, in order to realize a comprehensive service that is more resilient and gains higher
security than what can ever be achieved by consuming the service of an individual cloud provider
alone. The approach involves simultaneous access to resources of multiple commodity clouds,
introduction of resilient cloud service mediators that act as added-value cloud providers, and
client-side strategies to construct a resilient service from such a cloud-of-clouds.

WP2.3 introduces the definition of languages and models for the formalization of user- and
application-level security requirements, involves the development of management operations for

TClouds D2.1.5 Page 1 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

security-critical components, such as “trust anchors” based on trusted computing technology
(e.g., TPM hardware), and it exploits automated analysis of deployed cloud infrastructures with
respect to high-level security requirements.

Furthermore, Activity 2 will provide an integrated prototype implementation of the trustwor-
thy cloud architecture that forms the basis for the application scenarios of Activity 3. Formulation
and development of this integrated platform is the subject of WP2.4.

These generic objectives of A2 can be broken down to technical requirements and designs
for trustworthy cloud-computing components (e.g., virtual machines, storage components, net-
work services) and to novel security and resilience mechanisms and protocols, which realize
trustworthy and privacy-aware cloud-of-clouds services. They are described in the deliverables
of WP2.1–WP2.3, and WP2.4 describes the implementation of an integrated platform.

1.3 Workpackage 2.1 — Trustworthy Cloud Infrastructure
The overall objective of WP2.1 is to improve the security, resilience and trustworthiness of
components and the overall architechture of an infrastructure cloud. The workpackage is split
into four tasks.

• Task 2.1.1 (M01-M20) Technical Requirements and Architecture for Privacy-enhanced
Resilient Clouds

• Task 2.1.2 (M07-M36) Adaptive Security by Cloud Management and Control

• Task 2.1.3 (M01-M36) Security-enhanced Cloud Components

• Task 2.1.5 (M18-M36) Proof of Concept Infrastructure

Task 2.1.1 and Task 2.1.5 follow each other with a slight overlapping. In Task 2.1.1 the
requirements analysis took place mainly in the first year and we also identified the gaps and
weaknesses of existing cloud solutions. From there we researched into components and architec-
tures to improve security, resilience and trustworthiness of an infrastructure cloud. In Task 2.1.5
we continue to implement the designs into a prototype system. Tasks 2.1.2 and 2.1.3 identify
sub-topics that are continuously worked on during building prototypes and doing research.

Figure 1.1 illustrates WP2.1 and its relations to other workpackages according to the DoW/An-
nex I.

Requirements were collected from WP1 which guided our requirements and gap analysis.
Also requirements from the application scenarios in WP3.1 and WP3.2 were considered. Task
2.1.2 which is concerned about management aspects of the cloud infrastructure is strongly related
to WP2.3 the overall management workpackage. The prototypes developed in Task 2.1.5 are
input for the overall platform and prototype work of WP2.4 where the necessary interfaces and
integration requirements are feed back to Task 2.1.5. The resulting platform and prototypes are
employed by WP3.1 and WP3.2 for the application scenarios and are validated and evaluated in
WP3.3.

In the first year we did an intensive gap and requirement analysis to identify the major short-
comings of commodity cloud offerings. In the second year we researched into components and
mechanisms to overcome this shortcomings. Finally, in the third year we integrated the technical
insights into our proof-of-concept prototypes and combined them into our TClouds platform.
Besides significant research papers and results the work integrated into two infrastructures,
the Trusted Infrastructure Cloud and the Trustworthy OpenStack. These infrastructures where
evaluated in WP3.3 and are used as the core for the application scenarios.

TClouds D2.1.5 Page 2 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

WP2.1 Trusted Cloud
Infrastructure

WP2.3 Cross-layer
Security and Privacy

Management

WP1.1 Requirements and
Roadmap

WP1.2 Legal
Implications of Cross-

Border Cloud
Implementations

WP2.4 Architecture
and Integrated

Platform

TASK 2.1.2: Adaptive
Security by Cloud

Management and Control

TASK 2.1.3: Security-
enhanced Cloud

Components

TASK 2.1.1: Technical
Requirements and

Architecture for Privacy-
enhanced Resilient

Clouds

TASK 2.1.5: Proof of
Concept Infrastructure

WP3.2 Cloud-
middleware and

Applications for the
Smart Grid

Benchmark Scenario

WP3.1 Cloud
Applications and Data
Structures for Home

Healthcare Benchmark
Scenario

WP3.3 Validation and
Evaluation of the
TClouds Platform

Figure 1.1: Graphical structure of WP2.1 and relations to other workpackages.

1.4 Deliverable 2.1.5 — Final Reports on Requirements, Ar-
chitecture, and Components for Single Trusted Cloud-
sPreliminary Description of Mechanisms and Components
for Single Trusted Clouds

Overview. This deliverable summarizes the technical work of WP 2.1, which are integrated
into two infrastructures, the Trusted Infrastructure Cloud and the Trustworthy OpenStack. The
TrustedInfrastructure Cloud is constructed from ground up with security and trustworthiness
in mind, employing trusted computing technologies as a hardware anchor. With trusted boot
and remote attestation we ensure that only untampered servers with our security kernel are
started and that the sole way of administration is via the trusted channel from the management
component TOM. Hence no administrator with elevated privileges is necessary and hence this
functionality is completely disabled, abandoning the possibility for an administrator to corrupt
the system. On the contrary, Trustworthy OpenStack is based on OpenStack which has a strong
bias towards a scalable and decentralized architecture. We extend or embed new components
into the OpenStack framework to improve its security, these are Access Control as a Service,
Ontology-based Reasoner-Enforce, Remote Attestation Service, Cryptography as a Service, Log
Service, Ressource-efficient BFT, and Simple Key / Value Storage. With these two infrastructures
we can cover the needs of wide range of application scenarios. Trusted Infrastructure Cloud
is especially attractive for private or community clouds with high security demands, while
Trustworthy OpenStack is attractive for large-scale public clouds.

Deviation from Workplan. This deliverable aligns with the DoW/Annex I, Version 4.

TClouds D2.1.5 Page 3 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Target Audience. This deliverable aims at researchers and developers of secure cloud-computing
platforms. The deliverable assumes graduate-level background knowledge in computer science
technology, specifically, in virtual-machine technology, operating system concepts, security
policy and models, basic cryptographic concepts and formal languages.

Relation to Other Deliverables. The workpackages and especially the year 3 deliverables of
Activity 2 are closely related with each other, reflecting the integration efforts of Activity 2.
Roughly speaking WP 2.1 provides resilience, privacy and security to individual infrastructure
clouds (IaaS). WP 2.2 provides resilient middleware offering both infrastructure (IaaS) as well as
platform (PaaS) services, following the cloud-of-cloud paradigm. WP 2.3 deals with the security
management and finally in WP 2.4 all is integrated to the final TClouds platform. So to get the
complete picture, the reader has to consider all deliverables of the different workpackages.

To help the reader to gain a clean view of the Activity 2 outcomes for the third and final year
of the project, we provide here an overall view of the delivered TClouds platform and how to
map it to the actual Activity 2 deliverables (or their parts or chapters) released during the third
year. This view can be understood as the logical outline of all deliverables which is broken down
to the content presented in the different deliverables. The following logical view starts from high
level “big picture” (i.e. the latest concept of the TClouds platform), and moves down towards
an in-depth and more concrete level, covering research and technical details of the integration
of subsystems, updated research and technical details of single subsystems, and the actually
delivered software with instructions for installation and configuration.

(Part 1) TClouds platform v2.x: definition of platform, comparison with Amazon AWS ecosys-
tem, big picture of TClouds ecosystem and summary presentation tailored platform in-
stantiations into two Activity 3 benchmark scenarios (for further details on the benchmark
scenarios, see respectively D3.1.5 [D+13] and D3.2.4 [VS13]-D3.2.5 [Per13])

• D2.4.3 [R+13], Chapter 2

(Part 2) Integrated prototypes: research/technical details of the integration of subsystems to
form IaaS alternatives – Trustworthy OpenStack and TrustedInfractructure Cloud – and
PaaS modules/services – C2FS and Relational DB

• D2.1.5 (this document), Part I

• D2.2.4 [B+13a], Chapters 6 and 7

• D2.3.4 [B+13b], Chapters 3 and 5

(Part 3) Subsystems: research/technical details of single subsystems – only updates from pre-
vious deliverables

• D2.1.5 (this document), Part II

• D2.2.4 [B+13a], Chapters 2, 3, 4 and 5

• D2.3.4 [B+13b], Chapters 2, 4 and 6

(Part 4) Testing of prototypes and subsystems: test plans and results

• D2.4.3 [B+13b], Part II

(Part 5) Software details: instructions for installation, configuration and usage of prototypes
(integrated subsystems)

TClouds D2.1.5 Page 4 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

• D2.1.4-D2.3.3 [BS+13]

• D2.4.3 [R+13], Appendix A

(Part 6) Software delivery: source code and/or binary code of prototypes and subsystems

• TClouds platform v2.0 (only subsystems for single cloud): D2.1.4-D2.3.3 [BS+13],
companion tarball(s)

• TClouds platform v2.1 (complete): D2.4.3 [R+13], companion tarball(s)

Structure. Following this logical structure of the Activity 2 deliverables explained above
this deliverable has two parts. In Part I we give a high-level view of the two infrastructures,
Trustworthy OpenStack in chapter 2 and Trusted Infrastructure Cloud chapter 3. Part II describes
on a more detailed technical level refinements or further developments and evaluations on
individual sub-systems: In chapter 4 for the Remote Attestation Service, in chapter 5 for the Log
Service, in chapter 6 for CheapBFT, in chapter 7 for the Key / Value Storage (memcached) and
finally in chapter 8 for the confidentiality proxy for commodity cloud storage.

TClouds D2.1.5 Page 5 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Part I

TClouds Prototypes for Single Trusted
Cloud

TClouds D2.1.5 Page 6 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Chapter 2

Trustworthy OpenStack

Chapter Authors:
Gianluca Ramunno, Roberto Sassu, Paolo Smiraglia (POL)
Sören Bleikertz, Zoltan Nagy (IBM)
Imad M. Abbadi, Anbang Ruad (OXFD)
Norbert Schirmer (SRX)
Johannes Behl, Klaus Stengel (TUBS)
Sven Bugiel, Hugo Hideler, Stefan Nürnberger (TUDA)

This chapter summarizes the high level objectives and the architecture of the Trustworthy
OpenStack (cf. D2.4.2 [S+12a] Section 3.1). It is a consolidated version of the documentation
presented in other, mostly previous deliverables, revised with the necessary updates reflecting
the work of the last period of the TClouds project.

2.1 Motivation
One of the approaches of Workpackage 2.1 was to focus on existing software for cloud infrastruc-
ture, originally designed for high scalability, and to improve its overall security. Through proper
security extensions (Cloud Nodes Verification/Remote Attestation, Advanced VM Scheduling,
VM Images Transparent Decryption, Secure Logging, Tenant Isolation, VM Security Assessment
and Log Resiliency) the security of chosen software, OpenStack, has been enhanced in various
dimensions:

Trust / Integrity:

• The Cloud Nodes Verification/Remote Attestation extension enables users to trust
that their virtual machines are actually deployed on computing nodes that satisfy their
integrity requirements. Based on Trusted Computing technologies, e.g., a Trusted
Platform Module, this extension verifies the configuration of the computing nodes
and provides them for example to the cloud scheduler.

• The Advanced VM Scheduling extension matches user requirements (e.g., location
restrictions or white lists of measurements for deploying a VM) with physical proper-
ties of computing nodes. The Cloud Nodes Verification/Remote Attestation extension
on the computing nodes is employed by the scheduler to query the computing nodes
in a trustworthy way.

Confidentiality: the VM Images Transparent Decryption extension provides disk encryption for
volumes attached to virtual machines, as well as encryption of the VM images themselves.

TClouds D2.1.5 Page 7 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

These subsystems offer an API to cloud users to securely provide the encryption keys
without giving the cloud provider access to them. This is an important improvement over
current encryption schemes where the keys are under control of the cloud provider.

Audit: The Secure Logging extension allows to store logs of computing nodes selected by the
Cloud Scheduler for VM deployment. It ensures confidentiality and integrity of the logs.

Isolation: the Tenant Isolation and VM Security Assessment extensions provide the isolation of
the networks of each tenant through the proper network configuration (creation of Trusted
Virtual Domains) and the validation of the resulting settings.

Resilience: The Log Resiliency extension provides fault tolerance to the Secure Logging. With
special FPGA hardware, this solution can tolerate byzantine (i.e. arbitrary) failure modes
of a certain amount of computing nodes. While traditional solutions require 3f+1 replicas
to tolerate f faults (i.e. 4 machines for 1 fault), Log Resiliency achieves the same with just
f + 1 active replicas backed up by f passive ones.

The software resulting from adding the Security Extensions to OpenStack is a key result
of TClouds: called Trustworthy OpenStack (TOS), is one of the two alternatives offered by
the TClouds Platform (see D2.4.3 [R+13], Chapter 2) at IaaS layer. The other one is Trusted
infrastructure Cloud that is described in Chapter 3.

2.2 Architecture

Figure 2.1 illustrates the Trustworthy OpenStack architecture showing how the mentioned
security extensions are implemented through the integration of a set of TClouds subsystems.
Table 2.1 reports the correspondence between Trustworthy OpenStack Security Extensions and
TClouds subsystems implementing them.

TOS Security Extension TClouds subsystem
Cloud Nodes Verification/Remote Attestation Remote Attestation Service
Advanced VM Scheduling Access Control as a Service (ACaaS)
VM Images Transparent Decryption Cryptography as a Service (CaaS)
Secure Logging LogService (*)
Tenant Isolation Ontology-based Reasoner/Enforcer
VM Security Assessment Security Assurance of Virtualized Environ-

ments (SAVE)
Log Resiliency Resource-efficient BFT (CheapBFT) (**)

(*) LogService is a subsystem actually belonging to Trustworthy OpenStack (i.e. at the IaaS layer) but it
can also act as a service at PaaS layer for generic cloud applications.
(**) CheapBFT is not a subsystem actually belonging to Trustworthy OpenStack as it is a middleware (at
PaaS layer) that can be used by generic applications.

Table 2.1: Mapping of Trustworthy OpenStack Security Extensions to TClouds subsystems

Note that the security improvements are conceived by the synergy of the careful selection
and integration of TCloud subsystems, e.g.:

TClouds D2.1.5 Page 8 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

• The Remote Attestation Service and ACaaS together ensure that the selection of computing
nodes matches the users requirements. Together with the LogService the scheduling
decisions are securely stored for audit.

• The combination of CaaS with the ACaaS and Remote Attestation ensures that encrypted
images will only be deployed on computing nodes that properly secure the encryption
keys.

• The combined use of the Ontology-based Reasoner/Enforcer and Security Assurance of
Virtualized Environments guarantee the isolation of the networks of the tenants via creation
of Trusted Virtual Domains and validation of the network configuration being set.

• The integration of the Log Service with CheapBFT provides a fault tolerant implementation
of the LogService within the cloud infrastructure.

In the following paragraphs a quick description of the subsystems will be given.

Remote Attestation Service is the subsystem responsible to assess the integrity of the nodes
in the cloud infrastructure through techniques based on the Trusted Computing technology.

This service gives significant advantages in the cloud environment. First, it allows cloud users
to deploy their virtual machines on a physical host that satisfies the desired security requirements
– represented by five integrity levels. Requiring a higher level will give more confidence and trust
into the used physical hosts. The highest integrity level means that a host is running only known
software, i.e. a Linux distribution, and that all distribution packages are up-to-date.

Secondly, this service allows cloud administrators to monitor the status of the nodes in
an efficient way and to take appropriate countermeasures once a compromised host has been
detected. For instance, the administrators can isolate the host such that it can not attack other
nodes of the infrastructure.

Further details can be found in Chapter 4.

Access Control as a Service (ACaaS) is a subsystem ensuring that user VMs are only executed
on hosts matching their security requirements. Each node in the cloud infrastructure can be
assigned a set of security properties expressed as pairs (key, value). When a user (i.e. a cloud
tenant) specifies node requirements for the VM being started as pairs (key, value), the scheduler
verifies the security properties of each node and selects for deployments only those matching the
requested requirements for the VM.

ACaaS also provides an advanced scheduling criterion that allows to specify that a VM must
not run on the same host where the VMs of specified users are currently running. This can
guarantee a stronger isolation for a customer that could be offered by the cloud owner under a
different Service Level Agreement. Further, the expected states of a host can be also defined as a
scheduling criterion. Users can request ACaaS to deploy their VMs only on hosts with specific
platform configurations (i.e. trusted properties): this is specified through a white list containing
the digests of all files (binaries and configuration) that must be present on a target node. Also
this capability is built on Trusted Computing and complements the scheduling of the VMs based
on the integrity levels provided by the Remote Attestation Service.

Further details can be found in D2.4.2 [S+12a], Section 3.1.2.2.

