

TClouds — Trustworthy Clouds

BFT-SMART — STATE MACHINE
REPLICATION

State Machine Replication (SMR)

[1] is a classical fault-tolerance

technique in which a set of ser-

vice replicas can be consistently

updated in such a way that the

crash of a subset of some of

them does not prevent the ser-

vice to be provided. This tech-

nique has been extensively used

to implement critical systems

(e.g., datastores, coordination

services like Zookeeper) in inter-

net-scale infrastructures (e.g.,

Google, MSN, Yahoo!).

The last decade saw an impres-

sive theoretical progress on Byz-

antine Fault-Tolerant (BFT) SMR,

in which crashes, data corrup-

tions and intrusions are tolerated.

However, almost none of these

techniques have been deployed

in practical systems. One of the

key reasons for this situation is

the fact that there is no robust

implementation of BFT SMR avail-

able, just proof-of-concept proto-

types. This situation makes it dif-

ficult to use this technique, since

implementing a BFT SMR protocol

is far from trivial, with many sub-

tleties that may lead even spe-

cialists to commit mistakes.

In TClouds we addressed the

challenge of implementing a SMR

library tolerating not only

crashes, but also Byzantine

faults. This library, called BFT-

SMaRt, implements all distributed

protocols required by SMR [2,3],

Simplicity. Our emphasis on

correctness and completeness

made us avoid the use of fragile

optimizations that could bring

extra complexity or add unneces-

sary corner cases to the system.

This emphasis also made us

Introduction

Key Features

www.tclouds-project.eu

Figure 1: BFT-SMaRt Architecture.

targeting not only high-

performance, but also complete-

ness (implementing all corner

cases) and extensibility.

BFT-SMaRt aims not only to

bridge the gap of the absence of

BFT SMR implementation, but

also to provide a Java-based

open-source implementation for

state machine replication in gen-

eral, since as far as we know,

there is no crash fault-tolerant

SMR framework available on the

web. BFT-SMaRT can be used

both to implement experimental

next-generation dependable ser-

vices and as a robust codebase

for developing new protocols and

replication techniques.

choose Java instead of C/C++ as

the implementation language.

Somewhat surprisingly, even with

these design choices, the per-

formance of our system is still

better than that of some C-based

SMR prototypes.

Modularity. BFT-SMaRt imple-

ments the Mod-SMaRt protocol

[3], a modular SMR protocol that

uses a well-defined consensus

module in its core [2]. On the

other hand, systems like PBFT

[4] are implemented in a mono-

lithic way, without a clear separa-

tion between protocols. In our

opinion, modular alternatives

tend to be easier to implement

and reason about, when com-

pared to monolithic protocols.

Besides such basic protocols, BFT

-SMaRt also implements state

transfer and reconfiguration.

Reconfiguration and State

Transfer. All previous BFT SMR

systems assume a static system

that cannot grow or shrink over

time. BFT-SMaRt, on the other

VP-Consensus

Reliable and Authenticated
Channels

Mod-SMaRt
State

Transfer
Reconfig

Extensible State Machine Replication

TClouds — Trustworthy Clouds

BFT-SMART — STATE MACHINE
REPLICATION

hand, considers a dynamic sys-

tem model where replicas can

join and leave the service group.

This model adds the challenge of

how to make the new replicas

obtain the current state of the

service in order to ensure consis-

tency for executing the next op-

erations issued to the system.

We addressed this by devising a

state transfer protocol that is

triggered after a replica joins the

group. The same protocol is also

used for recovering crashed repli-

cas (after a restart).

Extensible API. Our library en-

capsulates all the complexity of

SMR inside a simple and extensi-

ble API that can be used by pro-

grammers to implement determi-

nistic services. If the application

requires advanced features not

supported by this basic program-

ming model, these features can

be implemented with a set of

plug-ins both at the client and at

the server.

Multi-core awareness. BFT-

SMaRt takes advantage of ubiqui-

tous multicore server architec-

tures to improve some costly

processing tasks on the critical

path of the protocol. In particu-

lar, our preliminary tests show

that, when configured with client

public-key signatures for added

security a replica can process

around 5K messages/second in

single core servers, 20K mes-

sages/second in 4-core servers,

32K messages/sec in 8-core serv-

ers, 32K messages/sec in 8-core

servers and up to 48K messages/

sec in 16-core servers (all tests

done with 1024 RSA and 5-byte

requests.

High Performance. As men-

tioned before, BFT-SMaRt was

built for correctness, modularity

and completeness. Nonetheless,

the overall performance of the

system is much better than com-

peting (less robust) prototypes

found on the Internet. For exam-

ple, in our tests for ordering

small requests and an empty ser-

vice that just send a small reply,

our testes show that BFT-SMaRt

offers a peak throughput almost

3x better (132 Kops/s vs. 49

Kops/s) than PBFT [4] (the base-

line implementation for BFT

SMR).

Project number:
257243

TClouds mission:

Develop an advanced cloud infrastruc-

ture that delivers computing and sto-
rage with a new level of security, pri-
vacy, and resilience.

Change the perceptions of cloud com-

puting by demonstrating the prototy-
pe infrastructure in socially significant

application areas.

Project start:
01.10.2010

Project duration:
3 years

Total costs:
EUR 10.536.129

EC contribution:
EUR 7.500.000

Consortium:
14 partners from 7 different countries.

Project Coordinator:
Dr. Klaus-Michael Koch
coordination@tclouds-project.eu

Technical Leader:
Dr. Christian Cachin
cca@zurich.ibm.com

Project website:
www.tclouds-project.eu

Further information about BFT-

SMART can be found under Delive-
rable „D2.2.1— Preliminary Architec-

ture of Middleware for Adaptive Re-
silience“.

TClouds at a glance

[1] F. B. Schneider. Implementing-

fault-tolerant service using the
state machine approach: A tuto-

rial. ACM Computing Surveys.
1990.

[2] C. Cachin. Yet another visit to

Paxos. Technical report, IBM
Research Zurich. 2009.

[3] J. Sousa and A. Bessani. From
Byzantine consensus to BFT

state machine replication: A
latency-optimal transformation.

EDCC’12, 2012.

[4] M. Castro and B. Liskov. Practi-
cal Byzantine fault tolerance

and proactive recovery. ACM
Transactions on Computer Sys-

tems. 2002.

References

Further Information

Disclaimer

The TClouds project has received

funding from the European Union's
Seventh Framework Programme

(FP7/2007-2013) under grant agree-
ment number ICT-257243.

www.tclouds-project.eu

Where To Find BFT-SMaRt?

http://code.google.com/p/bft-smart/