TClouds D2.1.5 Page 9 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

C
lo

u
d

 In
te

rfa
c
e

CheapBFT Node 1

Log Storage
Replica

CASH

Log
Console

Cloud Node 3 (CaaS)

OpenStack
Nova

Dom0

Compute

D
o
m

C

D
o
m

T

Cloud Node 1

OS + KVM HV

OpenStack Nova

Virtual
Machine

Compute

HardwareTPM

OpenStack

ACaaSScheduler

Log Service
Module

Cloud Controller

LogService

Xen HypervisorAccess Control

HardwareTPM

Cloud Node 2

Xen HV + OS

OpenStack Nova

Virtual
Machine

Compute

HardwareTPM

CheapBFT Node 2

Log Storage
Replica

CASH

CheapBFT Node 3

Log Storage
Replica

CASH

Secure Logging

Advanced VM
Scheduling

Cloud Nodes
Verification

Log Resiliency

Remote Attestation/Tenant Isolation/VM Security Assessment

ACaaS

Remote
Attestation

Service

VM Images
Transparent
Decryption

Security
Extensions
Management

Trustworthy OpenStack

D
o
m

U

SAVE

TVD
Enforcer

Tenant
Isolation

VM Security
Assessment

Figure 2.1: The Trustworthy OpenStack architecture

TClouds D2.1.5 Page 10 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Cryptography-as-a-Service (CaaS) enables a VM to use an encrypted storage device trans-
parently as if it were plaintext. On top of this capability CaaS provides the ability to bootstrap
the VM from encrypted devices while still preserving confidentiality and integrity against the
privileged administrator access and hence the cloud personnel and other customers. CaaS builds
on Trusted Computing and uses the Trusted Platform Module to protect the customer encryption
key for the VM image.

Further details can be found in D2.1.2 [S+12b], Chapter 3.

LogService is the subsystem that manages secure logging events in the TClouds cloud infras-
tructure. It provides confidentiality and integrity of each log entry and the forward integrity
property, i.e. the capability to detect if log entries within a logging session have been deleted
or reordered. Depending on the configuration, LogService can record all events produced by
the components of Trustworthy Openstack, i.e. it operates at the IaaS layer, but it can also serve
applications, thus operating at the PaaS layer. An auditor, internal or external, can always verify
if a logging session has been tampered with, and if not, can decrypt the log entries and access to
the log data.

Further details can be found in Chapter 5.

Resource-efficient BFT (CheapBFT) is a subsystem that implements the state machine repli-
cation scheme for Byzantine Fault Tolerance (BFT). This scheme normally entails very high
resource consumption because 3f + 1 actively operating replicas are required to tolerate f
faults. CheapBFT, instead, is more efficient because, using a trusted device (a specialized FPGA
module) and combining active and passive replicas, the number of actively involved replicas
is lower: f + 1 in normal and error-free operations and 2f + 1 under error condition. This
subsystem stands at the PaaS layer of the TClouds Platform but it is also used in Trustworthy
OpenStack (i.e. at IaaS layer) (see D2.4.3 [R+13], Chapter 2) to provide the LogService with
resiliency. The LogService alone, in fact, is able to detect the corruption of log sessions but
it cannot prevent it, i.e. it cannot guarantee availability of correct log data. This capability is,
instead, provided by CheapBFT and the number (f) of faults tolerated depends on the chosen
number of replicas (2f + 1).

Further details can be found in Chapter 6.

Ontology-based Reasoner/Enforcer (Enforcer) is a subsystem that enhances the capability
provided by the standard OpenStack network management component (called Quantum) of
isolating the tenants’ virtual networks. The Enforcer builds on an enhancement of Libvirt that
allows to define and configure a Trusted Virtual Domain (TVD): this is an aggregation of virtual
machines that share a virtual network (at OSI level 2), which is isolated from similar networks of
the other TVDs.

Further details can be found in D2.3.4 [B+13b] Chapter 6.

Security Assurance of Virtualized Environments (SAVE) is a subsystem developed for ex-
tracting configuration data from multiple virtualization environments to analyze their security
properties. In particular SAVE support the specification of security policy that the cloud con-
figuration must satisfy. It can be used with ACaaS to validate the correct deployment of the
VMs according to the security properties requested by the customer. It can also be used with the
Enforcer ACaaS to validate the isolation of the cloud customers.

Further details can be found in D2.3.4 [B+13b] Chapter 2.

TClouds D2.1.5 Page 11 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Chapter 3

Trusted Infrastructure Cloud

Chapter Authors:Norbert Schirmer (SRX)

This chapter summarizes the high level objectives and the architecture of the Trusted In-
frastructure Cloud (cf. D2.1.1 Chapter 12). It is a consolidated version of the documentation
presented in other, mostly previous deliverables, revised with the necessary updates reflecting
the work of the last period of the TClouds project.

3.1 Motivation

Cloud computing promises on-demand provisioning of scalable IT resources, delivered via
standard interfaces over the Internet. Hosting resources in the cloud results into a shared
responsibility between cloud provider and customer. In particular the responsibility for all
security aspects is now shared. As the cloud provider hosts the customers resources and data,
insiders like cloud administrators can access unprotected data of the customers. Moreover, as
all cloud customers use the same resources, the infrastructure is shared among multiple tenants,
which may be competitors. Hence proper isolation of cloud customers becomes of crucial
importance for the acceptance of cloud offerings. With the Trusted Infrastructure Cloud we
tackle these challenges by the following key properties:

• Trust in remote resources is established by building on top of Trusted Computing tech-
nologies, providing verifiable integrity of the remote components.

• Protection against insider attacks is achieved, as the administration is completely con-
trolled by the infrastructure itself. All data is encrypted and there are no administrators
with elevated privileges.

• With Trusted Virtual Domains (TVD) we provide trustworthy isolation of virtual computing,
storage and networking resources as well as pervasive information flow control. TVDs are
employed for isolation of tenants and for separation of security domains of a single tenant.

3.2 Architecture

In the Trusted Infrastructure Cloud a central management component, called TrustedObjects
Manager (TOM), manages a set of TrustedServers (TS) which run a security kernel, which runs
the virtual machines (VM) of the users. A virtual machine consists of the operating system (OS)
and applications (App). This is depicted in Figure 3.1.

TClouds D2.1.5 Page 12 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

VPN Connection
Trusted Management Channel

Tenant A
Tenant B

TrustedObjects Manager

TrustedServer

OS

App

OS

App

TrustedServer

OS

App

OS

App

Security Kernel

Virtualization and Isolation

Policy Enforcement

Security Kernel

Virtualization and Isolation

Policy Enforcement

OS

App

OS

App

Fillings indicate TVDs

Figure 3.1: Trusted Infrastructure Cloud Architecture

Hardware security Anchor and Trusted Boot of Security Kernel The TrustedServer as
well as the TOM, are equipped with a hardware security module (HSM) or Trusted Platform
Module (TPM) [tcg]. When started, the HSM is employed for trusted boot, ensuring the integrity
of the software (in particular of the security kernel). Moreover, the hard drives are encrypted by
a key that is stored within the HSM. Via this sealing, the local hard drives can only be decrypted
in case the HSM has crosschecked the integrity of the component. Hence only an untampered
security kernel can be booted and can access the decrypted data. Once the security kernel is
booted it enforces the security policy and the isolation.

Trusted Management The TOM is in charge to deploy configuration data (including key
material and security policies) and VMs on the TrustedServers (cf. D2.3.1 Chapter 6). Security
services within the security kernel of the TrustedServer handle the configuration and ensure that
the security policies are properly enforced. Encrypted communication of TOM and TrustedServer
is via the Trusted Management Channel (TMC) which ensures the integrity using the remote
attestation feature of the HSM before transmitting any data. This ensures that the TOM will
only transmit data to untampered TrustedServers. Moreover, the TrustedServers are bound to a
distinct TOM during their deployment (cf. D2.1.2 Chapter 6), such that a TrustedServer only
accepts this TOM as a management component. All administrative tasks on the TrusedServer
are performed via the TMC, there is no other management channel for an administrator (like an
ssh-shell with elevated privileges).

Trusted Server In Figure 3.2 the architecture of a TrustedServer is presented in more details.
The security kernel comprises the isolation kernel and the hypervisor to provide isolation
between virtual machines and a set of security services managing file encryption, TVDs, VPN,
the confidentiality proxy for cloud storage (S3 Proxy) , remote attestation and the TMC. All

TClouds D2.1.5 Page 13 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Hardware

OS OS

Virtualiza)on	 Virtualiza)on	
	

Hypervisor	 /	 Isola)on	 Kernel	

Security	 Services	

App	 App	 App	 App	

HSM

File
Encryption VPN Trusted Management

Channel Attestation TVD
Management

 S
ecurity K

ernel
Isolation

TClouds	 	 No.	 257243	
Trustworthy	 Clouds	 	 -‐	
	 Privacy	 and	 Resilience	 for	 Internet-‐scale	 Critical	 Infrastructure	

	
06.09.13	

	
1	

S3 Proxy

Figure 3.2: TrustedServer Layers

these services are part of the security kernel and belong to the trusted computing base of the
TrustedServer. These are the components that are measured by the HSM during the trusted boot.
Only if all of them are untampered, the server will boot up. In contrast, everything happening
inside the VMs (OS and Apps) does not belong to the Trusted Computing Base. This means
that a misbehaving (or infected) VM has no negative impact on the security guarantees of the
TrustedServer. For example, the isolation properties of TVDs are not depending on the VM but
only on the security kernel.

Trusted Virtual Domains Trusted Virtual Domains (TVD) [CLM+10] allow to deploy iso-
lated virtual infrastructures upon shared physical computing and networking resources. By
default, different TVDs are isolated from each other. Communication is restricted to virtual
machines within the same TVD and data at rest is encrypted by a TVD specific key. Remote
communication between components of the same TVD over an untrusted network are secured via
virtual private network (VPN). Only virtual machines of the same TVD, which have access to the
same TVD key, are able to communicate and decrypt data. A TrustedServer can simultaneously
run various VMs attached to different TVDs. Figure 3.1 illustrates that each tenant runs his
own set of TVDs (indicated by the fillings of the VMs), ensuring isolation of tenants. A single
tenant (cf. Tenant A) can also run distinct TVDs (indicated by the fillings of the VMs), to isolate
domains within his organisation, e.g. to isolate the ‘human ressources’ department from ‘product
devolopment’ department.

Cloud Storage Encryption The TrustedServer also supports the transparent encryption of
commodity cloud storage like Amazon S3 (cf. chapter 8) which is hosted in another cloud,
outside of the VM and the Trusted Infrastructure Cloud. From within a VM the plaintext data
is accessible via the ordinary file system. Not the VM but the security kernel takes care of

TClouds D2.1.5 Page 14 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Access of Cloud Storage
Trusted Management Channel

L

TrustedObjects Manager

TrustedServer

OS

App

OS

App

Security Kernel

Virtualization and Isolation

Policy Enforcement

OS

App

Fillings indicate TVDs

Commoditiy
Sotrage Cloud (e.g.

Amazon S3)

Data

Data

Data

Figure 3.3: Transparent Encryption of Commodity Cloud Storage

the TVD specific encryption of the data before it moves it to the commodity cloud storage (cf.
Figure 3.3). That way we can securely extend the boundaries of the TVDs to commodity cloud
storage services.

Beyond the Cloud: Trusted Endpoints The concept of TVDs within the Trusted Infrastruc-
ture Cloud allows the trustworthy isolation of domains within the cloud infrastructure. This
means that information flow is confined within the TVD. To securely access the TVDS from
outside the cloud this concept can also be extended to the endpoints, e.g. desktop / laptop
computers of the user to obtain complete end-to-end security. This is depicted in Figure 3.4 on
the example of a TrustedDesktop. We laverage this scenario in our demonstration of the smart
lighting scenario. While updates of the sensitive data in the cloud can only be made from within
the TVD from a TrustedDesktop, reading the data is open for public access. To also support
mobile devices as trusted endpoints for TVDs was TClouds research that was described in D2.1.2
Chapter 5.

3.3 Conclusion

The Trusted Infrastructure Cloud is constructed from ground up with security and trustworthiness
in mind, employing trusted computing technologies as a hardware anchor. With trusted boot
and remote attestation we ensure that only untampered servers with our security kernel are
started and that the sole way of administration is via the trusted channel from the management
component TOM. Hence no administrator with elevated privileges is necessary and hence this
functionality is completely disabled, abandoning the possibility for an administrator to corrupt
the system. The costs of the security measures of the Trusted Infrastructure Cloud can be

TClouds D2.1.5 Page 15 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Trusted Cloud ProviderInternal Infrastructure

Secure Channel

Trusted Management Channel

Organization A

Organization B

Organization C

TrustedObjecct Manager

TrustedServer

OS

App

OS

App

TrustedServer

OS

App

OS

App

Security Kernel

Virtualization and Isolation

Policy Enforcement

Security Kernel

Virtualization and Isolation

Policy Enforcement

TrustedDesktop

Security Kernel

TVD 1 TVD 2

Policy Enforcement

Virtualization and Isolation

Trusted GUI

OS

App

OS

App

OS

App

OS

App

OS

App

TVD 2TVD 1

Figure 3.4: Extending the Trusted Infrastructure to Endpoints

measured in two dimensions: the cost of additional hardware (e.g. Trusted Computing) and the
cost of ressources, like performance or bandwidth overhead. The Trusted Infrastructure Cloud
is designed to work with "custom of the shelf hardware". The hardware components like TPM
or native cryptographic support of the CPU (e.g. Intel AES NI) are nowadays standard. For
example, a TPM chip accounts to only 1-2% of the hardware costs.

Regarding the ressource costs we have additional efforts for trusted boot / remote attestation
and the encryption (VPN and files). The costs for trusted boot and remote attestation are
negligible, as these only account during bootup of the TrustedServer, which is a rare event as a
server is supposed to have a long uptime. During the operation of the server there is no additional
cost. Both the network encryption (VPN) as well as the disk encryption leverage the native
cryptographic support of the processor [int10] which minimizes the performance overhead. The
bandwidth overhead of the VPN which is based on IPSEC is about 10%. Altogether this cost
figures illustrate that the security benefits of the Trusted Infrastructure Cloud come with only
low additional costs.

TClouds D2.1.5 Page 16 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Part II

TClouds Subsystems

TClouds D2.1.5 Page 17 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Chapter 4

Remote Attestation Service

Chapter Authors: Roberto Sassu, Nicola Barresi, Gianluca Ramunno (POL)

During the second year of the project POL developed a new subsystem, the Remote Attestation
Service that has been delivered at the end of that year. A quick overview on such service will
be given in Section 4.1. The service has been updated during the third year with the following
enhancements: generation of smaller integrity reports (see Section 4.2), possibility to define new
analysis types (see Section 4.3) and support for Ubuntu distributions (see Section 4.4).

4.1 Architecture summary

From Section 3.1.2.1 of deliverable D2.4.2 [S+12a] we recall here a summary of the architecture
of the first version of the Remote Attestation Service delivered at the end of the second year.

The Remote Attestation Service (RA Service) is a cloud subsystem responsible to assess the
integrity of the nodes in the cloud infrastructure through techniques introduced by the Trusted
Computing technology.

This service gives significant advantages in the cloud environment. First, it allows cloud users
to deploy their virtual machines in a physical host that satisfies the desired security requirements,
represented by five integrity levels. Requiring a higher level will give more confidence and trust
into the used physical hosts.

Second, this service allows cloud administrators to monitor the status of the nodes in an
efficient way and to take appropriate countermeasures once a compromised host has been
detected. For instance, the administrators can isolate the host such that it can not attack other
nodes of the infrastructure.

A high-level architecture of RA Service is depicted in Figure 4.1 and it consists of two main
components (OpenAttestation and RA Verifier), interacting with the OpenStack modules. The
OpenStack Nova Scheduler takes users’ requirements as input and selects the proper host where
to deploy a virtual machine depending on the platforms evaluation done by the RA Service.

OpenAttestation. This framework, developed by Intel, enables the OpenStack Nova Scheduler
to retrieve and verify the integrity of cloud nodes such that the former can select a host that
meets the users requirements. The framework handles the remote attestation protocol through
two submodules that act as the endpoints: HostAgent collects the measurements done by the
attesting platform, generates and sends the integrity report to the verifier; Attestation HTTPS
Server (implemented by three main Java components: HisWebService, HisAppraiser and Attes-
tationService) verifies the integrity report received from a cloud node and assigns to the latter
an integrity level. OpenAttestation has been enhanced by POL to support the reporting of the

TClouds D2.1.5 Page 18 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Attestation
HTTPS
Server

OpenStack
Nova

Controller

Scheduler

Cloud
Node

Operating System (IMA) Operating System

OpenStack
Nova HostAgent

Virtual
Machine

Compute

HardwareTPM Hardware

OpenAttestation

RA Verifier

Figure 4.1: Remote Attestation Service architecture

measurements taken by Integrity Measurement Architecture (IMA), a subsystem of the Linux
Kernel running on cloud nodes.

RA Verifier. This component analyses the measurements performed by IMA. In particular, it
verifies whether the digest of binary executables and shared libraries are present in a database
of known values and whether the packages these files belong to are up to date. The first check
allows to detect possibly malicious software that may have been executed before verification,
while the second check allows to identify loaded applications with known vulnerabilities that may
be exploited by an attacker. Details of the RA Verifier can be found in Chapter 4 of deliverable
D2.1.2 [S+12b].

In TClouds the RA Service is integrated with OpenStack through the TrustedFilter scheduler
filter, introduced by Intel developers in Folsom and modified by POL to support the newly
defined integrity levels: this is a portion of the Trustworthy OpenStack prototype v1 delivered at
the end of the second year. However the RA Service is independent from OpenStack, therefore it
can be used with other cloud frameworks.

4.2 Update: Integrity Reports Optimization

This optimization mitigates the scalability issue that may arise in large cloud deployments
due to the significant size of integrity reports sent by Cloud Nodes to the Controller node
(reported respectively with CN and CT abbreviations in the sequence diagrams). Indeed, the
OpenAttestation component with POL customizations developed during the second year generates
integrity reports of about 140 KB while the original version produced reports of 4 KB.

The reason for this increased size is the inclusion in the reports of the IMA measurements
that allow to have a more comprehensive information of the integrity status of Cloud Nodes.
However, sending large reports to the verifier will cause the saturation of the resources available
at the Controller node (that performs the report verification). In particular, this issue affects the
storage, as the integrity reports are saved in a database, and the network because the Controller
periodically receives data from thousands of nodes.

In the version 2.x of the Trustworthy OpenStack prototype, we modified OpenAttestation in a
way that Cloud Nodes include in an integrity report only the IMA measurements that were not

TClouds D2.1.5 Page 19 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

previously sent to the verifier. It is task of the latter to reconstruct the whole report from the
partial ones before it determines, together with RA Verifier, the integrity of the sender.

HostAgent[CN] HisWebService[CT] HisAppraiser[CT] AttestationService[CT] User

pollHost()

nextAction =
SEND_REPORT

getNextAction()

SEND_REPORT

DB synchronizationDB synchronization

Wait for results
Write all IMA
measurements

on report

sendIntegrityReport()
submitReport()

next_meas =
(valid meas.) ?

n : -1

Do analysis and
write results on DB

trust_lvl

Figure 4.2: Optimization mechanism if the Controller can’t find a report for the node

As in the version 1.0 of the Trustworthy OpenStack prototype, the remote attestation protocol
is initiated by the OpenStack scheduler that, after extracting users’ integrity requirements from
VM specifications, tries to find a suitable Cloud Nodes to start requested VMs. In the version 2.x,
POL introduced an optimization mechanism that allows the reconstruction of the whole report
by the Controller from partial ones. This mechanism depends on whether the target Cloud Node
previously sent an integrity report or not. The two possible cases are described below through
sequence diagrams, where actors are: HostAgent, running on a Cloud Node; Attestation HTTPS
Server, running on the Controller node (split into its main three Java classes: HisWebService,
HisAppraiser and AttestationService); User (the OpenStack scheduler), acting in the Controller
node.

Case 1: no previous reports received. If the target Cloud Node did not send any report at the
time of an attestation request (see Figure 4.2), the Controller sets nextAction (a value in
the database that indicates the next action that should be performed by a HostAgent) equal to
SEND_REPORT to ask the Cloud Node to include in the report all the measurements produced
by IMA. In this case, since the required information is present in the report sent by the Cloud

TClouds D2.1.5 Page 20 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

HostAgent[CN] HisWebServ.[CT] HisAppraiser[CT] AttestationServ.[CT] User

pollHost()

Read n from DB

nextAction =
REPORT_START (n)

getNextAction()
REPORT_START (n)

DB synchronizationDB synchronization

Wait for resultsRead start_n from config file

cur_n = (n == start_n) ? n : 0

Skip cur_n IMA meas.
Read remaining meas.

sendIntegrityReport()
submitReport() Read prev_meas

from DB

next_meas =
(valid meas.) ?

prev_meas + n : -1

Do analysis and
write results on DB

trust_lvl

Figure 4.3: Optimization mechanism if the Controller already owns a report for the node

Node, the Controller can launch the analyses requested by the User without doing additional
work.

Case 2: reports available. If the target Cloud Node already sent one or more integrity reports,
the Controller node can rely on them for subsequent validations and will request to report only
the new measurements. In this case, the Controller (see Figure 4.3) sets nextAction to
REPORT_START and the next measurement (in the IMA measurements list) that it expects to
receive.

The Cloud Node verifies whether the number of the first measurement requested by the
Controller (n) matches the number of measurements it actually sent (start_n). If so, the
sender skips n measurements and fills the report with the remaining measurements; on the other
side, the Controller will reconstruct the whole report from the partial ones before verifying all

TClouds D2.1.5 Page 21 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

IMA measurements.
If the Controller’s request does not match sender’s expectations, some parts of the whole

report may have been lost. In this case the Cloud Node sends the entire list of measurements
produced by IMA, so that the Controller will be able to complete the integrity verification.

In any case, the TPM_Quote() operation covers all measurements: in fact the TPM
signature is performed as usual, i.e. it covers all PCRs, and among them PCR#10, where all
IMA measurements are accumulated.

As a result of this work, we experienced that, while the first integrity report sent by a Cloud
Node is large, the subsequent ones are comparable in size to those generated by the original
unmodified version of OpenAttestation. Thus, the new version of the Remote Attestation Service
offers now the same features of the previous one while requiring lower resources to perform its
tasks.

4.3 Update: Definition of New Analysis Types
The main goal of OpenAttestation developers is to provide a generic SDK for the remote
attestation which vendors of cloud software stacks can extend and integrate into their products.
However, even if it is extensible, OpenAttestation offers limited functionalities, i.e. it only
performs a very basic integrity verification: it checks the presence of TPM register (PCR) values,
collected from the attesting platform in a white list, and compares the current report with the
previous one to find what PCRs have been changed since the last verification.

POL enhanced OpenAttestation to include and verify IMA measurements with the RA Verifier
tool. The latter assigns to each host an integrity level among five depending on whether the
digest of software executed on a Cloud Node is in a database of known values and the related
packages are up to date or not.

While the RA Service is strongly tied to RA Verifier to determine the integrity status of a plat-
form, it would be useful to allow users define their own analysis types in OpenAttestation, so that
an integrity report can be evaluated from different perspectives. For example, a different analysis
method could be used to verify whether software executed belongs to a trusted configuration,
meaning that digests of binaries and libraries are part of a set of packages known to be secure
(i.e. they were not affected by serious vulnerabilities in the past).

In this context, during the third year of the project POL further enhanced OpenAttestation
to define and perform user-defined analyses on integrity reports generated by Cloud Nodes.
This feature has been made available by defining a new API command analysisTypes and
modifying the parameters of PollHosts, the command to request a remote attestation for the
specified hosts. Both commands can be called through a RESTful interfaces exposed respectively
by the HisAppraiser and AttestationService modules of the Controller.

{
"analysisTypes": [{

"deleted": "false",
"inputParameters": "[1-4],>|>=",
"maxOutputSize": "10",
"module": "IMA",
"name": "IMA_LEVEL",
"outputParameters": "[tT]rue|[fF]alse",
"URL": "python /usr/bin/ra_verifier.py -t openattestation",
"version": "1"
}]

}

Listing 4.1: Sample response to GET method on analysisTypes

TClouds D2.1.5 Page 22 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

The Listing 4.1 shows a sample response to the GET method executed on the newly introduced
analysisTypes command. Among others, the most important fields are: inputParameters
and outputParameters contain a regular expression for the input passed to the analysis
software and for the output returned by the latter; module and version define respectively
name and version of the analysis software; name contains a type of analysis among those
supported by the analysis software; URL contains path name and parameters of the program to
be executed for the defined analysis type. Since some parameters (e.g. the analysis to perform)
cannot be included in the URL, as they vary depending on users’ input, OpenAttestation passes
the required information through three environment variables set just before the execution of the
verification script. The first two environment variables are:

ANALYSIS: types of analyses to be performed by the verification script and associated parame-
ters;

IMA: absolute pathname of the file with IMA measurements extracted from the integrity report.

while the third one, OS, is explained in Section 4.4.
{

"hosts": [
"node-109",

],
"analysisType": "IMA_LEVEL,1,>="

}

{
"hosts": [

{
"URL": "http://node-108/OAT/report.php?id=23",
"details": [

{
"analysis_name": "IMA_LEVEL,1,>=",
"result": "true"
}

],
"host_name": "node-109",
"trust_lvl": "trusted",
"vtime": "2013-02-20T20:01:14.067+01:00"
}

]
}

Listing 4.2: Sample request and response to POST on PollHosts

The Listing 4.2 illustrates a sample request and response to the POST method executed on
the command PollHosts. Such request, made for the host node-109, tells OpenAttestation
to perform the analysis IMA_LEVEL, supported by RA Verifier. The input parameters 1 and >=
after the analysis name mean that the result of the verification will be positive only if the integrity
level determined for the node-109 host is greater or equal to 1 (the complete level identifier
is l1_ima_digest_notfound). From the response, it is possible to see in the details
field that the result of the analysis was positive.

Figure 4.4 details the steps (performed by the HisAppraiser module of the Controller node)
corresponding to the action Do analysis and write results on DB represented in the sequence
diagrams of Figures 4.2 and 4.3; these steps depend on some previously executed actions also
represented in those diagrams. During the execution of the function submitReport called by
HisWebService, before executing the action Do analysis and write results on DB, HisAppraiser
verifies the integrity of IMA measurements from the sender, eventually reconstructing the

TClouds D2.1.5 Page 23 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

HisAppraiser Analysis Tool

Verify measurements in report

Parse analysis input

Write meas. on temp file

Set OS
Set IMA

Set ANALYSIS

Do analysis
Analysis result

Parse analysis output

Figure 4.4: Controller behaviour on analysis request

whole report as described in Section 4.2. Then HisAppraiser uses the data associated to the
analysisType previously specified by User when calling the command PollHosts: see
the sample request in Listing 4.1 where the analysis type to be performed is IMA_LEVEL
>=1. HisAppraiser first parses the analysis input by using the regular expression defined with
inputParameters and sets the three environment variables mentioned above. Secondly, the
Controller calls the analysis tool from URL and parses its output by using the regular expression
defined with outputParameters.

4.4 Update: Support for Ubuntu distributions
The Remote Attestation Service has been enhanced to support Ubuntu distributions, in addition
to Fedora distributions. This new feature is required as the TClouds Trustworthy OpenStack
prototype is built on top of the Ubuntu 12.04 LTS distribution.

We performed the following modifications with respect to the version released last year:

Creation of new Cassandra DB comparator: we provide a new library for the Cassandra
database to sort versions of packages from the oldest to the most recent. This library comes
from the source code of the dpkg tool, which is used by the Ubuntu package manager
(APT) to determine when a package must be updated. The library has been implemented by
wrapping existing functions from dpkg with the function filevercmp_deb(), which
is called by Cassandra to perform the ordering.

Database structure modifications: in the previous version of the Remote Attestation Service,
two column families (like tables in relational databases) were defined: FilesToPackages,
to store the mapping between a digest and the information associated to the file the digest
was taken from (full pathname, list of linked libraries, libraries aliases and packages that
contain that file); PackagesHistory, to store the update type of each package released
by the distribution vendor. In the current version we added a new column family called
PackagesHistoryDEB that, similarly to the latter, contains the history of packages

TClouds D2.1.5 Page 24 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

released for Ubuntu distributions only. With the addition of this new column family, we
can set in the Cassandra database configuration the correct comparator for each column
family storing packages history, i.e. the RPM comparator for PackagesHistory and
the DEB comparator for PackagesHistoryDEB.

Enhancement of DB insert scripts: the DB insert scripts have been enhanced to also process
DEB packages. In particular, the following functions have been modified:

• Parsing of metadata from packages header (source package name, source package
version and release, processor architecture of the binary package);

• Extraction of files from packages (through rpm2cpio and cpio for RPMs, through
dpkg for DEBs);

• Writing of the collected data to the database.

To minimize the changes to the existing scripts, we moved package-specific code to
separate python libraries (one for RPMs and one for DEBs) which are called from the
main DB insert script depending on the package being processed.

Modified interface between OpenAttestation and RA Verifier: to perform the verification, it
is necessary to pass the distribution name to RA Verifier so that the latter can select the
proper column family for the packages history query. OpenAttestation provides this
information to RA Verifier (in addition to those introduced in Section 4.3) by setting
the environment variable OS – taken from the Measured Launch Environment (MLE)
associated to the platform being attested – before calling the verification script.

TClouds D2.1.5 Page 25 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Chapter 5

Log Service

Chapter Authors: Paolo Smiraglia (POL)

LogService is a subsystem in the Trustworthy OpenStack platform offering secure logging
features. It allows the generation of secure log entries in order to track the events occurring in
the platform at different layers with the purpose of increasing the trustworthiness of the whole
cloud infrastructure. The LogService, here depicted in Figure 5.1, is composed of four modules:

LogCore: the trusted entity collecting all cryptographic material necessary to preserve the
confidentiality of the tracked information and to execute the integrity verification of the
logs.

LogStorage: the module playing the role of storage. The read and write operations could be
performed over plain text files or by interfacing the LogStorage with the fault tolerant
storage system CheapBFT [KBS+12].

LogConsole: it is a web based management console to access the LogService features. It
is available in form of standalone web application or as a dedicated administration tab
integrated within the Trustworthy OpenStack dashboard.

LogService Module: it is a software module that developers must use in their applications in
order to have secure logging features.

LogService has been already presented in Chapter 9 of the deliverable D2.1.2 [DKSP+12].
Therefore, this chapter will contain only the descriptions of the enhancements implemented and
available in the latest version.

Log Service

Log Core

Log Storage

Log Console Log Reviewer

Cloud Component

Cloud Component

Cloud Component

Figure 5.1: LogService high level view

TClouds D2.1.5 Page 26 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

5.1 New features

The new version of the LogService introduces three new features. The first aims to mitigate
some issues related to the scalability of the service, while the second enhances the security in the
communication among the entities composing it. Finally, the third feature is the replacement of
the core library which the LogService is founded on.

5.1.1 Incremental and Asynchronous verification
The verification of a logging session is the process allowing the identification of potential
corruptions at client side. We consider a session corrupted if some entries are deleted or properly
replaced by an attacker, in order to hide a malicious behaviour. In the first version of the
LogService, the verification process was affected by scalability issues related to two aspects.

The first is the synchronous serving of the verification requests that locked the LogConsole
(or the OpenStack dashboard) and hence made it not usable until the end of process. To avoid
this, the new LogService serves the verification request through a message queuing system.
Thus, each time that a verification requests is received, it is added to the queue in order to be
subsequently scheduled without locking the dashboard.

The second aspect causing issues in the LogService scalability was the absence of a mecha-
nism allowing the incremental verification of the logging sessions. For instance, considering
the case where immediately after the end of the verification of a session containing the entries
[L0, . . . , Ln] the new entries [Ln+1, . . . , Lf] are generated, in absence of a mechanism allowing
the incremental verification, to verify the new entries will be necessary to re-verify all the entire
session (see Figure 5.2(a)). Such problem is now mitigated because the LogService implements
a simple caching system that stores for a limited period of time the metadata (last computed
hash, ...) related to logging session verification. Such approach allows the verification only of
the session delta represented by the entries that have been added during the last verification
(Figure 5.2(b)).

t0 t1 t2

Time to verify entries from L0 to Ln

L0 Ln Lf

Time to verify entries from Ln to Lf

(a) Without incremental verification

t0 t1 t2

Time to verify entries from L0 to Ln

L0 Ln Lf

Time to verify
entries from

Ln to Lf

(b) With incremental verification

Figure 5.2: Logging session verification procedure

5.1.2 Secure communication
To enforce the security in the communication among LogService modules and also with the
components interacting with the LogService, all the connections are over HTTPS with both
client and server authentication. In addition, each module filters the incoming connections using
white lists that are filled in with the subject of the X509 certificates identifying the authorised
entities.

TClouds D2.1.5 Page 27 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

5.1.3 New core library
The library being the core of the LogService has been renewed. The definition of a new library
was necessary due to the monolithic code structure, the high number of external dependencies,
the low adaptability and finally, the low testing coverage of the old core library. Therefore, a
new library called libseclog has been designed and implemented. Such library has been
newly developed and represents a deep restyling of the libsklog library used as core in the
old version of the LogService. The main feature of the new library is the provision of a high
level API allowing the developers to access to different secure logging schemes through the same
set of functions. The current version of the libseclog only supports the scheme proposed by
Schneier and Kelsey [SK99].

5.2 Design and implementation

5.2.1 Building blocks

Log Storage

The Log Storage is the component of the LogService playing the role of storage system. It is
deployed as RESTful web application implemented through the framework Python Tornado.
The Log Storage provides two methods: /store?<ARGS> and /retrieve?<ARGS>. The
former allows the clients to store a block of log entries related to a specific logging session,
while the latter makes the clients capable to retrieve all log entries contained in a specific logging
session. A logging session is identified through a tuple of three values that will be encoded in
the URL. The values in the tuple are: the ID of the machine generating the log entries (mid),
the ID of the logging session (sid) and the human comprehensible label describing the session
(label). Figure 5.3 shows how the URL will be generated after the encoding.

example of /store
/store?mid=<MACHINE_ID>&sid=<SESSION_ID>&label=<LABEL>

example of /retrieve
/retrieve?mid=<MACHINE_ID>&sid=<SESSION_ID>&label=<LABEL>

Figure 5.3: LogSorage example API call

The current implementation of the Log Storage supports two storage mechanisms. The first
uses as storage medium plain text files in the local file system, while the second exploits the
capabilities of CheapBFT [KBS+12], a fault tolerant storage framework. About the second
mechanism, the Log Storage acts as pass through service between the clients and the CheapBFT
endpoint. From the client point of view, using plain text files or CheapBFT is totally transparent.
A graphical representation of the Log Storage architecture is depicted in Figure 5.4.

Log Core

The Log Core is the trusted entity of the LogService subsystem. Its role consists in collecting
the cryptographic material necessary to perform the integrity verification of the logging session,
as well as, to provide the client a trusted dump of the session content. It has been implemented
using Python Tornado and runs as standalone web application accessible through a RESTful API

TClouds D2.1.5 Page 28 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Log Storage

Python Tornado

Local File
System

CheapBFT
/store
/retrieve

Figure 5.4: Log Storage architecture

Method Description
/initialize Requests the initialization of a new logging session.

/retrieve
Retrieves a list containing the tuples identifying the initialized
logging sessions.

/verify?<ARGS>
Requests the verification of a logging session identified by the
tuple (machine_id, session_id, label) encoded in <ARGS>.

/verify/<ID>/update
Requests the update of the verification identified by <ID> (in-
cremental verification)

/verify/<ID>/dump
Requests a trusted dump of content included in the verification
identified by <ID>.

/verify/<ID>
Retrieves the details about a specific verification identified by
<ID>.

/verify/status
Retrieves information about the status of the verification still
active.

Table 5.1: Log Core API

described in Table 5.1. In the context of the Log Core, the verification of a logging session is
managed through an object identified by an ID. In addition to the information about the status,
the verification object contains also the plain text version of the log entries (the dump) included
in the logging session which it is related to.

As previously mentioned, the new version of the LogService serves the verification re-
quests asynchronously. Such functionality is implemented through Celery [?], a tasks queuing
framework for Python. The internal Log Core design is depicted in Figure 5.5.

Python Tornado

PySeclog

libseclog

Celery

Log Core

/initialize
/retrieve
/verify
/...

Figure 5.5: Log Core architecture

Log Console

The Log Console is the web based log management console provided by the LogService. Such
component is available in two forms. The first one is a standalone web application accessible via

TClouds D2.1.5 Page 29 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

web browser. The second one is a log administration panel within the OpenStack dashboard.

Log Service Module

The LogService Module is a software module that must be included within the application
aiming to interact with the LogService. The current release is in form of a Python package
that provides two classes (LogStorageClient, LogCoreClient) for implementing client
applications for both Log Core and Log Storage. Moreover, within the package it is also
available a Python Logging Handler (SecureLoggingHandler), allowing the developers to
implement applications performing log using the LogService capabilities.

5.2.2 Integration in OpenStack “Folsom”
LogService is fully integrated in Trustworthy OpenStack which is a security enhanced version
of standard OpenStack “Folsom”. The integration includes the definition of a Python Logging
Handler1 to manage secure logging features in the OpenStack core service (Nova) and the
definition of a logging administration tab in the dashboard (Horizon).

Core Service (Nova)

Figure 5.6 shows the details about the integration of the LogService in the Trustworthy OpenStack
core service. To perform logging, Trustworthy OpenStack uses the Python Logging framework.
Therefore, the integration of the LogService in Trustworthy OpenStack consists in including
the SecureLoggingHandler provided by the Log Service Module, within the Trustworthy
OpenStack logging handler list.

Figure 5.6: LogService integration in OpenStack Folsom

The new handler could be configured through a configuration flags group called secure_logging.
This group includes several configuration flags that are listed and described in the Table 5.2.

Figure 5.7 depicts a snippet of the main Nova configuration file. In detail, the snippet
highlights how the secure_logging group could be used.

Dashboard Service (Horizon)

The integration of the LogService administration tab in the Trustworthy OpenStack dashboard
(Horizon) includes the definition of some additional settings organised in two dictionaries. The
first one, LOG_CLI_SSL_OPTS, includes the SSL settings while the second one, LOG_CORE,

1Python Logging Handlers - http://docs.python.org/2/library/logging.handlers.html

TClouds D2.1.5 Page 30 of 64

http://docs.python.org/2/library/logging.handlers.html

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Configuration flags group name secure_logging

Flag Value Description
use_secure_log BOOLEAN Enables the secure logging handler.

logcore_address STRING
Specifies the Log Core listening address. It could be
expressed as an IP address or a FQDN.

logcore_port INTEGER Specifies the Log Core listening port.

logcore_cert STRING
Specifies the path of the certificate containing the Log
Core’s public key.

logstorage_address STRING
Specifies the Log Storage listening address. It could be
expressed as an IP address or a FQDN.

logstorage_port INTEGER Specifies the Log Storage listening port.

cert STRING
Specifies the path of the certificate containing the Node’s
public key.

key STRING
Specifies the path of the file containing the Node’s private
key.

cacert STRING Specifies the path of the file containing the CA certificate.

freq INTEGER
Specifies the log entries uploading frequency expressed
in number of entries.

size INTEGER
Specifies the size of the logging session expressed in
number of entries.

debug BOOLEAN Enables debugging for the secure logging handler.

secure_log_services STRING
Specifies the Nova services (comma separated values) for
which the secure logging handler is enabled.

Table 5.2: Configuration flags of the secure_logging group

[secure_logging]
use_secure_log = True
logcore_address = logcore.example.com
logcore_port = 50001
logcore_cert = /path/to/file/logcore.pem
logstorage_address = logstorage.example.com
logstorage_port = 50002
cert = /path/to/file/novaservices.pem
key = /path/to/file/novaservices.key
cacert = /path/to/file/cacert.pem
freq = 100
size = 500
debug = True
secure_log_services = nova-scheduler,nova-api

Figure 5.7: Nova configuration file

contains the information necessary to interact with the LogCore. Details about the settings
included in the two dictionaries are givens in Tables 5.3 and 5.4, while an example of Horizon
configuration file is in Listing 5.8.

TClouds D2.1.5 Page 31 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Options dictionary name LOG_CLI_SSL_OPTS

Option Value Description

certfile STRING Specifies the client X.509 certificate file path.

keyfile STRING Specifies the path of the file containing the private key.

ca_cert STRING Specifies the CA X.509 certificate file path.

Table 5.3: LOG_CLI_SSL_OPTS dictionary settings

Options dictionary name LOG_CORE

Option Value Description

host STRING
Specifies the LogCore hostname. It could be in form of an IP address
or a FQDN.

port INTEGER Specifies the port where the LogCore is listening.

timeout INTEGER Specifies the timeout for the requests.

api_version STRING
Specifies the API version that has to be used. (not used in this
version)

Table 5.4: LOG_CORE dictionary settings

Logging Tab settings
LOG_CLI_SSL_OPTS = {

"certfile": "/path/to/file/logconsole.pem",
"keyfile": "/path/to/file/logconsole.key",
"ca_certs": "/path/to/file/cacert.pem"

}
LOG_CORE = {

"host": "logcore.example.com",
"port": 50001,
"timeout": 60,
"api_version": "0.1",

}

Figure 5.8: Horizon configuration file

TClouds D2.1.5 Page 32 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Chapter 6

Cheap BFT

Chapter Authors: Johannes Behl, Stefan Brenner (TUBS)
Tobias Distler, Andreas Ruprecht (FAU)

6.1 Introduction
The advent of cloud computing further amplified a trend that has been ongoing for roughly two
decades now: More and more of our life, be it our private or our business life, happens in the
net of all nets, happens in the Internet, happens online. By now, we use online services for
virtually everything. We communicate via online services, we obtain news via online services,
we make money via online services, we transfer money via online services, we even elect our
government via online services. This development has brought a lot of benefits, but also at least
one major drawback: By now, we completely depend on these online services. We depend on
their availability, on their correct functioning, and in general on their trustworthiness.

However, with the increasing number of services, with their increasing complexity, and with
their increasing importance, faults in hardware and software become more and more crucial.
Preventing faults from getting in productive systems is one important approach in order to ensure
that services do not fail. Nevertheless, fault prevention will in most cases never be completely
effective in the sense that it could guarantee fault-free services. Therefore, measures have to be
taken to keep services available even if their implementation is faulty, that is, measures for fault
tolerance have to be applied.

One question that arises in that context is: What kind of faults are supposed to be tolerated,
thus which class of faults is considered? One common answer is: faults leading to crashes.
That is, a service shall remain available even if a part of the system crashes, if it just stops its
execution. A technique to implement such a crash fault tolerance is service replication. Instead
of hosting only a single instance of a service, multiple instances are used. When one instance
crashes, the other instances can still provide the correct service.

Although tolerating crash faults is an important approach to implement high available services,
considering the vast range of system malfunctioning, this very restricted fault model seems not
sufficient for a lot of applications, particularly critical applications as regarded by the TClouds
project. Random hardware errors can lead to corrupted messages and state, malicious attacks can
compromise the system in various ways, and also ordinary bugs can cause a system to behave
different than intended and not only to crash. In other words, there are innumerable kinds of
faults that can entail a system to behave arbitrarily incorrect. If the availability of services has to
be ensured also in this comprehensive fault model, services has to be implemented in such a way
that they are able to tolerate arbitrary, also called Byzantine faults.

Byzantine fault tolerance (BFT) would be hence a highly desirable property for many service
implementations. Despite that, BFT systems are not widely employed so far. One reason is their

TClouds D2.1.5 Page 33 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

high cost. Standard BFT systems require 3f + 1 running service instances, called replicas, to
tolerate only f arbitrary fault. Systems employing a trusted submodule in a hybrid fault model
can lower these costs to 2f + 1 actively running instances.

One objective of CheapBFT [KBC+12], a BFT system developed in the context of TClouds,
was to reduce the costs further and thereby the obstacles preventing BFT from its wider adoption.
CheapBFT makes use of a novel trusted FPGA-based hardware module, named CASH, and
introduces passive replication in the field of BFT. As a result, CheapBFT provides Byzantine
fault tolerance with only f + 1 replicas actively executing incoming requests as far as their are
no detected errors. Only when an error occurs, additional f replicas, regularly provided with
status updates so far, are activated. After the causing error has been removed, f replicas are put
back in the passive mode, leaving again only f + 1 active replicas.

As a side effect, the different roles of replicas introduced with CheapBFT result in a unevenly
distributed load across the participating machines. Active replicas have to execute all incoming
requests while the passive ones just keep their state more or less up to date. However, cloud
providers as well as cloud customers usually prefer evenly distributed load for several reasons.
From the cloud providers perspective the hardware can be used more efficiently when load is
distributed evenly across the available hardware. Cloud customers, on the other hand, want
evenly distributed load because they usually pay for each machine hour according to the resources
provided by these machines and not according to their actual utilization.

Therefore, we introduce RotatingCheap as an improvement of CheapBFT to tackle this
problem. Briefly, RotatingCheap is another Byzantine fault-tolerant protocol based on the
concepts of CheapBFT. Thus, it works with a reduced number of replicas by employing CASH
as trusted submodule and with different roles assigned to replicas. Contrary to CheapBFT,
however, RotatingCheap quickly rotates the roles among the replicas during the execution.
As a consequence, replicas perform the active role for some requests and the passive one for
others. This eventually leads to an evenly distributed load across all underlying machines as our
evaluation shows.

6.2 Background and Related Work
In the following, we briefly explain the basic concepts behind Byzantine fault-tolerant (BFT)
systems and describe and discuss more in detail the existing BFT protocols on which basis
RotatingCheap was developed.

6.2.1 Basics of BFT Systems
A well-known and often applied fault model is the crash-stop model. This model assumes that
systems only fail by crashing, that is, either they operate correctly or they operate not at all, in
particular, they do not response to any request or give any other sign of life. Compared to this
relatively simple fault model, the Byzantine fault model is more generic and broader. It assumes
that faulty systems can behave in any arbitrary way. For instance, a system in this model can lose
data, get into an invalid state or deliberately provide wrong and misleading messages to other
system components.

In order to tolerate arbitrary incorrect behavior, a certain BFT system usually consists of
multiple replicas, each running an instance of the considered application and executing all
incoming requests according to a specific (agreement) protocol that determines a total order on
the requests. Starting from the same state, running a deterministic application, and executing
the same requests in the same order ensures that all replicas remain in an equal state and hence

TClouds D2.1.5 Page 34 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

return, if correct, the same result for each request. This enables the detection of faulty replicas
by comparing the results as long as a particular quorum of replicas functions properly. Under the
basic Byzantine fault model, it can be shown that this quorum has to comprise 2f + 1 replicas
out of 3f + 1 if the system is supposed to tolerate up to f faulty replicas.

6.2.2 CheapBFT
This leads to a well-known problem of many existing BFT protocols: their high resource
utilization stemming from the 3f + 1 active replicas required to tolerate f faults. This reduces
the practicability of these protocols and prevents them from being actually used. For that reason,
a lot of research has been undertaken to lower the number of replicas involved in BFT systems
and their employed protocols and thereby to lower the entailed resource footprint.

One representative of these BFT systems with reduced resource usage is CheapBFT, which
has been developed in the context of TClouds. CheapBFT achieves a reduction of the required
resources not only by employing a novel FPGA-based trusted submodule named CASH, but
also by introducing a mixed active and passive replication scheme to the field of Byzantine fault
tolerance. Using CheapBFT, only f + 1 replicas are required which actively execute incoming
requests in normal case. For the rare cases where the system is subject to an error, f passive
replicas are hold as warm stand-by.

Briefly, CheapBFT works as follows: The trusted submodule CASH is used to assign
consecutive counters to all messages sent by participating replicas. The counters are unforgeably
bound to single messages by signing them with certificates which are generated through CASH.
Certificates comprise the ID of the particular CASH module, the counter unique to each message,
and a message authentication code (MAC) which is calculated over the message content, the
module ID, and the counter. When a replica receives a signed message, it is only allowed to
handle the message if it has a valid MAC, which is verified by the receiver through its own
CASH module, and if its assigned counter is the follower to the counter of the last message
received from the sending replica.

In total, this prevents so-called equivocation which is a situation where one replica sends
different messages to different other replicas at the same phase of the protocol and where the
receiving replicas do not detect this misbehavior of the sending replica, or in other words, where
a replica states different things although not permitted to do so. In CheapBFT, if a replica tried
to make differing statements, this would be detected by at least one receiving replica since the
validation of the message certificate would fail if it was altered by the sender or the receiver
would witness a gap in the sequence of counters because each counter value is only allocated
once by the CASH modules. In order to enforce a safe mapping of counter values to messages,
creating a certificate must be the only way to change the counter value. Moreover, replicas have
to save the most recent counter value received from each other replica to be able to reconstruct
the correct sequence of values. If, and only if, a message to be verified contains the right and
expected counter value the replica will increment its saved value for the particular sender.

Preventing equivocation allows a BFT system to reduce the number of required replicas
from 3f + 1 to 2f + 1 and thereby to reduce the resource footprint. To further reduce this
footprint, CheapBFT distinguishes between a normal mode, which is executed when no errors
are present, and an error mode, which is activated when a replica is suspected to behave erroneous.
Running in normal mode, CheapBFT employs a novel BFT protocol called CheapTiny, which
only requires f + 1 active replicas executing requests. Additional f replicas are kept up-to-date
by being provided with the state changes caused by the request execution. Therefore, using
CheapTiny, f out of 2f + 1 replicas run in a passive mode in which they only receive and

TClouds D2.1.5 Page 35 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

apply state changes, which in most cases requires significantly less resources than the active
execution of requests. Whether a replica runs in active or in passive mode corresponds to its
current role in the protocol. All in all, CheapTiny distinguishes three roles: Besides active and
passive role, a replica can also perform as the so-called leader. The leader is an active replica
which is responsible for distributing client requests and for driving the protocol, for instance, by
proposing an order in which the requests have to be executed. During normal operation, there is
exactly one replica which possesses the leader role.

Using f + 1 active replicas allows CheapTiny to detect up to f errors, however, this protocol
is not able to mask them. Thus, in the presence of errors, CheapTiny can not make any progress.
For that reason, if CheapTiny detects an error, a so-called transition protocol is initiated which is
responsible for activating the f passive replicas and for reaching a consistent state on all replicas.
After a consistent state has been reached, the MinBFT protocol is established for the further
execution. MinBFT is a traditional BFT protocol with a hybrid fault model, that is, it employs
2f + 1 active replicas which enables it not only to detect up to f errors but also to mask them.
As in the case of CheapTiny, one replica is assigned with the leader role. To enable the transition
back to CheapTiny, MinBFT is executed for a limited time. After that, the system will try to fall
back to CheapTiny and thus to the normal mode with f + 1 active and f passive replicas.

6.2.3 Spinning
Spinning [GSVL09] is a protocol for Byzantine fault tolerance which enhances PBFT [CL99].
Like PBFT, Spinning requires 3f + 1 replicas and like most BFT protocols, Spinning assigns to
one of these replicas the leader role. Here, each phase during the execution of the protocol in
which a particular replica continuously holds the leader role is called a view. The situation where
the leader role is assigned to an other replica is called view change.

In contrast to PBFT, Spinning changes the leader periodically on a regular basis after a fixed
number of requests and not only when it fails. Thus, it deliberately enforces periodic view
changes. This is done to mitigate denial of service attacks and to balance system load more
evenly across the involved machines. In order to prevent faulty replicas from becoming the
leader over and over again, a blacklisting mechanism is used. If a leader is suspected to be faulty
in view v − 1, for example because it does not introduce new requests to the agreement, it will
be pushed to a blacklist of length f during the transition to view v. All replicas on this list will
continue to participate at the protocol, albeit they will not be able to become the leader.

6.2.4 Comparison of CheapBFT and Spinning
CheapBFT introduces passive replication to Byzantine fault-tolerant systems and thereby demon-
strates how the resource usage of such systems can be further lowered. However, the fixed
assignment of roles to the replicas during normal operation entails an unbalanced distribution
of the overall load between the replicas. Active replicas, and particularly the leader, have to
exchange considerably more messages than passive replicas in order to come to an agreement
about which requests have to be executed in which order. This also leads to a higher load for their
CASH modules, which are used to certify and to verify messages. Additionally, the execution of
requests consumes in most of the cases a way more CPU cycles than the application of status
updates. All in all, CPU, network interface, and CASH module are significantly more utilized on
active replicas than on passive ones.

Since also PBFT encounters load imbalances because a replica holds the leader role as long
as no problems are encountered, Spinning initially tackles balancing of system load across

TClouds D2.1.5 Page 36 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

replicas by rotating the leader role at predetermined points in the protocol. Spinning requires,
however, 3f +1 active replicas to tolerate f faults. Compared to CheapBFT, this not only means
more active replicas utilizing resources but also a higher resource usage for each single replica
since replicas have to communicate with all other actively participating replicas during protocol
execution. Following to Spinning, the same authors presented EBAWA [SVCBL10], which
also reduces the number of replicas to 2f + 1 by employing a trusted submodule, but unlike
CheapBFT, all 2f + 1 replicas participate in the protocol actively, even in the absence of errors.

6.3 RotatingCheap
In this section, we present RotatingCheap, a BFT protocol which is based on CheapBFT and its
novel CheapTiny protocol but which achieves a better load distribution by constantly rotating the
roles of all participating replicas.

6.3.1 Initialization
To initialize the system, unique IDs in the range from 0 to 2f are assigned to each of the 2f + 1
replicas. These IDs also determine the initial roles of the replicas (as in CheapTiny, three roles
are distinguished: leading active replica, active but following replicas, and passive replicas):

• ID 0 will be active and leader
• ID 1− f will be active replicas
• The remaining f replicas will be passive

6.3.2 Communication
Clients can introduce messages into the system by sending a 〈REQUEST,m〉 message, signed
by their key, to an arbitrary, for instance geographical close replica. Here, m contains the
command to be executed, the ID of the client, as well as a client-specific sequence number
which is used by replicas to recognize already executed request, that is, to filter duplicates. After
sending a request, a client waits until equal responses from f + 1 replicas have been received,
before sending another request.

Agreement Phase

When a replica receives a message from a client, it verifies its authenticity first. If the request is
valid and the receiving replica is leader of the current round, it sends a 〈PREPARE,m, v,mcL〉
message to all active replicas. The PREPARE message contains the message m from the client,
the current round number v, and the certificate mcL from the CASH submodule which in turn
contains the current counter value. In case the replica is not the leader when the request is
received, the message is buffered and scheduled for agreement when the replica will become
leader the next time.

When an active replica receives a PREPARE message, it checks the validity of the certificate
by means of its CASH submodule and whether the certificate contains the next expected number.
This ensure that messages are only accepted if there are no gaps in message order. After a
successful validity check, the active replica sends a 〈COMMIT,m, v,mcL,mcp〉 message to
all other active replicas. m, v, mcL are taken from the PREPARE message. mcP is created by
signing the concatenation of m and mcL via the local CASH submodule.

TClouds D2.1.5 Page 37 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

A replica receiving a COMMIT message again checks the correctness of the certificate and
continuity of the message order. If an active replica got f + 1 valid commit messages subjecting
a request m (one from each active replica) a round is considered agreed and execution of this
request is started.

Execution Phase

During the execution of a request, the application creates a response r for the client and a represen-
tation of the state changes that were caused by request execution. This state change representation
is denoted by u. After the execution, an active replica creates an 〈UPDATE, r, v, u, C〉 message
that contains the response r, the round number v, the state change u, the set of COMMIT
messages C as well as the PREPARE message from the leader and sends it to all passive
replicas. Finally, the response r is sent to the client and the transition to the next agreement round
is initiated. The policy for the selection of the role of the next agreement round is described in
the next section.

If a passive replica receives an UPDATE message, it checks its signature first. As soon
as f + 1 correct UPDATE messages are available from all active replicas, the contained state
change is applied to the current state and the next agreement round is started. In order to ensure
the correct ordering of messages from the replicas, it is checked whether the sequence numbers
of the PREPARE and COMMIT messages in C contain no gaps and match the expected value.

This is necessary because in an agreement round, messages are exchanged between active
replicas that are not received by the passive replicas. Sending PREPARE and COMMIT
messages cause an increment of the according counter from the active replicas. Without special
treatment, in the next round, a former passive replica would notice a gap in counter values when
it receives a message from a replica that has been active in the last as well as the current round.
Because of the fact that a correct UPDATE message must contain the f +1 COMMIT messages
of all active replicas including the current counter values, passive replicas are able to update the
counter values for the other replicas, thereby prevent the occurrence of such gaps.

Transition to the Next Agreement Round

Switching the role of a replica during the transition from agreement round k to k + 1 is done as
follows: Assuming the replicas arranged in a circle ordered by their ID, roles rotate on this circle
clockwise by f positions after an agreement round is considered finished.

Active replicas including the leader consider an agreement round finished, as soon as they
have sent the UPDATE message and the client response. Passive replicas consider a round
finished when they have received at least f + 1 corresponding UPDATE messages and applied
the respective state changes.

Formally, let Lk be the ID of the leader, Ak the ID set of active and Pk the ID set of passive
replicas in round k, f the amount of tolerable failures and n = 2f + 1 the total number of
replicas, then:

• Lk+1 = Lk + f(mod n)

• Ak+1 = {a+ f(mod n) | a ε Ak

• Pk+1 = {p+ f(mod n) | p ε Pk

This is also illustrated in Figure 6.1 for three successive agreement rounds for f = 1. Figure
6.2 shows the role change policy for f = 2.

TClouds D2.1.5 Page 38 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Prepare Commit Update P C U P C U

ID 0

ID 1

ID 2

Runde 0 Runde 1 Runde 2

Figure 6.1: Three agreement rounds in RotatingCheap for f = 1; roles in round 3 eventually are
equal to round 0. Communication with clients is not illustrated for simplicity. Red messages can
be batched for optimization purposes.

Prepare Commit Update P C U P C U

ID 0

ID 1

ID 2

ID 3

ID 4

Runde 0 Runde 1 Runde 2

Figure 6.2: Three agreement rounds of RotatingCheap for f = 2. Communication with clients is
not illustrated. Red arrows illustrate messages that could be batched for optimization.

Checkpoints

In order to be able to check whether an agreement round was already finished in case of a failure,
all replicas save all messages they sent as well as all received UPDATE messages from other
replicas. Since this approach is not scalable for long system uptimes, checkpoints are periodically
created after a certain number of rounds.

A 〈CHECKPOINT, v, snap,mpcp〉 message contains the most recent (finished) round num-
ber v, the hash value of the replicas state snap and is signed with the certificate mccp from the
CASH submodule. Then, a replica sends the CHECKPOINT to all active and passive replicas.

When a replica receives a CHECKPOINT message, it verifies the certificate and checks the
counter value. As soon as a replica received f + 1 correct matching CHECKPOINT messages,
the checkpoint is considered stable and the replica can remove old PREPARE, COMMIT, and
UPDATE messages from its log.

Skipping Rounds

In case a replica gets leader which has not received any request from clients during the time it
was in active and passive state, a timer with the interval t is started while waiting for requests. If
the replica receives a request during this interval, the timer is stopped and normal agreement is
started as described above. However, if the timer times out, the replica sends a SKIP message to
all active replicas. This message is agreed on like any other request.

TClouds D2.1.5 Page 39 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

6.4 Evaluation
In this section we evaluate RotatingCheap with respect to the formulated objective to reach a
better distribution of load among the replicas. We only consider the case f = 1, that is, we use
2f + 1 = 3 replicas. The replica machines are commodity 4-core machines (2.3 GHz, 8 GB
RAM) equipped with an FPGA that realizes the CASH submodule. In addition, there are three
client machines based on 12 cores (2.4 GHz, 24 GB RAM) each, on which the clients are equally
distributed. All machines are interconnected with switched Gigabit Ethernet. As a convention for
this section, a load value of 1.0 represents 100% load on one core, hence, 2.0 represents 100%
load on two cores and so forth.

In order to be able to compare RotatingCheap to CheapBFT, the original implementation of
CheapBFT has been slightly modified. Instead of multiple agreement rounds in parallel, which
CheapBFT is able to do, our modified version only supports one agreement round at a time.
This modified version is called BlockingCheap from now on. That means, like it is done in
RotatingCheap, before the leader starts round n+ 1 it has to wait until the UPDATE messages
for round n have been sent. For both protocols, we define a maximum batching size of 20
requests, that is, up to 20 requests can be ordered within a single agreement round.

Clients send all requests to exactly one replica of their choice and wait until they receive
a response. They send the next request only after a successful validation of the response. For
RotatingCheap, replicas are selected by clients such that every replica receives approximately
the same amount of requests. In contrast, for BlockingCheap, the clients will send all requests to
the replica with ID 0.

For this evaluation, a micro benchmark is used which allows to set the size of requests,
responses, and the state changes. Therefore, besides measuring throughput for empty messages,
we are able to simulate read (4 kB sized responses) and write access (4 kB sized requests and
updates).

At the beginning of each experiment, we allow the system to warm up for 90 seconds, which
prevents artifacts caused by Just-in-time-compilation from showing up in the results. After the
warm up phase, we measure throughput on the client and server side as well as the network
utilization for 60 seconds.

6.4.1 Throughput
First, the possible throughput of the system is measured, that is, the maximum amount of
responses to client requests per second. For this purpose, the amount of client instances is
increased step by step from 0 to 360 clients.

In Figure 6.3, the results are illustrated for both, BlockingCheap and RotatingCheap. In
the experiment with empty messages (Figure 6.3(a)), RotatingCheap is slightly ahead of Block-
ingCheap, which is caused by a better distribution of requests to the replicas. However, when it
comes to read access (Figure 6.3(b)), BlockingCheap achieves about 15-20% better throughput.
This is caused by delays due to the hashing of response messages for which RotatingCheap is
more susceptible than BlockingCheap. The evaluation of write access (Figure 6.3(c)) shows
that both protocols achieve approximately the same throughput. Note, however, that this is only
about one half of the read throughput.

All experiments show that throughput rapidly increases with the number of clients until a
certain threshold is reached from which on the throughput remains static. This can be explained
by further measurements: Because of the modular architecture of the implemented prototype, a
message has to pass many layers which interact asynchronously using queues. Thus, every layer

TClouds D2.1.5 Page 40 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

0 50 100 150 200 250 300 350 400
0

2000

4000

6000

8000

10000

12000

14000

a) Durchsatz, 0 kB-Nachrichten

BlockingCheap

RotatingCheap

Number of Clients

R
es

po
ns

es
 /

S
ec

on
d

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

c) Durchsatz, 4 kB Anfragen/Updates

BlockingCheap

RotatingCheap

Number of Clients

R
es

po
ns

es
 /

S
ec

on
d

0 50 100 150 200 250 300 350 400
0

2000

4000

6000

8000

10000

12000

14000

b) Durchsatz, 4 kB Antworten

BlockingCheap

RotatingCheap

Number of Clients

R
es

po
ns

es
 /

S
ec

on
d

(a) minimum throughput for 0 kB messages

0 50 100 150 200 250 300 350 400
0

2000

4000

6000

8000

10000

12000

14000

a) Durchsatz, 0 kB-Nachrichten

BlockingCheap

RotatingCheap

Number of Clients

R
es

po
ns

es
 /

S
ec

on
d

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

c) Durchsatz, 4 kB Anfragen/Updates

BlockingCheap

RotatingCheap

Number of Clients

R
es

po
ns

es
 /

S
ec

on
d

0 50 100 150 200 250 300 350 400
0

2000

4000

6000

8000

10000

12000

14000

b) Durchsatz, 4 kB Antworten

BlockingCheap

RotatingCheap

Number of Clients

R
es

po
ns

es
 /

S
ec

on
d

(b) read access throughput for 4 kB responses

0 50 100 150 200 250 300 350 400
0

2000

4000

6000

8000

10000

12000

14000

a) Durchsatz, 0 kB-Nachrichten

BlockingCheap

RotatingCheap

Number of Clients
R

es
po

ns
es

 /
S

ec
on

d

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

c) Durchsatz, 4 kB Anfragen/Updates

BlockingCheap

RotatingCheap

Number of Clients

R
es

po
ns

es
 /

S
ec

on
d

0 50 100 150 200 250 300 350 400
0

2000

4000

6000

8000

10000

12000

14000

b) Durchsatz, 4 kB Antworten

BlockingCheap

RotatingCheap

Number of Clients

R
es

po
ns

es
 /

S
ec

on
d

(c) write throughput for 4 kB requests and update messages

Figure 6.3: Comparison of possible throughput using RotatingCheap and BlockingCheap for
variable amount of client instances.

introduces its own delays. In the case of empty messages, the time between receiving a request
and until the UPDATE messages are transferred finally, is about 1.7ms. Because of the selected
batch size of 20 requests, the maximum amount of requests per second is 20req

1.7ms
≈ 11.764. This

load value is already reached when 20 or more clients simultaneously interact with the system.
This also explains why the throughput of RotatingCheap increases slower than for Block-

ingCheap below 60 clients. Since all requests are evenly distributed across all replicas, a batch in
RotatingCheap can only be filled when any of the three replicas accept 20 or more clients. For
BlockingCheap batches are already filled with only 20 clients.

6.4.2 CPU Load
In this section the CPU load of the replicas is evaluated in order to see the difference in load
between active and passive replicas as well as the leader replica.

For BlockingCheap, we expect higher load on active replicas compared to passive ones.
Furthermore, the leader replica is expected to be higher loaded than the non-leader replicas. In
contrast, in RotatingCheap all replicas are expected to be evenly loaded.

TClouds D2.1.5 Page 41 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

0

0,5

1

1,5

2

a) CPU-Auslastung, 0 kB-Nachrichten, 180 Clients

Replica 2

Replica 1

Replica 0

 BlockingCheap RotatingCheap

C
P

U
-L

oa
d

 Leader

active

passive

0

0,5

1

1,5

2

2,5

b) CPU-Auslastung, 4 kB Antworten, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

C
P

U
-L

oa
d

 Leader

active

passive

0

1

2

3

4

5

6

7

8

c) CPU-Auslastung, 4 kB Anfragen/Updates, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

C
P

U
-L
oa
d

 Leader

active

passive

(a) CPU load for 0 kB messages and 180 clients

0

0,5

1

1,5

2

a) CPU-Auslastung, 0 kB-Nachrichten, 180 Clients

Replica 2

Replica 1

Replica 0

 BlockingCheap RotatingCheap
C

P
U

-L
oa

d

 Leader

active

passive

0

0,5

1

1,5

2

2,5

b) CPU-Auslastung, 4 kB Antworten, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

C
P

U
-L

oa
d

 Leader

active

passive

0

1

2

3

4

5

6

7

8

c) CPU-Auslastung, 4 kB Anfragen/Updates, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

C
P

U
-L
oa
d

 Leader

active

passive

(b) CPU load for 4 kB responses and 180 clients

0

0,5

1

1,5

2

a) CPU-Auslastung, 0 kB-Nachrichten, 180 Clients

Replica 2

Replica 1

Replica 0

 BlockingCheap RotatingCheap

C
P

U
-L

oa
d

 Leader

active

passive

0

0,5

1

1,5

2

2,5

b) CPU-Auslastung, 4 kB Antworten, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

C
P

U
-L

oa
d

 Leader

active

passive

0

1

2

3

4

5

6

7

8

c) CPU-Auslastung, 4 kB Anfragen/Updates, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

C
P

U
-L
oa
d

 Leader

active

passive

(c) CPU load for 4 kB requests and update messages with 180
clients

Figure 6.4: Comparison of CPU load of RotatingCheap and BlockingCheap using 180 connected
clients. The values are averaged across 60 seconds.

Figure 6.4 shows the results for all three above mentioned test cases for 180 connected clients
each. The results are average values which are normalized to 10.000 requests per second.

In Figure 6.4(a), the experiment with empty messages is illustrated. The leader replica
reaches about 0.85 load while the other active replica only reaches about 0.72 load and the
passive replicas show a very little load of approximately 0.21. In contrast, using RotatingCheap
load is distributed evenly; all replicas show a load of about 0.57 here. This is what we expect,
since all replicas are “simultaneously” leader, active, and passive.

We measure a similar behavior when it comes to 4 kB response messages, as can be seen in
Figure 6.4(b). The load on the leader replica is about 0.91 while active non-leader replicas show
about 0.8 load. The passive replica, however, shows a load of 0.21 only. In contrast, the load on
each replica when using RotatingCheap is about 0.59. Compared to Figure 6.4(a) the higher load
on active replicas here is due to the fact that larger messages are used which causes the hashing
to be more time consuming. In total, using RotatingCheap the load is a little bit higher, which is
caused by different handling of messages that have to be hashed.

Finally, Figure 6.4(c) shows the results for write access. Here, the load even for Block-
ingCheap is already distributed evenly across the replicas. While the leader (2.76) is slightly

TClouds D2.1.5 Page 42 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

0

20

40

60

80

100

120

140

160

a) Daten gesendet, 0 kB-Nachrichten, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

M
B

 s
en
t

 Leader

active

passive

0

500

1000

1500

2000

2500

3000

b) Daten gesendet, 4 kB Antworten, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

M
B

 s
en
t

 Leader

active

passive

0

1000

2000

3000

4000

5000

6000

c) Daten gesendet, 4 kB Anfragen/Updates, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

M
B

 s
en
t

 Leader

active

passive

(a) Data volume sent, 0KB messages, 180 Clients

0

20

40

60

80

100

120

140

160

a) Daten gesendet, 0 kB-Nachrichten, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap
M

B
 s
en
t

 Leader

active

passive

0

500

1000

1500

2000

2500

3000

b) Daten gesendet, 4 kB Antworten, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

M
B

 s
en
t

 Leader

active

passive

0

1000

2000

3000

4000

5000

6000

c) Daten gesendet, 4 kB Anfragen/Updates, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

M
B

 s
en
t

 Leader

active

passive

(b) Data volume sent, 4KB responses, 180 Clients

0

20

40

60

80

100

120

140

160

a) Daten gesendet, 0 kB-Nachrichten, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

M
B

 s
en
t

 Leader

active

passive

0

500

1000

1500

2000

2500

3000

b) Daten gesendet, 4 kB Antworten, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

M
B

 s
en
t

 Leader

active

passive

0

1000

2000

3000

4000

5000

6000

c) Daten gesendet, 4 kB Anfragen/Updates, 180 Clients

 Replica 2

 Replica 1

 Replica 0

 BlockingCheap RotatingCheap

M
B

 s
en
t

 Leader

active

passive

(c) Data volume sent, 4KB requests/updates, 180 Clients

Figure 6.5: Comparison of data volume sent over the network by the replicas for a range of 60
seconds using 180 clients. Values are normalized to a throughput of 10.000 requests per second.

higher loaded than the active replica (2.33), also the passive replica shows surprisingly high
load (2.22). This is due to the fact that 4 kB sized update messages are also hashed on the
passive replicas for the purpose of verification. However, still using RotatingCheap, the slight
differences in load are flattened by the protocol and all replicas reach approximately the same
load of about 2.43. Compared to the other experiments, total load is much higher here because
of the additional effort for hashing large protocol messages.

6.4.3 Network Load
As shown in the following, the inhomogeneous distribution of load is even more noticeable for
network load. Here, for BlockingCheap, active replicas are much higher loaded because active
replicas have to send PREPARE, COMMIT, and UPDATE messages for every agreement round.
In contrast, passive replicas mostly receive UPDATE messages only and send CHECKPOINT
messages. In RotatingCheap, we expect the inhomogenity to be flattened again.

Figure 6.5 shows the data volume sent from each replica for all three test cases as described
above for a time period of 60 seconds. The values are normalized to 10.000 responses per second.

For empty messages, as it is shown in Figure 6.5(a), we measured the expected behavior.

TClouds D2.1.5 Page 43 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

While using BlockingCheap, the active replicas send 53% (leader) and 45% respectively, only
2% of the data volume are sent by the passive replicas. In RotatingCheap, the load again is
distributed quite evenly across the replicas. The total volume of data sent is almost identical here
because for each agreement round the same amount of protocol messages has to be sent.

When we simulate read access, as shown in Figure 6.5(b), the differences become even more
significant because of the large response messages. While active replicas send about 50% of the
total amount of data volume, passive ones have a negligible share. RotatingCheap again provides
evenly distributed load across all replicas.

An even more significant contrast is illustrated in Figure 6.5(c) which shows the results for
write access. Here, the leader in BlockingCheap by far causes the highest portion of data volume
to be sent, while the other active replica only reaches 26% and the passive replica is almost
negligible. RotatingCheap here shows evenly distributed data volume sent by each replica. The
huge difference in load between active replicas in BlockingCheap is caused by the fact that the
leader adds the client request to the prepare message which, as a result, gains about 4 kB size.

6.4.4 Result
In summary, the goal of evenly distributed load comparing all replicas with each other apparently
can be reached by rotating the roles of replicas using RotatingCheap. This is not only true
for CPU load, but also for network data volume sent by the replicas. As the evaluation has
shown when using BlockingCheap, load will concentrate on the active replicas while the load
is evenly distributed when using RotatingCheap in all three scenarios (empty messages, read
access, write access). While throughput for empty messages is even higher using RotatingCheap
compared to BlockingCheap, however, for write access both protocols reach approximately the
same throughput and for read access we measured about 15-20% penalty.

6.5 Conclusion
In this work, we introduced a new Byzantine fault-tolerant protocol named RotatingCheap
which enhances CheapBFT by allowing to achieve an even load distribution among participating
replicas of service implementations.

RotatingCheap employs the concepts developed for and implemented in CheapBFT. It uses
the trusted hardware-based submodule CASH and the mixed active and passive replication
scheme to reduce the number of required active replicas to f + 1 in order to tolerate up to f
faults. In addition to CheapBFT, it uses a dynamic assignment of replica roles to balance load
differences induced by the different work necessary to perform those roles. The assignment
which replicas serve as active and which as passive ones is changed after every protocol round.
This mechanism eventually distributes the overall load among all replicas as the evaluation of a
prototype implementation clearly shows.

TClouds D2.1.5 Page 44 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Chapter 7

Tailored VMs: Key / Value Store

Chapter Authors: Klaus Stengel (TUBS)

7.1 Introduction

The rising popularity of cloud computing due to better cost effectiveness and scalability results in
an increased demand to put also security critical infrastructure on cloud platforms. Unfortunately,
current cloud infrastructure is still often perceived to be less secure than dedicated and locally
managed hardware. This hinders companies to move large-scale critical applications such as
trading, healthcare information systems and smart-lighting to the cloud.

Apart from the security aspects it is also crucial to leverage the pay-per-use model for com-
puting power and disk storage to operate the application in a cost-effective manner. Particularly
when implementing such applications on top of Infrastructure-as-a-Service (IaaS) clouds, this
means that only a minimal amount of computing power and disk storage should be required.
This leads to designs with many instances of simple, but highly specialized software components
that can be added or removed dynamically depending on current demand. Application agnostic
examples for this kind of services are in-memory caches like Memcached [Fit04] or Amazon’s
Dynamo file system [DHJ+07]. Interestingly, this trend away from monolithic systems towards
solutions with collaborating services mostly happens on the application and middleware tier but
not so much on the operating system level. Specialized services are still being developed around
the same commodity operating systems (i.e., Linux and Windows). This is a real problem in
terms of effectiveness, as these systems waste resources for features that are not required for
the specific use case at hand. Regarding the aforementioned security and reliability aspects, the
Trusted Computing Base (TCB) of such commodity systems is also unnecessary large, resulting
in a considerable amount of vulnerabilities. Apart from the usual stack and buffer overflows,
these often stem from unforeseen interactions with less commonly used features. Reducing a
commodity operating system kernel to a bare minimum in terms of features also has its limita-
tions, as was demonstrated recently with Linux: A minimal configuration to run a predetermined
service on a specific hardware configuration resulted in about 80% reduced code size, while
only half of the known security issues from the Common Vulnerabilities and Exposures database
(CVE) 1 could be eliminated [KTD+13].

Specialized library operating systems have the potential to vastly improve the situation,
which was shown in previous work like the the Mirage Unikernel [MMS+13] and Draw-
bridge [PBWH+11]. Such systems posses a small code base and a low resource footprint
from the beginning and are ideal for running inside virtual machines as provided by IaaS clouds.

1http://cve.mitre.org

TClouds D2.1.5 Page 45 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

In combination with an implementation language with a better type system, many of the security
issues found in current commodity systems are eliminated by design and result in a resource
efficient and secure solution.

In our Tailored Memcached subsystem, we therefore follow a clean slate approach by evalu-
ating the design and implementation space of using Haskell as a pure functional programming
language. Tailored Memcached explores how specialized runtime environments with fine-grained
tailoring and the benefits of a programming language that facilitates verification work together to
implement secure cloud services.

In the remainder of the chapter, we first provide a short overview of related work in the area
of operating system development in safe programming languages, library operating systems and
software tailoring. After that, we revisit security and reliability issues in current application stacks
that led to the idea of library operating systems for the cloud in Section 7.4. This also motivates
the use of Haskell, a pure functional programming language for our Tailored Memcached. Next,
we focus on the key aspect of our work, which comprises software tailoring in Section 7.5 and
possible strategies to verify the correctness of certain implementation features in Section 7.6.
The discussion of these subjects provides the basis for the description of the initial architecture of
Tailored Memcached, which can be found in Section 7.7. Finally, Section 7.8 draws conclusions
and outlines the road ahead.

7.2 Related Work

As Tailored Memcached touches a large number of different research subjects, we want to begin
with a short overview of each of these areas. First, we look into more popular, safe programming
languages as an alternative to implement services for a virtualized environment. Second, we
detail different approaches in the area of aspect-oriented programming to implement distinct
features of an application in an independent and reconfigurable fashion. The final part of this
section is concerned about the use of functional programming languages in operating systems.

7.2.1 Programming languages

Looking at the area of fully type-safe systems programming languages that can be used on
bare hardware, contemporary research strongly focuses on popular imperative, object-oriented
languages like Java and C#. A major disadvantage from a security perspective is, that these
languages were designed with a machine-independent bytecode representation in mind, thus
depending on a complex Just-In-Time compiler (JIT) as an integral part of the runtime sys-
tem to execute. Albeit some projects, like Singularity with its Bartok compiler [HL07] and
Maxine [WHVDV+13], also implement the JIT in a safe programming language instead of
C/C++, they still significantly increase the code size and possible attack surface. Dynamically
generated machine code also precludes some of the common security measures to mitigate
vulnerabilities like Data Execution Prevention (DEP). On top of that, the process of generating
the platform-specific machine code is also prone to bugs that might be exploited by deter-
mined attackers [RI11]. There are also approaches to statically translate Java programs into
machine code, but these either target user-level applications (e.g. GCJ [Fou13b] and Excelsior
JET [LLC13]), or are solutions specifically aiming at small real-time and embedded systems
(e.g., KESO [SSWSP10]) with different feature sets.

TClouds D2.1.5 Page 46 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

7.2.2 Aspects

Another topic of interest is how the fine-grained tailoring of the system can be accomplished. For
imperative programming languages exists a large body of research concerning aspect-oriented
methods to create highly modular and reconfigurable programs. Popular practical examples are
the AspectJ [Fou13a] and AspectC++ [SGSP02] compilers and the CiAO [LSHSP12] operating
system as a working demonstration of the application of these methods. In contrast to this, the
functional programming community seems to pay surprisingly little attention to the developments
in this area and how these techniques are applicable to these languages. Nevertheless, some
notable results for the Haskell language exist in the form of the UUAGC compiler [SAS+99],
which uses aspects to describe transformations on the internal program representations in a
modular fashion. The more general and theoretical paper on EffectiveAdvice [OSC10] contains
an alternative approach to UUAGC and can guarantee different levels of isolation between
program code weaved together by aspects.

7.2.3 Operating Systems

There is also existing work regarding operating system implementation in Haskell or other
related functional programming languages. Probably the first instances of such systems were
hOp [CB04] and the closely related House [HJLT05], which concentrate on a monadic framework
for low-level hardware interaction and provide traditional user-/kernel-space separation with a
defined set of system calls.

A similar approach was used for prototyping the seL4 Microkernel [KEH+09], which is
implemented in a simplified variant of Haskell. It can be used both as input to a theorem prover
for verification, as well as executed directly for simulation purposes. However, this prototype
was not supposed to serve as the final result, as the necessary runtime support and performance
characteristics were deemed incompatible with the goal of providing a high speed and fully
verified Microkernel. The performance-optimized realization of the seL4 kernel for actual use is
a complete rewrite in the C programming language, which has to be verified again whether it is
equivalent to the Haskell model.

Another approach from industry, Galois’ Haskell Lightweight Virtual Machine (HaLVM) [Gal13a],
is designed to interface with the paravirtualized environment of the Xen Hypervisor [BDF+03]
instead of managing physical hardware. It belongs to the family of library operating systems as
it does not differentiate between user- and kernel-space and the kernel is linked immediately to
the application and required libraries at compile-time. As this technical realization is very much
in line with the service architecture we propose in Section 7.7, we based our own prototype on
HaLVM. Unfortunately, the basic HaLVM platform is not flexible enough, in the sense that it
only supports Xen as the Hypervisor platform and not any other often encountered on IaaS clouds.
As the major design goal is of Tailored Memcached is the ability to tailor the software stack
to a given application, meaning that additional mechanisms are required to keep the code base
small. The Mirage approach [MMS+13] also provides a relatively small and efficient operating
systems library based on O’Caml, but is not particularly oriented towards reconfigurability and
correctness. With Tailored Memcached we try to improve upon these results both in terms of
security and flexibility regarding the service configuration.

TClouds D2.1.5 Page 47 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

7.3 Current Software Stacks
Developing a service with today’s standard tools typically results in a large software stack
when deploying the result on an IaaS cloud. While the actual logic encoded in the service is
usually small and can be measured in ten thousands lines of code, the supporting software stack
is multiple orders of magnitudes larger. For example, using the popular Java 7 platform to
implement ones service entails a dependency on a complex runtime system with a huge standard
library, which contains many features the application does not need. The runtime system also
depends on a commodity operating system that has been growing in features and size for at
least 15 years. Moreover, major parts of the entire platform are written in C and C++, which
are languages that contain lots of known pitfalls, especially regarding memory management.
Mistakes in that area often allow attackers to crash or even remotely execute code in networked
services.

For a preliminary evaluation of our prototype implementation described in Section 7.7.3,
we determined the TCB of the Hotspot Java Virtual Machine of OpenJDK 7 and the Linux 3.2
kernel. The amount of code that has to be trusted is already in the order of millions lines of code
and does not even include any library functions and administrative tools also necessary to boot
the platform.

7.4 Security and Reliability
The particular use case we have in mind for such tailored systems, security sensitive cloud
services, has very diverse characteristics what security actually means. This can range from
Memcached[Fit04], which typically does not enforce any sort of access control at all, up to
services which allow fine-grained control over who may access which record. As a basic rule,
exposed services should not contain any issues that might allow unauthorized parties to trigger
actions that were not intended. While it is conventional wisdom to verify every piece of incoming
data before actually processing it, we still see plenty violations of this rule in practice. Modern
system programming languages, like Java or C#, already enforce memory safety and thus prevent
common buffer overflow issues. There is, however, no special support for expressing additional
constraints that must be taken into account when handling data. Necessary data conversions for
middleware layers, like escaping to prevent SQL injections or cross-site-scripting attacks, are
not enforced by any platform on a language level. An elegant solution for many of the problems
described above lies in the type system of the programming language.

7.4.1 Type Safety
The Curry-Howard-Isomorphism [SU06] provides the theoretical foundation how the type system
of a language can be leveraged to statically guarantee certain properties of a computer program.
In practice, the need to provide type information is often seen as a nuisance instead of being used
for this purpose. The reason for this is that the type systems of the current widespread statically
typed languages are geared towards memory safety and enabling compiler optimizations instead
of the concerns of the application. However, extending the expressive power of a type system
often comes at the cost that type checking and inference is no longer a mechanical task that can be
done by the compiler without further assistance. There are ongoing efforts like ATS [CX05] and
Idris [Bra11] to remedy the situation by designing languages that try to find a useful compromise
between an entire theorem proving framework and traditional type systems. These are often

TClouds D2.1.5 Page 48 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

based on a functional language at the core with some form of dependent types, as these are
closer related to mathematical models than the more widespread imperative languages. Such
languages are still in an experimental stage, so we have chosen Haskell as a programming
language because it provides a mature basis with many extensions to the type system. These
help us to encode properties in the type system in a similar fashion to dependent types, as
demonstrated in [McB02].

As Haskell conveniently captures functions with side effects in a purely functional model
using Monads, it becomes much easier to reason about the behavior of code fragments. Un-
fortunately, the full Haskell programming language is unsound, so following this approach
still has certain loopholes. From a theoretical standpoint, the primary issue is that there are no
proper limitations on recursive functions. The type system does not enforce functions to return
eventually by demanding proof that a termination condition is present and guaranteed to become
true at some point. This is most visible by the fact that the keyword undefined is a valid value
for any type, similarly to null in other languages. However, such constructs are not used that
often in typical Haskell programs, as variables are principally immutable and have to be assigned
with their final value right away.

Another issue regarding the reasoning about Haskell code is that it allows access to functions
written in C and potentially unsafe memory operations that may disrupt unrelated parts of the
program. A relatively new development to remedy this issue is the introduction of the "Safe"
language extension in the Glasgow Haskell Compiler (GHC), the currently most popular Haskell
compiler. Actual application code can be restricted to call only safe modules and functions that
do not perform such potentially dangerous operations. This does not solve the problem entirely
as the language still has to interact with lower levels at some point. As such functions must be
explicitly trusted by placing additional keywords, it helps to make these more discoverable for
manual auditing.

Despite these limitations, we believe that writing software in Haskell and properly using
the type system will still produce much safer and reliable results. In Section 7.6 we will also
outline additional ways to prove correctness of certain aspects of the program. We also intend to
combine these with our approach to software tailoring in order to reduce the overall software
stack to the smallest possible size.

7.5 Tailoring

The goal of the tailoring process is to keep as little code as possible in the final program. Apart
from improved security, we also expect benefits in performance and reliability, as we eliminate
code paths that are not required for the use case at hand, but may contain faults that might
be triggered in certain circumstances. Adapting the entire software stack for a particular use
case and IaaS cloud platform provides plenty opportunity for specialization. In the following
sections we will give a short overview of subcomponents that impact the feature set of Tailored
Memcached.

7.5.1 Cloud provider environments
As a service should be able to run on as many IaaS cloud platforms as possible, we have to support
the virtual machine environments they provide. These often differ based on the virtualization
solution they employ. Fortunately, there is only a limited set of products that are available
and also seen on actual clouds, namely QEMU (in its KVM and HVM-Xen variant), HyperV,

TClouds D2.1.5 Page 49 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

VMware, paravirtualized Xen and VirtualBox. While each of these, except for the paravirtualized
Xen, provides an environment that behaves very much like a standard x86 machine, they still need
special drivers for accessing virtual network and storage devices. If we know what virtualization
layer the IaaS cloud uses, we do not need any infrastructure to handle detection at runtime and
can just link against the proper variant when compiling the tailored instance. A paravirtualized
Xen environment is also quite different compared to the standard x86 model, especially in the
area of memory management. Fully virtualized environments provides the same interface as
the corresponding hardware unit for setting up memory mappings, while the actual memory
allocation on the physical machine is managed by the virtual machine monitor and invisible to
the guest system. With paravirtualized Xen, these mappings are still visible to the guest and
it has to request changes by going through a special Hypercall-API instead of being able to
directly reconfigure the memory management unit. In order to also support this platform it is
not sufficient to have configurable network and storage drivers, but also to keep the memory
management subsystem replaceable.

7.5.2 Application requirements
Apart from differences in the platform from the cloud provider, we have to anticipate the needs
of the hosted service application. As we consider mainly simple, cooperating network services
we need to keep the system much more configurable than what, for example, a standard Linux
can provide. For simple services like Memcached [Fit04] it is not even necessary to have support
for persistent storage or a filesystem. Regarding the network stack, many services require either
TCP or UDP, but it is very seldom that both protocol are needed. Support for auxiliary internet
protocols, like DNS name resolution is also a function often not required in internal backend
services. The implementation of each of these features typically requires in the order of ten
thousands lines of code each, which can not be disabled individually on commodity operating
systems.

7.5.3 Implementation strategies
Such fine-grained variability needs systematic organization to stay manageable. On the imple-
mentation side we have to find a strategy to write maintainable code in the Haskell programming
language that is extremely modular. On a higher level we need a feature model for the application
developer, so that he can easily select which features are actually needed for his use case to
compile a kernel image. As there are certain dependencies between the individual features,
like UDP requiring IP support, the model needs to be able to encode such restrictions in a
flexible way and ensure that the final configuration is valid. Fortunately, the required tool
support is readily available from free as well as commercial offerings, so we will not go into
further details regarding this aspect. One recent example for such a tool is the FeatureIDE
framework [KTS+09].

This leaves us with the question how to keep the actual program code reconfigurable. On a
module level it is very simple to just remove the files implementing the corresponding module
from the body of compiled code. For changes within files, most Haskell compilers also offer
to use the preprocessor of the C language to add macro support and conditional inclusion
of code. While this may be acceptable for a low number of variation points, further testing
has shown [LST+06, TSD+12] that it has serious shortcomings regarding scalability in more
complex scenarios. The C preprocessor also only works on the text representation of the source
code and does not allow any interaction with the actual structure of the program. This can lead

TClouds D2.1.5 Page 50 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Figure 7.1: Software layers of HsMemcached prototype architecture

to program code in certain configurations that is still syntactically correct, but does no longer
make any sense in the application context. In our use case of critical network services, such
misbehaving program parts may create information leaks and other security relevant issues.

This is why we actually need better guarantees, which can only be obtained by tackling the
reconfiguration problem on the language level and leveraging the type system. Therefore we take
some of the general technique described in EffectiveAdvice [OSC10] in Tailored Memcached
as a basis to explicitly describe whether features may interact with each other and also restrict
the ways how they can do so. Using this approach, program features are expressed as functions
that can be combined using special operators to form higher-level operations. We want to extend
this notion to enforce certain interaction patterns through phantom types that exist only during
compile time. This allows us to express restrictions like, for example, data that may only be
passed over a network connection if it belongs to the corresponding authenticated user. If one
tries to pass data without prior authentication, the types will not be compatible and thus prevent
the compilation of a defective program. When we have such collection of features with additional
guarantees expressed in the Haskell types, we gain further confidence in the correctness of the
program.

7.6 Towards Software Verification

Building a completely verified system from the application via the compiler through to the
hardware level is not feasible today, especially with the complexity involved in a cloud platform.
Instead, our approach allows easier verification of certain aspects of the service. This is an
interesting property to have, as the security requirements of a service are usually limited to
certain aspects of the whole system. As an example, it may be considered a much more serious
problem if one person can access another persons’ tax data than if just the same person’s tax
estimates are calculated wrong. While both cases are correctness issues, only the first is actually
relevant for security. Due to the isolation properties we gain from exploiting the Haskell type
system as explained in Section 7.5.3, we can reduce the amount of code that has to be verified to
these critical aspects.

TClouds D2.1.5 Page 51 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Hotspot
Java VM Linux HaLVM

+ Libraries Memcached Haskell
Memcached

Linux-based
Memcached

Tailored Mem-
cached on HaLVM

Haskell 0 0 83,279 0 2,449 0 85,728
Java 100,246 0 0 0 0 0 0
C/C++/C-- 444,603 859,901 69,028 8,947 0 868,848 69,028
Assembler 858 17,172 1,691 0 0 17,172 1,691
Total 545,707 877,073 153,998 8,947 2,449 886,020 156,447

Table 7.1: Comparison of Source Lines of Code (SLoC) of different software components

7.7 System Architecture
In this section we give an overview about the basic system architecture we aim for in Tailored
Memcached.

7.7.1 Overview
As described in Section 7.6, we take advantage of Haskell’s type system as much as possible. In
order to do so, we need also to have as much code of the platform written in Haskell, without any
large operating system between the language runtime and the VM environment. Building blocks
that are typically running in a kernel context, like network protocols and filesystem drivers, can
be written in type-safe Haskell code this way.

Figure 7.1 shows a typical resulting software stack for our implementation of Memcached we
present in Section 7.7.3. A thin operating system layer between the virtual machine environment
and the lower-level application components houses the necessary runtime system for the Haskell
language. The TCP/IP engine in the network subsystem builds the bridge between the packet-
based interface on the operating system level and the application-level protocol. The main
application communicates both with the operating system directly as well as its application-
specific protocol handler. Optional features, like different protocol variants and specific service
functions are depicted with dashed lines.

7.7.2 Runtime implementation
A good starting point for a thin layer to execute the Haskell runtime without a fully featured operat-
ing system already exists in form of the Haskell Lightweight Virtual Machine (HaLVM) [Gal13a].
It currently allows direct execution of Haskell programs on the Xen Hypervisor [BDF+03] and
also has some companion projects implementing higher-level operating system functionality,
like a TCP/IP stack with HaNS [Gal13b]. As pointed out in Section 7.5.1, our goal with Tailored
Memcached is to provide a platform for simple network services in IaaS clouds, so support
for a wider range of virtualization environments needs to be added. This involves rewriting all
calls to the Xen Hypervisor in HaLVM to perform equivalent tasks on fully virtualized Intel
x86 hardware and providing an abstract driver interface for different kinds of virtual network
devices. Additionally, the current HaLVM and HaNS subsystems are neither reconfigurable with
an explicit feature model nor do they support any aspect-oriented features as described in Section
7.5.3.

7.7.3 Current Prototype Work
We have a preliminary Haskell reimplementation of Memcached, dubbed HsMemcached, as a
typical cloud-based network service that serves as the primary test case. It basically provides
a key/value store with some extensions for direct data manipulation and atomic operations. In

TClouds D2.1.5 Page 52 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

contrast to the original implementation, most functions can individually be enabled or disabled at
compile time and it also supports different in-memory data structures as storage backends. The
reconfiguration is realized using the EffectiveAdvice [OSC10] programming technique already
discussed in Section 7.5.3. Memcached was chosen because of its manageable complexity while
still presenting plenty configuration options, as it supports several network protocol variants
(UDP/TCP, text/binary) and command sets. An in-memory storage service also represents the
worst case scenario for the Haskell programming language: Since the language is pure, extra
work is needed in the program code to explicitly keep track of global state and side effects, and a
Memcached implementation almost entirely consists of such operations.

In order to compare the TCB of different components typically used on IaaS clouds and our
own prototype, we measured the Source Lines of Code (SLoC) using sloccount [Whe01] of
various software packages. The results are shown in Table 7.1 and lists the following items we
examined from left to right: The Hotspot Java Virtual Machine from OpenJDK 7u6 (without class
libraries), the Linux kernel in version 3.2.48, the HaLVM runtime including network support and
Haskell libraries, the C reference implementation of Memcached and finally own reconfigurable
HsMemcached. Test cases, benchmarks and also any platform specific parts not relevant for
the Intel x86 platform were stripped from the source code before measurement in all cases. We
also removed many subsystems from the Linux kernel (i.e. audio support, esoteric networking
features, most device drivers) that probably can not be activated in a IaaS cloud setting anyways
to get a better estimate of what might actually be reachable code once the system is running.
The last two columns show the actual TCB required to run a standard Memcached on Linux,
compared to our implementation in context of Tailored Memcached. The overall code that is
needed in the VM environment to provide the same service is almost an order of magnitude
smaller than using the reference implementation. For our tailored HsMemcached we included all
possible optional features, the entire HaLVM and HaNS layers, and all the libraries the system
depends upon, even if many of the modules in these libraries will never end up in the produced
binary.

More importantly, the majority of the code present on the platform is written in strictly typed
Haskell, as opposed to error-prone C with the traditional approach.

7.8 Conclusion
The goal of Tailored Memcached is to leverage advanced type systems and functional program-
ming to provide an example for tailored services with an emphasis on security and reliability.
The overall trusted computing base of a deployed service can be made one magnitude smaller
than with today’s common cloud platforms using tailored software. We achieve this small size
using a specialized runtime and fine-grained software tailoring techniques, while still being
able to support a wide range of applications. A first prototype implementation of a tailored
Memcached shows promising results.

TClouds D2.1.5 Page 53 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Chapter 8

S3 Confidentiality Proxy

Chapter Authors: Alexander Bürger

We present the S3 confidentiality proxy, which ensures confidentiality of data stored in
untrusted commodity cloud storage. The encryption keys are not stored in the storage cloud but
in the proxy itself. Hence the cloud provider or any other third party has no means to decrypt the
data. The immense value of such an component became very prominent this year in the light of
the PRISM scandal. The S3 proxy was implemented in two variants. The first is a standalone S3
Proxy Appliance which can be put into an office and provides a standard network fileshare to the
user. The data stored there is transparently encrypted and put into the commodity cloud storage.
The second variant is the integration into the TrustedServer. The security kernel was extended
with the S3 proxy functionality and the encryption is coupled with the TVD encryption. This
setup allows the secure integration of legacy cloud storage into the Trusted Infrastructure Cloud.
The principle functionality of both integrations is depicted in Figure 8.1.

8.1 S3 Proxy Appliance

This section describes the S3 Proxy Appliance, the standalone solution for storing encrypted
data within commodity clouds.

8.1.1 Overview

The S3 Proxy Appliance conduces as a standalone transparent encryption component for all
connected clients on the internal network side. All traffic to/from the attached S3-storage is
transparently encrypted and decrypted respecetively, with a user’s chosen passphrase.

Figure 8.1: Principal functionality of the S3 confidentiality proxy

TClouds D2.1.5 Page 54 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Figure 8.2: Internal functionality of the S3 Proxy Appliance

8.1.2 Technical implementation
The S3 Proxy Appliance runs with an operating system with a stripped down linux kernel,
adapted just to support the given hardware at first. On top of it, only software components are in-
stalled, that are essential for the rudimentary service provisioning, namely DHCPD, SMB/CIFS,
S3QL and an APACHE webserver. Software components, not facilitating the inteded use are not
installed at all and cannot be reinstalled after the appliance is produced.
The production mechanism, described in TC-D2.1.2 chapter 6 ensures, that the machine’s soft-
ware state is not circumvented intentionally or accidentialy by a user, protecting the appliance’s
integrity. In addition, a full-disk encryption and an integrity measurement, based on TPM-
capabilities protect the machine’s integrity even if the appliance is powered down. No dedicated
user account exists so that all login attempts fail.

Once, the machine is configured for its intended use, there is no direct interaction to the machine
required anymore, in order to fullfill the envisaged task. To sum up, the special features of the
hardware are two physical network connection possibilities and the TPM. One network port (re-
ferred to as eth1) delivers DHCP-adresses in the Class-C network range to attached components.
See figure Figure 8.2 The other network port (referred to as eth0) provides a connection to the
outside world, namely the internet. The direct communication between these two networks on
the appliance itself is strictly prohibited by iptables-rules, preventing plaintext data leakage.

TClouds D2.1.5 Page 55 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

The S3 storage applicance offers an automounting mechanism for commodity cloud storage
via the external (eth0), and a fileserver service (smbfs) on the internal network interface (eth1).
As the central component, a FUSE1 file system (S3QL2) is used, which also includes a cipher-
module responsible for encrypting data, before it is being transferred to the online data storage.

S3QL is a standard conforming, full featured UNIX file system that is conceptually indistinguish-
able from any local file system. Furthermore, S3QL has additional features like compression,
encryption, data de-duplication, immutable trees and snapshotting which makes it especially
suitable for online backup and archival.
When the file system is created initially, mkfs.s3ql generates a 256 bit master key by reading
from /dev/random. The master key is encrypted with the passphrase that is entered by the user,
and then stored with the rest of the file system data. Since the passphrase is only used to access
the master key (which is used to encrypt the actual file system data), the passphrase can easily be
changed. Data is encrypted with a new session key for each object and each upload. The session
key is generated by appending a nonce to the master key and then calculating the SHA256 hash.
The nonce is generated by concatenating the object id and the current UTC time as a 32 bit float.
Once the session key has been calculated, a SHA256 HMAC is calculated over the data that
is to be uploaded. Afterwards, the data is compressed with the LZMA Bz2 algorithm or LZ
and the HMAC inserted at the beginning. Both HMAC and compressed data are then encrypted
using 256 bit AES in CTR mode. Finally, the nonce is inserted in front of the encrypted data and
HMAC, and the packet is send to the backend as a new S3 object.

Data flowing from the internally attached clients via eth1 to the S3 Proxy appliance will be
encrypted with a passphrase and transferred to the online data storage afterwards via eth0, which
is strictly isolated from eth1. See figure Figure 8.2. Vice versa, a pull-request of online stored
data will lead to a transfer of the encrypted data from the cloud provider to the S3 proxy appliance.
Not till then it will be decrypted and allocated to the plaintext smb-share for delivery to the
attached clients, via the internal network interface only. Since the encryption key resides only
within the appliance itself, at no time the cloud provider does have access to it.

As well as the AWS credentials, the passphrase to en-/decrypt the online stored data is kept on
the appliance itself. Therefore all user-related data, to login to Amazon (in the presented scenario)
and the users’ chosen passphrase is protected by the full-disk-encryption of the appliance, even
when it’s powered off. The access clearances to the decrypted data can be steered by fine-grained
access-profiles of the samba-server. Thus the S3 Proxy Appliance can be used in a private, as
well as in a business environment, considering different roles of the appliance’s administrator.

Configuration

For configuration purposes of the S3 proxy apppliance, an apache webserver provides a web-
interface, where the user is able to choose between different commodity cloud-storage providers
(such as Amazon, Rackspace, SkyDrive, GoogleDrive, etc.) to be used. In addition, the user is
forced to set a passphrase for the en- and decryption process of data to be saved to the chosen
online data storage provider.
This configuration form can only be reached from the internal network (via eth1), preventing a
reconfiguration from outside the class-C network. As an example the principal steps to configure
and use the appliance is described on the basis of Amazon’s S3 storage, which can be used free

1http://fuse.sourceforge.net/
2http://code.google.com/p/s3ql/

TClouds D2.1.5 Page 56 of 64

http://fuse.sourceforge.net/
http://code.google.com/p/s3ql/

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Figure 8.3: Configuration interface of the S3 Proxy Appliance

TClouds D2.1.5 Page 57 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

of charge.
From the main form (see figure Figure 8.3), the user chooses a storage provider (here: Amazon).
After that, the presented credential-fields have to be filled. The backend login and password for
accessing S3 are not the user id and password used to login into Amazon Webpage, but the "AWS
access key id" and "AWS secret access key" provided by the users AWS "MyAccountAccess
Identifiers". The user enters the URL to the S3-bucket which has had to be created via "Amazon
AWS Console" beforehand. In addition, a passphrase has to be chosen, in order to en-/decrypt
data transferred to the commodity cloud. If no password is provided, the online data storage will
be mounted in plaintext. Potential already existing encrypted files within the Amazon S3-bucket,
will stay encrypted of course. Although they are visible, the files cannot be decrypted.
Clicking "OK" results in an attempt to mount the S3-bucket with the provided configuration
to the S3 Proxy Appliance permanently. Finally, the applicance ensures the provisioning of
the mountpoint to all attached clients on the internal network, so that the external storage is
disposable immediately.

8.2 S3 Proxy functionality within TrustedServer
This section describes the port of the S3 Proxy Appliances’ functionality to TrustedServer.

8.2.1 Overview
In principle, the capabilities are almost the same as for the standalone version, with the excep-
tion that the whole functionality lies in the TrustedServer’s computing base, and is therefore
considered as a trusted component.
As the standalone version, the TrustedServer S3Proxy solution provides a transparent encryption
for all internally connected virtual machines (compartments) running on the Trusted Server. In
addition, the isolation of Trusted Virtual Domains (TVDs) i.e. the information flows between
them, is taken into consideration by inserting a cryptographic stacked file system between s3ql
and the samba file server.

8.2.2 Technical implementation
Technically, the S3QL file system serves as the basis of the solution (as depicted in figure
Figure 8.4), but is just used to mount the external storage. The cryptographic capabilities of s3ql
are not used here, since a more fine grained PKI is needed, in order to disinguish between data
stored from different TVDs. This is realized by adding an ecryptfs-layer on top of the initially
(plaintext) mounted s3ql filesystem, which is able to handle multiple keys and to report different
mount-points to the samba file server. The used keys for en-/decryption on a per-file-basis,
are derived from the TVDs, configured within the TrustedInfrastructure, allowing a TVD-wide
sharing of the mountpoint. That means, that a the cloud storage endpoint can be shared between
different TVDs on the client side without apprehending data leakageor loss. In that sense, the S3
Proxy Appliance serves as an exit-node for TrustedInfrastructure’s TVD concept.

Configuration

The configuration is described in TC-D2.1.4-2.3.3 section 3.1.10.

TClouds D2.1.5 Page 58 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Figure 8.4: S3 Confidentiality Proxy within TrustedServer

TClouds D2.1.5 Page 59 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Bibliography

[B+13a] Alysson Bessani et al. TClouds – D2.2.4 Adaptive Cloud-of-Clouds Archi-
tecture, Services and Protocols. Deliverable D2.2.4, TClouds Consortium,
September 2013.

[B+13b] Sören Bleikertz et al. TClouds – D2.3.4 Automation and Evaluation of Se-
curity Configuration and Privacy Management. Deliverable D2.3.4, TClouds
Consortium, September 2013.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art of
Virtualization. In Proceedings of the 19th ACM symposium on Operating
systems principles, SOSP ’03, pages 164–177, New York, NY, USA, 2003.
ACM.

[Bra11] Edwin C. Brady. IDRIS — Systems Programming Meets Full Dependent Types.
In Proceedings of the 5th ACM workshop on Programming languages meets
program verification, PLPV ’11, pages 43–54, New York, NY, USA, 2011.
ACM.

[BS+13] Sören Bleikertz, Norbert Schirmer, et al. TClouds – D2.1.4/D2.3.3 Proof of
Concept Infrastructure / Implementation of Security Configuration and Policy
Management. Deliverable D2.1.4/D2.3.3, TClouds Consortium, April 2013.

[CB04] Sébastien Carlier and Jérémy Bobbio. hOp. Announcement on Haskell-
cafe mailing list. http://www.haskell.org/pipermail/haskell-cafe/2004-
February/005839.html, February 2004.

[CL99] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proceedings of
the 3rd Symposium on Operating Systems Design and Implementation, OSDI
’99, pages 173–186, 1999.

[CLM+10] Luigi Catuogno, Hans Löhr, Mark Manulis, Ahmad-Reza Sadeghi, Christian
Stüble, and Marcel Winandy. Trusted Virtual Domains: Color Your Network.
Datenschutz und Datensicherheit (DuD) 5/2010, pages 289–294, 2010.

[CX05] Chiyan Chen and Hongwei Xi. Combining programming with theorem proving.
SIGPLAN Not., 40(9):66–77, September 2005.

[D+13] Mina Deng et al. TClouds – D3.1.5 Proof of concept for home healthcare.
Deliverable D3.1.5, TClouds Consortium, October 2013.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. In Proceedings of twenty-first ACM SIGOPS symposium on Operating

TClouds D2.1.5 Page 60 of 64

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

systems principles, SOSP ’07, pages 205–220, New York, NY, USA, 2007.
ACM.

[DKSP+12] Tobias Distler, Simon Kuhnle, Wolfgang Schröder-Preikschat, Sören Bleikertz,
Christian Cachin, Imad M. Abbadi, Cornelius Namiluko, Andrew Martin, Rüdi-
ger Kapitza, Johannes Behl, Klaus Stengel, Seyed Vahid Mohammadi, Sven
Bugiel, Stefan Nürnberger, Hugo Ideler, Ahmad-Reza Sadeghi, Mina Deng,
Emanuele Cesena, Antonio Lioy, Gianluca Ramunno, Roberto Sassu, Davide
Vernizzi, and Alexander Kasper. D2.1.2 – Preliminary Description of Mecha-
nisms and Components for Single Trusted Clouds. TClouds Project Deliverable,
September 2012.

[Fit04] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal,
2004(124):5–, August 2004.

[Fou13a] Eclipse Foundation. AspectJ Programming Language. http://eclipse.
org/aspectj/, 2013.

[Fou13b] Free Software Foundation. The GNU Compiler for the Java Programming
Language. http://gcc.gnu.org/java/, 2013.

[Gal13a] Galois, Inc. HaLVM – Haskell Lightweight Virtual Machine. http://corp.
galois.com/halvm, 2013.

[Gal13b] Galois, Inc. HaNS Network Stack. http://corp.galois.com/hans,
2013.

[GSVL09] A. N. Bessani G. S. Veronese, M. Correia and L. C. Lung. Spin one’s wheels?
byzantine fault tolerance with a spinning primary. In Proceedings of the 28th
International Symposium on Reliable Distributed Systems, SRDS ’09, pages
135–144, 2009.

[HJLT05] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew Tolmach. A prin-
cipled approach to operating system construction in Haskell. In Proceedings of
the 10th ACM SIGPLAN international conference on Functional programming,
ICFP ’05, pages 116–128, New York, NY, USA, 2005. ACM.

[HL07] Galen C. Hunt and James R. Larus. Singularity: Rethinking the Software Stack.
ACM SIGOPS Operating Systems Review, 41:37–49, 2007.

[int10] Using Intel AES New Instructions and PCLMULQDQ to Significantly Improve
IPSec Performance on Linux. http://www.intel.de/content/dam/
www/.../aes-ipsec-performance-linux-paper.pdf, 2010.

[KBC+12] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel. Resource-efficient byzantine fault
tolerance. In Proceedings of the 7th European Conference on Computer Sys-
tems, EuroSys ’12, pages 295–308, 2012.

[KBS+12] Rüdiger Kapitza, Johannes Behl, Klaus Stengel, Tobias Distler, Simon Kuhnle,
Wolfgang Schröder-Preikschat, Christian Cachin, and Seyed Vahid Mohammadi.
Cheap BFT, pages 88–111. In [DKSP+12], September 2012.

TClouds D2.1.5 Page 61 of 64

http://www.tclouds-project.eu/downloads/deliverables/TC-D2.1.2-Prelim-Mechanisms-Components-Single-Trusted-Clouds_M24.pdf
http://www.tclouds-project.eu/downloads/deliverables/TC-D2.1.2-Prelim-Mechanisms-Components-Single-Trusted-Clouds_M24.pdf
http://eclipse.org/aspectj/
http://eclipse.org/aspectj/
http://gcc.gnu.org/java/
http://corp.galois.com/halvm
http://corp.galois.com/halvm
http://corp.galois.com/hans
http://www.intel.de/content/dam/www/.../aes-ipsec-performance-linux-paper.pdf
http://www.intel.de/content/dam/www/.../aes-ipsec-performance-linux-paper.pdf

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
Verification of an OS Kernel. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles, pages 207–220, Big Sky, MT, USA, Oct 2009.
ACM.

[KTD+13] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin
Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann,
and Rüdiger Kapitza. Attack Surface Metrics and Automated Compile-Time
OS Kernel Tailoring. In Proceedings of the 20th Annual Network & Distributed
System Security Symposium, NDSS’13, Berkeley, CA, USA, 2013. USENIX
Association.

[KTS+09] Christian Kastner, Thomas Thum, Gunter Saake, Janet Feigenspan, Thomas
Leich, Fabian Wielgorz, and Sven Apel. FeatureIDE: A tool framework for
feature-oriented software development. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages 611–614, Washington,
DC, USA, 2009. IEEE Computer Society.

[LLC13] Excelsior LLC. Excelsior JET. http://www.excelsior-usa.com/
jet.html, 2013.

[LSHSP12] Daniel Lohmann, Olaf Spinczyk, Wanja Hofer, and Wolfgang Schröder-
Preikschat. The Aspect-Aware Design and Implementation of the CiAO
Operating-System Family. Transactions on Aspect-Oriented Software Develop-
ment (TAOSD IX), IX:168–215, 2012.

[LST+06] Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf Spinczyk, and Wolf-
gang Schröder-Preikschat. A quantitative analysis of aspects in the eCos kernel.
SIGOPS Oper. Syst. Rev., 40(4):191–204, April 2006.

[McB02] Conor McBride. Faking it – Simulating dependent types in Haskell. Journal of
functional programming, 12(4-5):375–392, 2002.

[MMS+13] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsosand David Scott,
Balraj Singh, Thomas Gazagnaireand Steven Smith, Steven Hand, and Jon
Crowcroft. Unikernels: Library Operating Systems for the Cloud. In Pro-
ceedings of the 18th international conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’13, New York, NY,
USA, 2013. ACM.

[OSC10] Bruno C. d. S. Oliveira, Tom Schrijvers, and William R. Cook. EffectiveAdvice:
Disciplined Advice with Explicit Effects. In Proceedings of the 9th International
Conference on Aspect-Oriented Software Development, AOSD ’10, pages 109–
120, New York, NY, USA, 2010. ACM.

[PBWH+11] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and
Galen C. Hunt. Rethinking the Library OS from the Top Down. In Proceedings
of the 16th international conference on Architectural Support for Programming

TClouds D2.1.5 Page 62 of 64

http://www.excelsior-usa.com/jet.html
http://www.excelsior-usa.com/jet.html

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

Languages and Operating Systems, ASPLOS’11, New York, NY, USA, 2011.
ACM.

[Per13] Nuno Pereira. TClouds – D3.2.5 Smart Lighting System Final Report. Deliver-
able D3.2.5, TClouds Consortium, October 2013.

[R+13] Gianluca Ramunno et al. TClouds – D2.4.3 Final Reference Platform and Test
Case Specification. Deliverable D2.4.3, TClouds Consortium, October 2013.

[RI11] Chris Rohlf and Yan Ivnitskiy. Attacking Clientside JIT Compil-
ers. http://www.matasano.com/research/Attacking_
Clientside_JIT_Compilers_Paper.pdf, 2011.

[S+12a] Roberto Sassu et al. TClouds – Initial Component Integration, Final API
Specification, and First Reference Platform. Deliverable D2.4.2, TClouds
Consortium, October 2012.

[S+12b] Norbert Schirmer et al. TClouds – Preliminary Description of Mechanisms
and Components for Single Trusted Clouds. Deliverable D2.1.2, TClouds
Consortium, September 2012.

[SAS+99] S. Doaitse Swierstra, Pablo R. Azero Alcocer, Joao Saraiva, Doaitse Swierstra,
Pablo Azero, and JoÃčo Saraiva. Designing and Implementing Combinator
Languages. In Third Summer School on Advanced Functional Programming,
volume 1608 of Lecture Notes in Computer Science, pages 150–206. Springer-
Verlag, 1999.

[SGSP02] Olaf Spinczyk, Andreas Gal, and Wolfgang SchrÃűder-Preikschat. AspectC++:
An Aspect-Oriented Extension to C++. In Proceedings of the 40th International
Conference on Technology of Object-Oriented Languages and Systems, CRPIT
’02, pages 53–60. Australian Computer Society, Inc., February 2002.

[SK99] Bruce Schneier and John Kelsey. Secure audit logs to support computer forensics.
ACM Trans. Inf. Syst. Secur., 2(2):159–176, May 1999.

[SSWSP10] Isabella Stilkerich, Michael Stilkerich, Christian Wawersich, and Wolfgang
Schröder-Preikschat. KESO: An Open-Source Multi-JVM for Deeply Embedded
Systems. In Tomas Kalibera and Jan Vitek, editors, Proceedings of the 8th
International Workshop on Java Technologies for Real-Time and Embedded
Systems, pages 109–119, New York, NY, USA, 2010.

[SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard
Isomorphism, volume 149 of Studies in Logic and the Foundations of Mathe-
matics. Elsevier Science Inc., New York, NY, USA, 2006.

[SVCBL10] G Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk
Lung. Ebawa: Efficient byzantine agreement for wide-area networks. In
High-Assurance Systems Engineering (HASE), 2010 IEEE 12th International
Symposium on, pages 10–19. IEEE, 2010.

[tcg] Trusted Computing Group. http://www.trustedcomputinggroup.
org.

TClouds D2.1.5 Page 63 of 64

http://www.matasano.com/research/Attacking_Clientside_JIT_Compilers_Paper.pdf
http://www.matasano.com/research/Attacking_Clientside_JIT_Compilers_Paper.pdf
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org

D2.1.5 – Final Reports on Requirements, Architecture, and Components
for Single Trusted Clouds

[TSD+12] Reinhard Tartler, Julio Sincero, Christian Dietrich, Wolfgang Schröder-
Preikschat, and Daniel Lohmann. Revealing and Repairing Configuration
Inconsistencies in Large-Scale System Software. International Journal on
Software Tools for Technology Transfer (STTT), 14(225):531–551, 2012.

[VS13] Paulo Viegas and Paulo Santos. TClouds – D3.2.4 Smart Lighting System Final
Prototype. Deliverable D3.2.4, TClouds Consortium, September 2013.

[Whe01] David A. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/, 2001.

[WHVDV+13] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan, Lau-
rent Daynès, and Douglas Simon. Maxine: An Approachable Virtual Machine
For, and In, Java. ACM Transactions on Architecture and Code Optimization
(TACO), 9(4):30:1–30:24, January 2013.

TClouds D2.1.5 Page 64 of 64

	Introduction
	TClouds — Trustworthy Clouds
	Activity 2 — Trustworthy Internet-scale Computing Platform
	Workpackage 2.1 — Trustworthy Cloud Infrastructure
	Deliverable 2.1.5 — Final Reports on Requirements, Architecture, and Components for Single Trusted CloudsPreliminary Description of Mechanisms and Components for Single Trusted Clouds

	I TClouds Prototypes for Single Trusted Cloud
	Trustworthy OpenStack
	Motivation
	Architecture

	Trusted Infrastructure Cloud
	Motivation
	Architecture
	Conclusion

	II TClouds Subsystems
	Remote Attestation Service
	Architecture summary
	Update: Integrity Reports Optimization
	Update: Definition of New Analysis Types
	Update: Support for Ubuntu distributions

	Log Service
	New features
	Incremental and Asynchronous verification
	Secure communication
	New core library

	Design and implementation
	Building blocks
	Integration in OpenStack ``Folsom''

	Cheap BFT
	Introduction
	Background and Related Work
	Basics of BFT Systems
	CheapBFT
	Spinning
	Comparison of CheapBFT and Spinning

	RotatingCheap
	Initialization
	Communication

	Evaluation
	Throughput
	CPU Load
	Network Load
	Result

	Conclusion

	Tailored VMs: Key / Value Store
	Introduction
	Related Work
	Programming languages
	Aspects
	Operating Systems

	Current Software Stacks
	Security and Reliability
	Type Safety

	Tailoring
	Cloud provider environments
	Application requirements
	Implementation strategies

	Towards Software Verification
	System Architecture
	Overview
	Runtime implementation
	Current Prototype Work

	Conclusion

	S3 Confidentiality Proxy
	S3 Proxy Appliance
	Overview
	Technical implementation

	S3 Proxy functionality within TrustedServer
	Overview
	Technical implementation

	Bibliography

